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Systemic sclerosis (SSc), an autoimmune disease that is associated with a number

of genetic and environmental risk factors, is characterized by progressive fibrosis and

microvasculature damage in the skin, lungs, heart, digestive system, kidneys, muscles,

joints, and nervous system. These abnormalities are associated with altered secretion of

growth factor and profibrotic cytokines, such as transforming growth factor-beta (TGF-β),

interleukin-4 (IL-4), platelet-derived growth factor (PDGF), and connective-tissue growth

factor (CTGF). Among the cellular responses to this proinflammatory environment, the

endothelial cells phenotypic conversion into activated myofibroblasts, a process known

as endothelial to mesenchymal transition (EndMT), has been postulated. Reactive oxygen

species (ROS) might play a key role in SSs-associated fibrosis and vascular damage

by mediating and/or activating TGF-β-induced EndMT, a phenomenon that has been

observed in other disease models. In this review, we identified and critically appraised

published studies investigating associations ROS and EndMT and the presence of

EndMT in SSc, highlighting a potential link between oxidative stress and EndMT in this

condition.

Keywords: Endothelial-to-Mesenchymal Transition, oxidative stress, reactive oxygen species, scleroderma,

systemic sclerosis

INTRODUCTION

Systemic sclerosis or scleroderma (SSc) is a complex multisystem autoimmune disease
characterized by progressive fibrosis of the skin and visceral organs and significant vascular
alterations (1). The pathogenesis of SSc remains unclear, particularly the mechanisms involved
in the development of vascular lesions (2). Oxidative stress-mediated-vascular dysfunction and
Endothelial-to-Mesenchymal Transition (EndMT) are likely to play a role in SSc-mediated
vascular damage (3). Several studies have shown increased production of reactive oxygen species
(ROS), altered redox state, and excessive extracellular matrix (ECM) deposition in organs
and tissues of SSc patients (2). Although the primary cellular effector of diseases-associated
fibrotic conditions remains to be identified (4) some potential sources have been proposed.
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In addition to Epithelial-to-Mesenchymal Transition (EMT),
which takes place in vivo in the lung (5–8), as well as in a
variety of other fibrotic processes (9–13) including SSc (14,
15), the potential involvement of EndMT in SSc has also been
suggested. EndMT accounts for the increased fibroproliferative
vasculopathy and fibrosis in several diseases (16) and is
considered a novel mechanism for the generation of activated
myofibroblasts in SSc (17–20). On the other hand, increased
ROS generation has been reported to mediate TGF-β-induced
EndMT in several conditions including atherosclerosis, Fuchs
endothelial corneal dystrophy, and diabetic nephropathy (21–
23). TGF-β-mediated ROS generation also promotes cardiac
fibroblast differentiation into myofibroblasts, which accounts for
the increased production of ECM proteins such as type I and III
collagen and the initiation of α-smooth muscle actin expression
(α-SMA) during the EndMT process (24). Noteworthy, although
not specifically in SSc, the regulation of TGF-β signaling by
mitochondrial-derived ROS has also been reported in lung
fibrosis (25, 26).

In this review, we summarize the most relevant
research regarding the correlation between oxidative
stress and EndMT, and their role in SSc-associated
vascular damage and remodeling. Readers interested
in a more comprehensive discussion concerning the
mechanisms involved in the onset and progression of
the fibrotic process can refer to other recent excellent
reviews (27–30).

Oxidative Stress and SSc
The term ROS indicates oxygen-containing free radicals
harboring one or more unpaired electrons in the atom or the
outer molecular orbitals (31). Unpaired electrons make free
radicals highly reactive. Among them, the superoxide radical
(O·−

2 ), hydrogen peroxide (H2O2), hydroxyl radical (·OH−),
hypochlorous acid (HOCl) and peroxynitrite (ONOO−) are key
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oxidative molecules within the ROS family (32). In this regard,
oxidative stress reflects an imbalance between the generation of
ROS and the biological system’s ability to counteract or detoxify
their harmful effects. Therefore, when present in excessive
concentrations, ROS cause oxidative stress and cellular damage,
potentially leading to cell transformation and/or cell death (33).

ROS and oxidative stress are considered to play a key role
in the onset and progression of SSc through several processes,
such as ischemia-reperfusion injury (34–36). In addition, ligand-
mediated receptor activation by cytokines and growth factors can
also increase ROS generation (2, 35, 37). For example, TGF-β is a
profibrotic cytokine that plays a key role in the ligand-mediated
receptor process that triggers the onset and progression of SSc
(2, 37–41). Other putative factors involved in the pathogenesis
of SSc include the platelet-derived growth factors (PDGF),
vascular endothelial growth factor (VEGF), connective tissue
growth factor (CTGF), angiotensin II, interleukin 3, interleukin
6, tumor necrosis factor-alpha (TNF-α), nerve growth factor, and
fibroblast growth factor (FGF). These factors can generate ROS in
vascular smoothmuscle cells, cardiac, lung and skin fibroblasts by
activating signaling pathways coupled to nicotinamide adenine
dinucleotide phosphate oxidase (NOX) family members (42).
Cytokines can also modulate ROS generation by influencing the
cellular concentrations of NOX at both RNA and protein levels,
as well as by improving both stability and NOX translocation to
the cell membrane by stimulating the phosphorylation of NOX
complex’s components (42). For instance, in rat aortic smooth
muscle cells, production of ROS by IL-1β is mediated by NOX4
(43). Although IL1-β induces its expression (44), NOX1 does not
appear to be involved in IL1-β-induced ROS production (43). In
addition, TGF-β has been shown to induce NOX4 expression as
well as ROS production in human arterial smooth muscle cells
(45). IFN-γ, via the JAK/STAT pathway (46), and TNF-α, likely
via the NFκB pathway (47), also induce expression of NOX1 and
NOX4 in human aortic smooth muscle cells (48). Indeed, NOX
inhibitors appear to attenuate the effect of TNF-α in vascular
smooth muscle cells, supporting the hypothesis that this cytokine
elicits its effects via NOX activity (49). The signaling pathways
involved in cytokines-induced ROS generation in fibrosis and
SSc are quite complex and depend on specific cytokines, NOX
isoforms and target cells. For a more detailed information
regarding this aspect we refer the readers to this excellent review
(42) Furthermore, besides cytokines-induced ROS generation,
the increased concentrations of superoxide from different cells,
including fibroblasts andmonocytes, can contribute per se to ROS
elevation in SSc (2, 50–54).

About 90% of patients with SSc suffer from Raynaud’s
phenomenon, a condition where the cold-induced constriction
of dermal arterioles is excessively augmented and results in
vasospasm and skin color change. Patients with Raynaud’s
phenomenon secondary to underlying diseases typically present
with more severe manifestations such as ulcer, scar, or gangrene
(55, 56). Although the detailed molecular pathology of the
Raynaud’s phenomenon, and its association with SSc, is not
clearly understood, both oxidative and non-oxidative pathways
appear to be involved (35, 56–58). The systemic increase of ROS
concentrations in SSc is likely to be an important factor for the
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worsening of the Raynaud’s phenomenon. In this context, the
concentrations of 8-isoprostane, a biomarker of oxidative stress,
antioxidant deficiency and lipid peroxidation, have been shown
to correlate with the extent of vascular lesions in Raynaud’s
phenomenon and the severity of fibrosis in patients with SSc
(59–61). The free radical nitric oxide (NO), released by the
endothelial cells, plays an essential role in the homeostatic control
of vascular tone and blood pressure as well as in preventing
thrombosis and cell damage. However, during the reperfusion
phase in the Raynaud’s phenomenon, free radicals and NO lead
to peroxynitrite formation, which precedes oxidative vascular
damage and endothelial apoptosis. Therefore, in this specific
situation, NO further aggravates vascular damage (35, 62).

A growing number of in vitro and in vivo studies have
demonstrated the direct role of ROS in the pathogenesis of
SSc (61, 63, 64). Grygiel-Gorniak and Puszczewicz et al. skin
and visceral fibroblasts from SSc patients spontaneously produce
large amounts of ROS that initiate collagen synthesis (35).
Indeed, fibroblasts from SSc patients have higher baseline
NOX-inhibitable intracellular ROS concentrations (65) when
compared to fibroblasts from healthy donors (65). This
phenomenon appears to be triggered by the stimulation of
the PDGF receptor and further maintained through ROS-
ERK1/2 signals mediated by Ha-Ras (66). It is important to
emphasize, however, that normal fibroblasts can also respond
to stimulation by different cytokines with a NOX-dependent
increase in intracellular ROS concentrations (65).

A preliminary study by Boin et al. (67) showed a significant
increase in intracellular ROS concentrations in human
pulmonary artery smooth muscle cells (HPASMCs) after
treatment with sera from patients with SSc and pulmonary
artery hypertension (PAH). NOX2ds-tat (gp91ds-tat), a specific
inhibitor of NOX2, prevented the PAH-SSc sera -induced ROS
generation, suggesting the mechanistic involvement of NOX2 in
this phenomenon (67). Exposure of HPASMCs to SSc-PAH sera
also resulted in a progressive increase of the Collagen promoter
activity. Similarly, this effect was prevented by NOX2ds-tat
treatment, suggesting that the collagen synthesis activation
in HPAMSCs is driven by SSc-related PAH sera through
NADPH oxidase-dependent ROS generation (67). Moreover, in
human dermal fibroblasts, NOX inhibition caused a significant
reduction in the expression of fibronectin, collagen type I
and alpha-smooth muscle actin (68). Similarly, the selective
NOX1/NOX4 inhibitor, GKT-137831, abolished TGF-β-induced
expression of the profibrotic genes CCN2 and alpha-SMA (41).
Importantly, GKT-137831 was also able to reduce collagen gel
contraction as well as expression of alpha-SMA and CCN2
protein overexpression in fibroblasts isolated from dermal
lesions in SSc patients (41). A NOX4-derived increase of ROS
has also been reported to be involved in the vascular smooth
muscle cells contractile to synthetic phenotype switch elicited by
agonistic anti-PDGF receptor autoantibodies from SSc patients
(69) Taken together, these findings indicate that the NOX system,
in addition to ROS production, mediates the activation of
collagen synthesis and profibrotic genes.

In vivo studies in BALB/c mice injected with HOCl daily
for 6 weeks (a murine model of SSc) showed the induction of

chronic oxidative stress and the concomitant development of
cutaneous and lung fibrosis. Furthermore, HOCl-treated mice
overexpressed α smooth muscle actin (α-SMA), a marker of
myofibroblast activation. These processes were mediated by the
ROS-activated intracellular signaling pathways ADAM17/Notch
and Ras-ERK (70–72). Blockade of the Ras-ERK pathway by
propylthiouracil (PTU) or simvastatin prevented both cutaneous
and lung fibrosis (71, 72).

Some studies reported that, in SSc, the excessive production
of ROS activates fibroblasts through the binding of stimulatory
serum autoantibodies to the PDGFR (73). In this regard, it has
been reported that sera from mice and patients with SSc induce
fibroblast proliferation andH2O2 production by endothelial cells,
phenomena that appear to bemediated by oxidized auto-antigens
such as the oxidized DNA topoisomerase (74). Noteworthy,
the same paper indicated that the nature of ROS, as well as
the induction of different antibodies, appear to dictate the
form of SSc in both mice and humans. BALB/c SCID mice
treated with peroxynitrites developed skin fibrosis and serum anti
centromere protein autoantibodies (anti-CENP-B), as reported in
patients with limited cutaneous scleroderma, while mice treated
with hypochlorite or hydroxyl radicals developed skin and lung
fibrosis and DNA topoisomerase I autoantibodies, as reported
in patients with diffuse cutaneous scleroderma (74). While
pro-oxidants may cause an increase in autoantibodies, other
studies failed to demonstrate a significant association between
autoantibodies in endothelial cells and fibroblasts and serum-
induced ROS or cell proliferation. Despite this uncertainty, there
is good evidence supporting the role played by autoantibodies
in SSc, particularly anti-endothelial cell antibodies (AECA),
in the development of pulmonary fibrosis (35, 75). Oxidative
stress may either directly activate ROS-induced differentiation of
fibroblasts into myofibroblasts (70), disrupt the balance between
protease and protease inhibitors, or both. TGF-β upregulates the
expression of extracellular matrix proteins including collagens,
but also suppresses protein degradation through enhancing
the activities of protease inhibitors such as plasmin activator
inhibitor 1 (PAI-1) and tissue inhibitors of metalloproteinases
(TIMPs) (38). This protease-antiprotease imbalance is likely to
represent a critical factor in the development of SSc lung fibrosis
(76). Furthermore, although not specifically demonstrated in
the SSc-associated fibrotic process, a mitochondrial-generated
increase of ROS has been found to induce lung fibrosis (25–
27). Effect of ROS in the development of fibroproliferative
vasculopathy and fibrosis in SSc (Figure 1).

Endothelial-to-Mesenchymal Transition
and SSc
The pathogenesis of SSc involves several complex mechanisms
associated with (i) microvascular fibroproliferative lesions,
(ii) innate and adaptive immune system abnormalities and
uncontrolled accumulation of collagen, as well as (iii) other
extracellular matrix compartments produced by fibroblasts
and activated myofibroblasts in the skin and other organs
(17, 77). Physiologically, myofibroblasts die through apoptosis
and/or the transition to a quiescent/senescent state in the
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FIGURE 1 | Schematic diagram describing the central role played by ROS in the development of fibroproliferative vasculopathy and fibrosis in SSc.

late stages of wound healing. However, the persistence of
activated myofibroblasts contributes to progressive fibrogenesis
(78, 79) and favors the onset and progression of interstitial and
perivascular fibrosis in the lungs, heart, kidneys and other organs,
which accounts for the high mortality of SSc patients (80).

Myofibroblast activation in SSc has been demonstrated in
pericytes and smooth muscle cells (SMCs) from vessel walls,
resident fibroblasts, and bone marrow-derived fibroblasts (17,
81, 82). Although the ontogenesis of myofibroblasts in fibrotic
conditions remains an area of active research (4, 83–86), an
increasing number of studies indicated EMT as a potential source
of activated fibroblasts by which epithelial cells transform into
myofibroblasts (5–8, 14, 15). In this regard, some authors suggest
that diseases-associated fibrotic processes may be the result of
injury-elicited cellular stress responses such as senescence or
apoptosis (28, 87–91), These processes, under yet unknown
conditions, could also promote tissue repair by activating
and/or recruiting resident progenitor cells (92) especially in
the lungs (93–95). However, this hypothesis does not exclude
the coexistence of other injury-activated processes such as the
cellular transdifferentiation of endothelial cells to profibrotic
activated myofibroblasts during EndMT, a phenomenon that has
been reported also in vivo (19, 96–102). The latter might provide
a plausible explanation for the excessive secretion of extracellular
matrix proteins that takes place in this pathological condition
(103). EndMT is considered a distinct form of EMT since
vascular endothelial cells share several similar characteristics
and molecular mechanisms with epithelial cells in generating
fibroblasts and myofibroblasts (104, 105). EndMT contributes
to the development of cardiac, pulmonary, renal, liver, and
intestinal fibrosis, and idiopathic portal hypertension in SSc
(7, 12, 13, 17, 18, 97, 98, 106–109). EndMT has also been

reported in vivo in pulmonary hypertension, a process that is
closely associated to SSc (101, 102, 110). It is also important to
mention that, despite its role in many pathologies, EndMT may
be beneficial during angiogenic sprouting, as it allows cells to
lose intercellular junctions and delaminate from the parent vessel
(111).

During the conversion of endothelium into mesenchyme
elicited by TGF-β or Notch ligands, endothelial cells undergo
morphological alterations and loss of characteristic cell-surface
markers, acquiring mesenchymal, fibroblast-like properties such
as spindle-shaped morphology, migratory capacity, invasiveness,
and enhanced resistance to apoptosis (82, 112). During EndMT,
the structure of vessel-lining is disrupted due to resident
endothelial cells disaggregating from the organized cells layer in
the vessel walls and invading the surrounding tissue (112–114).
Cell-surface markers such as vascular endothelial cadherin (VE-
Cadherin), CD31 (platelet endothelial cell adhesion molecule-
1, PECAM 1), and von Willebrand factor (vWF) are gradually
replaced by markers such as fibroblast-specific protein-1 (FSP-1),
α-SMA, vimentin and type I and type III collagen (12, 18, 114).

Several studies have demonstrated the presence of transitional
EndMT cells in the pulmonary vasculature of patients with
SSc-PAH, indicating their possible contribution to vascular
remodeling and fibrosis (18). For instance, the coexpression
of cell surface markers specific for both endothelial and
mesenchymal/fibroblastic cells, such as Willebrand factor (vWF)
and α-SMA, has been reported in an experimental murine
model of PAH and in pulmonary endothelium samples of
SSc-PAH patients (110). Similar findings have been reported
in lung tissue from patients suffering from SSc-associated
interstitial lung disease (19). Cells in the intermediate stages
of EndoMT have also been found in dermal vessels from
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patients with SSc and in two types of SSc animal models,
bleomycin-induced SSc and urokinase-type plasminogen
activator receptor (uPAR)-deficient mouse model (115). When
compared to normal skin microvascular endothelial cells from
healthy donors, cells from SSc patients displayed a spindle-
shaped figure along with co-expression of both endothelial
(CD31 and VE-cadherin) and myofibroblast markers (α-SMA,
S100A4, type I collagen). Moreover, exposure of healthy
donor-derived microvascular endothelial cells to either SSc
sera or TGFβ1 triggered the transition to a myofibroblast-
like morphology, contractile phenotype, downregulation of
endothelial markers and induction of mesenchymal markers
(115). Similarly, exposure of pulmonary artery endothelial
cells to a mixture of proinflammatory cytokines such as IL-1β,
TNF-α, and TGF-β abolished their “cobblestone” structure and
prompted a spindle-like appearance along with induction of
mesenchymal markers (110). Induced endothelial-mesenchymal
transition (I-EndMT) cells exhibit an increased secretion of
proinflammatory proteins and collagen type I. In addition,
the presence of I-EndMT cells in the cellular barriers leads
to a significant increase in paracellular and transcellular
permeability, an early sign of vascular dysfunction in SSc
(76, 110).

Vascular abnormalities in SSc patients have been reported
to affect the structure and function of several organs and
systems, such as the kidney, lung, skin, heart, gut, penis and
large vessels (17). Therefore, the mechanistic contribution of
EndMT to the pathogenesis of SSc vasculopathy is postulated to
involve a synergistic and complex activation of a large variety
of endothelial cell types from different body districts exposed
to multiple local biological mediators, particularly TGF-β, but
also IL-1β, TNF-α, PDGF, VEGF, and endothelin-1 (ET-1)
(17, 18, 77, 78, 112, 114, 116–119). Indeed, cytokines-mediated
receptor activation induces the expression of endothelial cell
adhesion molecules such as ICAM, VCAM-1, and E-selectin
(120, 121), which promote both recruitment and activation
of chronic inflammatory cells, such as T- and B-lymphocytes
and profibrotic macrophages, in the perivascular tissue and
in the parenchymal organs interstitium. Recruited chronic
inflammatory cells secrete transforming TGF-β, CTGF, and
other profibrotic growth factors which along with endothelial
cell released mediators, such as endothelin-1, enhance the
fibroproliferative vasculopathy characteristic of the disease and
potentially activate EndMT (17, 122, 123). In this regard, the
interaction between proinflammatory stimuli and endothelial
cells has been demonstrated by a recent paper reporting the
upregulation of ET-1 and TGF-β in human microvascular
endothelial cells induced by IF-γ, (118). Nevertheless, the
precise molecular mechanisms by which inflammatory
cytokines, growth factors, and signaling pathways mediate
EndMT are not completely elucidated and necessitate further
investigation.

Using a transgenic mice model, a recent study demonstrated
that the endothelial cell-specific activation of TGF-β1
downstream signaling pathway induces EndMT in lung
vessels (20). An elegant study using co-culture of microvascular
endothelial cells and fibroblasts isolated from the skin of SSc

patients demonstrated the ability of SSc-fibroblasts to induce
endothelial cells EndMT transition. Consistent with this finding,
normal fibroblasts treated with TGF-β and ET-1 were able to
promote the same effect when co-cultured with microvascular
endothelial cells (124). TGF-β2 has also been reported to mediate
Interferon-γ-induced EndMT in human dermal microvascular
endothelial cells (118). Protein kinase C has also been reported
to be involved in TG-induced EndMT of mouse pulmonary
endothelial cells in vitro (125).

All TGF-β isoforms have been reported able to elicit EndMT
although the precise role of each isoform appears to differ
between species and requires further studies to be clearly
elucidated. While TGF-β 1 appears to be the main isoform
involved in fibrosis-associated EndMT processes, TGF-β 2 seems
to be primarily involved in EndMT associated to embryonic
heart development (126–128). Nevertheless, also TGF-β 2 has
been recently reported to be involved in EndMT associated with
some pathological process such as cardiac hypertrophy and renal
fibrosis (129, 130). In this regard,Maleszewska et al. (131) showed
that TGF-β can either promote EndMT per se or synergize
with TNF-α and IL-1β to induce the transdifferentiation of
endothelial cells toward the profibrotic activated myofibroblasts
phenotype. The authors showed that, in the framework of
an inflammatory co-stimulation, TGF-β 2 is more potent that
TGF-β1 in inducing EndMT, suggesting that TGF-β 2 may
be the primary EndMT trigger, while IL-1 is necessary for
the efficient induction of EndMT, but is not essential for
its maintenance (131). The finding that endothelial cells in
proinflammatory environment respond differently to TGF1 and
TGF2 suggests that, similar to what reported in the embryonic
development, TGF2might play amajor role in EndMT associated
to pathological inflammation. In this regard, Good et al. (110)
showed that a combination of TGF-β with IL-1β and TNF-α
induced EndMT in pulmonary artery endothelial cells. Notably,
the withdrawal of IL-1β, TNF-α, and TGF-β after 6 days failed to
revert this process, suggesting that the phenotypic change might
be permanent (104, 110). This observation was in agreement
with previous studies in cells exposed to activated Ras and TGF-
β treatment (107). Recently, Cipriani et al. (119) reported that
Macitentan, an Endothelin-1 Receptor Antagonist, blocks both
Endothelin-1- and TGF-β-induced EndMT in microvascular
endothelial cells isolated from healthy donors and SSc patients
(119). Similar results, using both Bosentan and Macitentan,
were also obtained by Corallo et al. (124) in the fibroblast
and microvascular endothelial cells coculture model previously
discussed (124). Other studies reported that some anti-fibrotic
mediators could dedifferentiate establishedmyofibroblasts. These
findings suggest the possibility that EndMT is a reversible
process, providing a new intriguing therapeutic target for fibrotic
diseases (81, 132).

TGF-β plays a critical role in other signaling pathways
involved in EndMT, such as the Smad-dependent and Smad-
independent pathways (Figure 2). Smad proteins have been
shown to bind directly to the Snail gene promoter and regulate
its transcription (117). Snail-1 is a zinc-finger transcription
factor that forms a complex with Smad3/Smad4, and by
acting as transcriptional repressor, plays a crucial role in the
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FIGURE 2 | Smad-dependent and Smad-independent pathways of TGF-β signaling associated with EndMT. Transforming growth fator-β (TGF-β) signaling activates

the downstream signal transduction cascades, Smad and non-Smad pathways. TGF-β binds the TGF-β type II receptor (TGF-βRII), which recruits and activates the

type I TGF-β receptor. TGF-βRI in turn phosphorylates Smad2/3, which forms a complex with Smad 4. In addition, TGF-β activates Smad-independent pathways.

Activation of Smad-independent TGF-β pathway causes phosphorylation of GSK-3β mediated by PKC-δ and c-Abl. Phosphorylation of GSK-3β causes its own

inhibition which then allows Snail-1 to enter the nucleus. TGF-β/Smad-dependent and Smad-independent pathways upregulate the transcription of TGF-β target

genes such as α-smooth muscle actin (α-SMA), fibronectin and type I collagen, as well as the transcription factor Snail-1 involved in EndMT. EndMT leads to the

transdifferentation of ECs into mesenchymal cells, which subsequently transform into myofibroblasts, therefore contributing to the progression of fibrotic diseases.

ERK, extracellular signal-regulated kinase; JNK, jun N-terminal kinase; p38 MAPK, p38 mitogen-activated protein kinases; PKC-δ, protein kinase C δ; c-Abl, c-Abl

protein kinase; GSK-3β, Glycogen synthase kinase 3β.

TGF-β-induced mesenchymal transdifferentiation of embryonic
stem cell-derived ECs. The active Smad3/Smad4/Snail-1 complex
is a potent inhibitor of E-cadherin expression by directly
integrating into specific sequences within the gene promoter and
blocking its transcription. In addition to E-cadherin inhibition,
Snail-1 precedes transcriptional events that lead to the expression
of a mesenchymal-cell-specific phenotype (17, 18).

In the Smad-independent pathway of TGF-β signaling, there
is an involvement of important kinases such as c-Abl protein
kinase (c-Abl), protein kinase Cδ (PKC-δ), RhoA and glycogen
synthase kinase 3β (GSK-3β). The function of RhoA in actin
and microtubule cytoskeleton organization is well-established,
and as such contributes to the structural/phenotypic changes
observed during EndMT (133). On the other hand, activation the
of Smad-independent TGF-β pathway causes GSK-3β inhibition

allowing Snail-1 to enter the nucleus. Indeed, phosphorylation
of GSK-3β at the specific Ser9 residue causes its own inhibition,
which in turn induces Snail-1 up-regulation and promotes its
subsequent translocation into the nucleus. This process increases
the nuclear accumulation of Snail-1, which consequently drives
the expression of mesenchymal cell-specific markers such as
α-SMA and type I collagen, while reducing the expression
of VE-cadherin harbored in endothelial cells. Inhibitors of c-
Abl and PKC-δ, such as imatinib and rottlerin, counteract
the phosphorylation of GSK-3β, which allows GSK-3β to
phosphorylate Snail-1, targeting it for proteasomal degradation
and ultimately abolishing the transdifferentiation of ECs into
myofibroblasts. This intervention could be a therapeutic strategy
to counteract the acquisition of the myofibroblastic phenotype
during EndMT (125). TGF-β2-downstream signals mediated by
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MEK, PI3K, and p38MAPK pathways are also essential for ECs
undergoing EndMT transition (117). In addition, regulation of
EndMT by Wnt (134), NOTCH (135), and Caveolin-1 signaling
(136, 137) has been observed prior to the TGF-β-induced
endothelial-mesenchymal transition. ET-1-mediated TGF-β1-
induced EndMT has been also confirmed in skin and lungs
in vivo in an animal model of TGF-β1-induced tissue fibrosis
(138). Finally, other cytokines and growth factors such as PDGF,
VEGF, ET-1, CTGF, and some MicroRNAs (miRNAs) might
also be involved in the endothelial-mesenchymal transition (17,
18).

miRNAs are small non-coding RNAs containing about 22
nucleotides, which are post-transcriptional repressors of gene
function (139). miRNAs have been recently reported to play
important roles in SSc pathogenesis as well as in the EndMT
process (140, 141). However, further studies are required to
determine whether the SSc-associated profibrotic or antifibrotic
effects of specific miRNAs are mediated by EndoMT. Recent
studies reported the involvement of miRNAs 125b and 126 in
the development of EndoMT (142–144) and the interaction
between TFG β and several miRNAs in modulating EndMT.
For instance, miRNA21 partially mediated TGF-β-induced
EndoMT (145, 146). miR-155 is higly overexpressed during
the EndoMT process and potently inhibits TGF-β induced
EndoMT through a mechanism involving RhoA signaling
(147). The overexpression of miR-148b increased EC migration,
proliferation, and angiogenesis, whereas its inhibition promoted
TGF-β-induced EndoMT (148). On the other hand, other studies
indicated some miRNAs as positive modulators of TGF-β-
induced EndoMT. For instance, the constitutively expression of
miR-31 positively regulates TGF-β-induced EndMT in cultured
endothelial cells (149). Interestingly, the overexpression of
miR-130a, which is upregulated in monocrotaline-induced the
Pulmonary arterial hypertension (PAH) mouse model, can elicit
the expression of α-smooth muscle actin, a critical component
in EndMT transition and fibrogenesis (150). Since PAH is a
widely SSc-associated condition, this paper my pave the way for
further experimentations in this direction. Many other miRNAs
have also been reported to be involved in EndoMT modulation
including let-7 (151, 152) and miRNA 29s (153). Given the
pivotal regulatory effects exerted by miRNAs on the multitude of
signaling pathways involved in the pathophysiology of multiple
diseases, we expect that the knowledge regarding the putative
contribution of miRNA to the EndMT process in conditions
such as SSc will rapidly expand providing valuable information
both to unravel the EndoMT mechanistic processes and to
identify potential therapeutic targets for fibrotic disorders in
general.

Reactive Oxygen Species and
Endothelial-to-Mesenchymal Transition
ROS have been proposed as key mediators of EMT in renal
tubular epithelial cells, human epithelial keratinocytes, and
lung epithelial cells (32, 105, 154–156). An emerging issue
is whether there is a similar tendency of endothelial cells
exposed to oxidative stress to form transitional EndMT cells.

Although EMT and EndMT share several similarities, in terms
of signaling pathways and outcome, the two processes need
to be differentiated due to the various origin, functions, and
microenvironment of epithelial and endothelial cells (157, 158).
Whether EndMT is a reversible biological process, similar to
EMT (157), is an intriguing question that deserves further
investigations.

ROS Activate/Mediate TGF-β-Dependent
Signaling Pathways in EndMT
TGF-β is a multifunctional protein, including three isoforms
(TGF-β1, TGF-β2, and TGF-β3), which regulates several
important physiological processes such as cell proliferation,
differentiation, apoptosis, adhesion, and migration (38, 159).
However, a critical, potentially vicious, cycle of TGF-beta, and
ROS interaction exists. For instance, TGF-β stimulates the
generation of ROS in various cells while ROS can activate
TGF-β and mediate its effects. Moreover, TGF-β elevates ROS
production via NOX4, mitochondria, or microsomes, and ROS,
in turn, can induce TGF-β gene expression and activate its
signaling through oxidizing latency association protein (LAP)
or activating MMPs which promotes LAP release (38). It is
well known that TGF-β is synthesized as a non-active pro-
form combining with LAP to create a latent complex. The
ROS-oxidable redox center present in LAP can trigger a
conformational change resulting in the release of TGF-β1 (160).
Hence, under the stimulation of ROS, TGF-β is activated and
increasingly expressed.

It is well documented that TGF-β induces EndMT in
cardiac, pulmonary, renal, intestinal, and skin tissues (12,
106, 107, 161, 162). In this context, NADPH oxidases and
ROS play a pivotal role in mediating TGF-β induced fibrotic
responses via Smad2/Smad 3 activation (159). Of note, NOX4-
dependent generation of H2O2 is required for TGF-β1-induced
myofibroblast differentiation and ECM production (163, 164).
A recent study by Montorfano et al. (32) used human
umbilical vein endothelial cells (HUVECs) to investigate the
role of ROS as well as the underlying mechanism in the
conversion of ECs into myofibroblasts (32). The authors
demonstrated that oxidative stress is a crucial factor in generating
the EndMT phenotypic conversion of ECs via TGF-β1 and
TGF-β2-dependent pathway and that the ALK5/Smad3/NF-
κB intracellular pathway mediated the observed phenomenon.
This study supports the hypothesis of an interaction between
ROS, TGF-β, and EndMT. Indeed, increased ROS prompted
the expression and secretion of TGF-β1/2, with consequent
activation of its downstream signals, while silencing of TGF-β1/2
abolished the oxidative stress-induced conversion (32).

Another recent study by Echeverría et al. (165) provided
evidence that lipopolysaccharide-induced ROS could lead to
an EndMT-like process through an ALK5 activity-dependent
mechanism (165). In line with this observation, Toshio
et al. (109) showed that endotoxemia-derived oxidative stress
promotes TGF-β-mediated EndMT in pulmonary vascular
endothelial cells (109). This evidence was strongly supported
by another study showing that the expression of TGF-β1 and
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TGF-β2 is crucial for the development of endotoxin-induced
endothelial fibrosis (166). The increase in endotoxin-induced
TGF-β1 and TGF-β2 expression required the activation of NOX
and the subsequent generation of ROS (166). Collectively, these
data suggest that oxidative stress mediates the EndMT process
induced by TGF-β.

Oxidative Stress and EndMT in SSc: Is
There a Link?
Despite the fact that the relationships between ROS and SSc,
and between EndMT and SSc, have been extensively investigated,
relatively few studies have investigated the effects of oxidative
stress on EndMT in SSc. Xu et al. (167) showed that chronic
oxidative stress mediates EndMT in a murine model of SSc (167).
The authors isolated microfibrils from the skin of tight skin
(Tsk+/−) mice, which showed abnormal big fibrillin-1. Culturing
ECs with this abnormal extracellular matrix led to morphological
and functional cellular changes, and increased the concentrations
of 4-HNE, a well-known fission product of polyunsaturated fatty
acid oxidation. Transdifferentiation from ECs to mesenchymal
cells with the increased presence of FSP-1 and Twist (a
transcription factor implicated in the endothelial cell to fibroblast
transition), along with the decreased expression of VE-cadherin,
were also noted (167). Furthermore, the abnormal big fibrillin
expression was associated with oxidative stress (reduced nitric-
oxide-to-superoxide anion ratio) suggesting changes in the
intracellular redox state involved in the observed transition.
Interestingly, chronic mice pretreatment with D-4F, a peptide
binding with high affinity to oxidized lipids, attenuated or
abolished EndMT, indicating that oxidized lipids might play a
central role in other chronic conditions where oxidative stress
promotes endothelial-mesenchymal transition (167). However,
the authors did not dissect the role of TGF-β although, as
mentioned above, TGF-β is known to be a crucial player in the
initiation of EndMT in various diseases (17, 18). Of note, ECM
including fibrillin functions as a reservoir for TGF-β and other
growth factors to control mesenchymal differentiation (168). The
possibility of an interaction between TGF-β and oxidative stress
prior to EndMT is intriguing and requires further research.

It is speculated that the local availability of
tetrahydrobiopterin (BH4) contributes to endothelial physiology
(169), and that its insufficiency might be involved in the
endothelial dysfunction observed in SSc (170). Decreased
concentration of BH4 induces eNOS uncoupling, leading to
superoxide, rather than NO, production, which in turn induces
a state of oxidative stress (171). Although not able to reverse
blood oxidative stress markers, the acute administration of BH4

has been shown to improve endothelial function in patients with
SSc, without affecting their blood pressure (170). However, in
this paper the authors did not investigate whether endothelial,
rather than systemic, oxidative stress was ameliorated. Indeed,
it may be possible that the concentration of BH4 used was
sufficient to improve endothelial function but not appropriate
to ameliorate the oxidative insult seen in blood samples of SSc
patients. More importantly, the patients only received BH4

for 5 h. This period might be too short to influence systemic

oxidative parameters. In fact, more data support the involvement
of BH4 in SSc-associated endothelial dysfunction. For instance,
circulating concentrations of BH4 have been found to be lower in
plasma and pulmonary arteries of patients with IPF, and in rats
with bleomycin-induced pulmonary fibrosis, when compared to
their healthy counterparts (172). Notably, TGβ1 and ET-1 were
able to induce EndMT in human pulmonary artery endothelial
cells by decreasing BH4 and eNOS expression. Finally, treatment
with sepiapterin, a BH4 precursor, blunted bleomycin-induced
pulmonary fibrosis, ameliorated vascular remodeling in vivo by
increasing plasma BH4 and vascular eNOS expression in rats
and counteracted TGβ1- and ET-1-induced EndMT in human
pulmonary artery endothelial cells in vitro (172).

In models of SSc-like bleomycin (BLM)-induced fibrosis,
BLM-induced expression of collagen (I and III) synthesis
mediated by ROS (173). Antioxidants such as NACwere found to
attenuate BLM-induced lung fibrosis in mice and rats (174, 175)
as well as collagen expression (173). The above data are consistent
with earlier findings showing higher ROS production in type
II alveolar epithelial cells and lung phagocytes in a rat model
of BLM-induced fibrosis (176). Although the above-mentioned
studies did not explore the involvement of EndoMT in the
observed SSc-associated fibrotic process induced by ROS, recent
evidence supports the role of ROS in promoting EndoMT in
association with other pathological fibrotic conditions in the
kidney (22, 177, 178). Furthermore, antioxidants have been
shown to reduce EndMT of vascular endothelial cells (177).
Indeed, suppressing oxidative stress has been shown to reduce in
vivo EndMT in glomerular endothelial cells (22).

The BLM-induced fibrosis model has also been used in other
studies (107, 179–181). Notably, Qi et al. (181) demonstrated
that EndMT in the BLM-induced scleroderma mouse model
is inhibited by geniposide, a constituent of the Chinese
herbal compound Zhizi. According to Chinese herbal medicine,
its “bitterness and coldness” properties are appropriate to
attenuate various inflammatory conditions, including the early
inflammation stage of SSc (181). The study proved the ability
of Geniposide to block BLM-mediated EndMT not only in vivo
(mousemodel) but also in vitro (HUVECs). Further investigation
of the EndMT-inhibiting effects exerted by Geniposide showed
its ability to down-regulate key transcription factors involved
in EndMT (Slug, Snail, Twist). Although the above-mentioned
study does not report the involvement of oxidative stress, it
is important to emphasize the well-known prooxidant effect of
BLM which can damage surrounding cells, resulting in fibroblast
activation (182). Interestingly, among all the pharmacological
properties of Geniposide, its antioxidant activity was highlighted
as protective in preventing cells from undergoing oxidative
damage via MAP kinase pathway (183). Of note, ROS and
EndMT interact through TGF-β-dependent and -independent
pathways, as previously discussed. Based on the reported data,
one could hypothesize that Geniposide might act as an anti-
oxidant and anti-inflammatory factor, promoting an inhibitory
effect on BLM-induced EndMT in the SSc mouse model.
Although this hypothesis requires further investigations, a recent
study demonstrated that salvianolic acid A (SSA), a natural
polyphenol antioxidant, prevented EndMT both in vitro and
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in vivo by inhibiting oxidative stress (184). In vitro, EndMT
was induced in human pulmonary arterial endothelial cells by
TFG- β treatment, while in vivo EndMT was studied in a rat
model of monocrotaline-induced pulmonary hypertension. SSA,
by reducing ROS concentrations, was able to counteract EndMT-
associated cell functions, signaling, and proteins both in vitro and
in the lung of rats with pulmonary hypertension (184).

CONCLUDING REMARKS AND FUTURE
DIRECTION

SSc represents a public health and economic burden with
a high rate of mortality and morbidity. ROS play a critical
role in the pathogenesis of SSc. Both oxidative stress and
EndMT are involved in the onset and progression of the
fibroproliferative vasculopathy and fibrotic process in SSc. TGF-
β is involved in the fibrotic process through EndMT, where
ROSmediate and/or activate TGF-β to induce EndMT. Although
numerous studies demonstrated the potential involvement of
both ROS and EndMT in the development of fibrosis, only
a few studies investigated the potential relationship between
ROS and EndMT, and their involvement in the pathogenesis
of SSc. The potential role of oxidative stress in inducing

EndMT directly, or through the TGF-β-dependent pathway, is

an emerging area of investigation that needs to be addressed.
Elucidating the mechanism of SSc pathogenesis associated
with ROS will contribute to the identification of therapeutic
strategies to alleviate the costs and health burden of this
disease.
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