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From immunology to neuroscience, interactions between the microbiome and host

are increasingly appreciated as potent drivers of health and disease. Epidemiological

studies previously identified compelling correlations between perinatal microbiome insults

and neurobehavioral outcomes, the mechanistic details of which are just beginning

to take shape thanks to germ-free and antibiotics-based animal models. This review

summarizes parallel developments from clinical and preclinical research that suggest

neuroactive roles for gut bacteria and their metabolites. We also examine the nascent

field of microbiome-microglia crosstalk research, which includes pharmacological and

genetic strategies to inform functional capabilities of microglia in response to microbial

programming. Finally, we address an emerging hypothesis behind neurodevelopmental

disorders, which implicates microbiome dysbiosis in the atypical programming of

neuroimmune cells, namely microglia.
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INTRODUCTION

The various microbial ecosystems (“microbiota”) and their component genes (“microbiomes”)
existing on and within the host body are increasingly recognized as significant contributors to a
functional host immune system. Commensal microbiota consist of bacteria, fungi, viruses, and
other microorganisms that make up distinct microbial ecologies of various host systems, such
as the gastrointestinal tract, skin, mouth, and genitourinary tract (1). Within each physiological
niche, microbial compositions can vary widely according to the environment and mutualistic
functions that they may serve in conjunction with the host (2). In the gut, where microbial density
is the highest, some of these functions include forming a physical barrier against infection by
pathogenic microbes, acting as a bioreactor for digestion and nutrient absorption, and sensitizing
the host immune system (3). The latter interaction is especially critical in early development, as the
colonization of the infant gut with an initial inoculum of maternal microbiota primes the neonatal
peripheral immune system (4, 5).
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Given the wealth of evidence depicting microbiota as a
driver of early peripheral immunity, an important follow-up
question remains as to whether the microbiome may also
drive immune development in the brain. The neuroimmune
system, primarily comprised of glial cells, is distinct from
the peripheral immune system in part due to anatomical
barriers and developmental sequence. Microglia, the resident
macrophage-like cells in the brain, play an especially critical
role in neurodevelopment through their numerous functions
in patterning and wiring of the maturing brain. Accordingly,
recent studies on neurodevelopmental disorders, such as autism
spectrum disorders (ASD), Rett syndrome, and schizophrenia,
whose complex pathologies include neuronal and synaptic
dysfunction, suggest impropermicroglial activity as a contributor
to these disorders’ neurobiological and behavioral outcomes
(6–8). Interestingly, additional studies suggest that microglia,
not unlike peripheral macrophages, may be susceptible to
microbiome changes (9, 10). Altogether, the demonstration of
microbial influence on brain function via microglial mediators
raises the possibility that manipulation of microbe-immune
crosstalk represents a promising strategy for treating neurological
diseases.

MICROBIOME AND
NEURODEVELOPMENT

A growing number of studies pointing to distinct gut microbiome
profiles among psychiatric patient populations allude to
microbiota as an important corollary of disease pathology
(11–14). The purported mechanisms for microbial linkages
to aberrant neurobehavioral outcomes are broadly considered
to be due to impaired gut-brain communication, including
but not limited to those cause by cytokine imbalance, vagal
nerve signaling, and hypothalamic-pituitary-adrenal (HPA) axis
responses (15–17).

Disruptions to gut microbiota are also implicated in aberrant
neurodevelopmental outcomes (18–20). Here, the impaired gut-
brain pathways are extrapolated to include both mother and
fetus, i.e., the maternal gut-fetal brain axis. Permeability of
maternal gut epithelium, the placental barrier, and fetal blood-
brain barrier are potential factors of maternal gut-fetal brain
communication, as are neuroactivemicrobial metabolites that are
small enough to bypass these barriers (5, 21). The conceptual
basis for how the maternal microbiome may drive offspring
neurodevelopment is illustrated in Figure 1. Maternal skin and
vaginal microbiota play a critical role in seeding the infant
microbiota and were shown to contribute equally to various body
site taxa in infants up to 6 weeks of age in vaginal deliveries
and cesarean deliveries accompanied by active labor (22). In
addition, amniotic fluid, placenta, and umbilical cord blood
possess their own niche microbiomes, although the manner and
extent to which these microbial communities communicate with
the mother or fetus are not yet clear (23).

While the gut microbiome is constantly evolving in response
to dietary and environmental changes, longitudinal sampling
of infant stool during the first 3 years of life demonstrated

resiliency in its ability to return to original homeostatic
conditions following short periods of antibiotic usage (24).
Additional studies suggest that the overall composition of the
gut microbiome may remain stable across multiple decades of
life (25). Interestingly, developmental shifts in gut microbial
composition align with milestones in brain development, such as
neuronal migration and proliferation, myelination, and synaptic
pruning (Figure 2). Although these developmental correlations
do not necessarily indicate a causal relationship, strong evidence
from experimental models using germ-free (GF) and antibiotic-
treated rodents showed that the complete absence or severe
reduction of gut microbiota, respectively, resulted in altered
brain chemistry, transcriptional changes, and atypical behaviors
compared to controls (18, 26, 27).

Nonetheless, large-scale epidemiological studies highlight
compelling correlations between certain microbiome-
modifying pregnancy events and subsequent diagnoses of
neurodevelopmental disorders in children. Maternal infection
and antibiotic use during pregnancy are often highlighted as
potential risk factors for ASD (28–30). Of the former, meta-
analysis of studies reporting ASD risk of maternal infections
resulted in significant associations with bacterial infections
during second and third trimesters. The odds of subsequent
ASD diagnosis were slightly greater than those reported for viral
infections, but not as high as any maternal infection combined
with a hospital visit (31). Such results also comport with
numerous animal studies that used viral or bacterial components
to elicit maternal immune activation and resulted in broad-based
ASD- and schizophrenia-like phenotypes in the offspring,
including neuroinflammation, dysregulated neural circuitry,
behavioral deficits, and gene expression changes (32–36). Within
the context of the mother-child dyad, these findings suggest that
acute, immune insults as a result of microbial dysbiosis during
pregnancy may be more influential on neurodevelopmental
outcomes than chronic conditions that mainly affect the mother
alone.

Gut Bacteria
Gastrointestinal issues are a common comorbidity in ASD, which
remains a factor even when considering non-autistic sibling
controls (37). Comparative gut microbial profiling studies in
ASD suggest that, in the absence of a pathogenic infection, the
lack of commensal microbes and/or microbial communities
found in neurotypical counterparts may contribute to adverse
health outcomes. Pyrosequencing of fecal bacteria DNA in
children diagnosed with ASD determined lower abundance of
gut bacteria species known to ferment complex carbohydrates,
such as Prevotella, Coprococcus, and Veillonellaceae compared
to non-autistic children (38). Meanwhile, other studies reported
increased abundance of Bacteroides, Ruminococcus, and
Sutterella in autistic children compared to controls (39, 40). A
recent open-labeled clinical study showed that fecal microbiota
transplantation resulted in mitigation of both gastrointestinal
and behavioral symptoms in autistic children that corresponded
with increased diversity of gut microbiota and increased
abundance of previously low populations, such as Prevotella
(41). Accordingly, targeted communities of commensal gut
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FIGURE 1 | Schematic for maternal microbiome influence on neurodevelopment. Current hypotheses propose disruptions to the maternal gut microbiome during

pregnancy, such as antibiotic use, lead to altered gut microbial communities and subsequently altered levels of microbe-derived metabolites and impaired immune

signaling. Microbial metabolites include neurotransmitters, neuropeptides, and short-chain fatty acids that are small enough to bypass the placental and fetal

blood-brain barriers. Microbial metabolites may serve neuroactive roles through immune priming interactions with microglia in the fetal brain to potentially drive

neurodevelopmental changes and behavioral outcomes later in life.

microbiota are currently under investigation as possible catalysts
for gut-brain signaling. At present, research on these microbes
are bacteria-specific and frequently coincide with research on
probiotics. Of clinical interest are bacterial species found in
maternal microflora during pregnancy and in the neonatal
gut, such as Lactobacillus, Bifidobacterium, and Bacteroides,
whose presence represent homeostatic conditions during healthy
development (42).

Lactobacillus is a key component of a complete and diverse
gut microbiome and represents a genus of bacteria naturally

found in the gut of healthy mammals. The human vaginal
tract microbiome is also primarily dominated by Lactobacillus
spp. followed by anaerobic species from Prevotella and Sneathia
spp. (42). During pregnancy, the vaginal microbiome undergoes
remodeling that results in reduced diversity, increased stability,
and enrichment of Lactobacilli. This is thought to protect against
pathogenic infection through increased lactic acid production
and decreased pH levels (43, 44). Parallel sampling of maternal
and neonatal microbiota showed that the gut microbiota
of vaginally-delivered infants reflects bacterial species found
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in the maternal gut microbiome, whereas cesarean-delivered
infants were more likely to harbor bacteria from maternal
skin microbiome, e.g., Staphylococcus, Corynebacterium, and
Propionibacterium spp. (42). Meanwhile, the use of intrapartum
antibiotics resulted in infant gut dysbiosis at 3 months and 12
months of age regardless of the mode of delivery (45).

As a commensal microbe, Lactobacilli in the gastrointestinal
tract confer beneficial effects to digestion through lactic acid
fermentation of foods (46) and prime immune cells via
interactions with leukocytes in mesenteric lymph nodes and/or
via dendritic cell sampling of gut lumen contents (47–49).
The influence on immune system priming has been shown to
have significant effects in biological and behavioral outcomes.
For example, changes to HPA axis signaling and reduced
corticosterone levels were observed in mice following oral
administration with various Lactobacilli strains, such as L.
rhamnosus, (16). Similarly, L. reuteri represents another well-
studied strain with reports of restoration to ventral tegmental
area synaptic plasticity and oxytocin production in mice born
to dams on a high fat diet (50). Meanwhile, administration
of L. helveticus resulted in decreased levels of inflammatory
cytokines and improved performance in spatial memory and
anxiety-related behavior tasks in IL-10−/− mice (51).

Given the broad evidence base supporting the molecular
and physiological impact of Lactobacillus spp., the continued
focus on this genus of bacteria is not surprising. Nonetheless,
other bacteria, such as Bifidobacteria and Bacteroides, have also
demonstrated ability to regulate immune response and behavior.
For example, oral feeding of Bacteroides fragilis to weaned mice
in a maternal immune activation model of autism resulted in
the recovery of gut barrier proteins, Claudin-5 and-8, and rescue
of anxiety-like and stereotypic behaviors (19). These findings
suggest that bacterial functionality, such as the ability to sensitize
immune cells or produce bioactive metabolites, may be a better
indicator of gut-brain interaction than mere taxonomy.

Gut Bacterial Metabolites
The discovery of penicillin by Alexander Fleming popularized
the notion that byproducts of microbial metabolism could
serve as potent chemicals (52). These metabolic byproducts, or
metabolites, range broadly in terms of their molecular assembly
and function. They can act as quorum sensing molecules, energy
substrates, or even competitive antimicrobials against other
microbes (53–55). Microbial metabolism is also one of the critical
functions of the gut microbiome in maintaining host health; the
mammalian digestive system is incapable of extracting many key
nutrients, such as vitamins, amino acids, and energy, from diet
and relies on commensal gut microbes for these tasks (56).

The most abundant products of gut bacterial metabolism
are short-chain fatty acids (SCFAs), which result from bacterial
fermentation of complex carbohydrates and proteins in the
colon. SCFAs refer to fatty acids consisting of one to six
carbon atoms, but predominantly consist of acetic acid, butyric
acid, and propionic acid in the mammalian gut (57). Of
the three, acetic acid (anion: acetate) makes up the largest
portion of SCFA distribution in the colon, where it readily
enters the circulatory system to act as a vasodilator or energy

substrate for peripheral tissues (58). Radiolabeled colonic acetate
has been shown to pass the blood-brain barrier to serve as
an energy substrate for astrocytes, but also to preferentially
accumulate in the hypothalamus where it is converted to acetyl-
CoA leading to downstream suppression of appetite-related
hormones, Neuropeptide Y (NPY) and agouti-related peptide
(AgRP) (59, 60). Butyric acid (anion: butyrate) is an important
energy substrate for colonocytes and a well-documented histone
deacetylase (HDAC) inhibitor with pharmaceutical potential
for neurodegenerative diseases (61, 62). Interestingly, exposing
microglia to sodium butyrate in vitro resulted in differential
inflammatory responses wherein rat primary cells, hippocampal
slice cultures, and neural co-cultures (consisting of microglia,
astrocytes, and neurons) resulted in an anti-inflammatory
effect against LPS, but cultured murine N9 microglial cells
elicited a pro-inflammatory response (63). Propionic acid (anion:
propionate) appears to be the only SCFA to demonstrate adverse
effects in the brain, as direct intracerebroventricular injection
of propionic acid in rats yielded a wide range of autism-
like neurobehavioral changes, including repetitive motion and
increased markers for astrocyte and microglia immunoreactivity
(GFAP and CD68, respectively) (64).

While SCFAs’ best known functions are to serve as fuel
for colonocytes and regulators of host metabolism, recent
investigations revealed that SCFAs directly interact with the
nervous system via G protein-coupled receptors, GPR41 and
GPR43 (or free fatty acid receptor 3 [FFAR3] and FFAR2,
respectively) (65, 66). Previously deemed “orphan” receptors,
GPR41 and GPR43 are now understood to be expressed
broadly on host tissues and immune cells and are involved
in the resolution of inflammatory responses (67–69). Within
the brain, GPR41 is expressed at low levels in the cerebral
cortex, hippocampus, caudate, and cerebellum and preferentially
binds to butyrate and propionate, whereas GPR43 is expressed
at moderate levels in the caudate and preferentially binds to
acetate and propionate (67, 70). Much remains to be discovered
about the signaling mechanisms of these receptors, but emerging
studies point to downstream activation of immune responses,
such as IgA promotion and inhibition of NF-κB pathway, that are
specifically triggered according to the type of metabolite ligand
and location of the receptor (71, 72).

MICROBIOME AND MICROGLIA

Microglia are primarily recognized as the resident macrophage-
like cells in the brain that serve as first-responders to pathogens,
apoptotic cells, and debris with the ability to secrete soluble
factors that modulate inflammatory responses. Recent studies
paint a more complex portrayal of these highly-motile glial
cells, which have since been found ubiquitously throughout
the central nervous system, including the spinal cord, with
region-specific phenotypes (73–75). Microglia originate as yolk
sac progenitors (Figure 2) and are purported to migrate to
the brain during early prenatal development, as demonstrated
through single-cell RNAseq studies (10, 76). Perhaps appropriate
given their presence in the embryo, microglia serve numerous
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critical functions in wiring and patterning of the developing
brain. Through the production of neurotrophic factors, microglia
contribute to neurogenesis and guidance of sprouting vessels, as
well as phagocytosing synapses and shaping neuronal circuitry
(77, 78). The stepwise processes in which these actions occur
are not yet fully clear, although recent studies form a widening
picture of microglial contribution to the proper maturation of the
brain.

Current hypotheses surrounding the underlying etiology of
neurodevelopmental disorders focus on microglia’s dual immune
and trophic capacities. Neuroimaging studies of ASD patients
showed hypermyelination in both left and right medial frontal
cortex, hypomyelination of the left temporo-parietal junction,
and decreased local and long-range functional connectivity
(79, 80). These findings are supported by murine models of
ASD, whereby impediments to microglial functions resulted in
under-pruning of synapses, hypermyelination of the prefrontal
cortex, and reduced long-range functional brain connectivity
(81–83). In contrast, rodent models of schizophrenia allude
to an over-pruning effect of dysfunctional microglia wherein
pharmaceutical intervention using minocycline resulted in
stalled engulfment activity and rescued behavioral deficits (8,
84, 85). Genomic analysis of psychiatric disorders indicated
upregulation of astrocyte-related genes and downregulation of
neuronal/microglia-related genes across ASD, schizophrenia, and
bipolar disorder to further propose a shared susceptibility in
neuroimmune-specific gene networks (86).

In the gastrointestinal tract, microbiota and associated
metabolites have been shown to elicit both pro- and anti-
inflammatory peripheral immune cell responses and to control
cellular proliferation and epithelial barrier integrity (47, 87–89).
Evidence of increased blood-brain barrier disruption, altered
microglia morphology, and increased microglia density in
GF mice suggests that the microbiome may have a similar
influence on the brain (9, 10, 21). However, contrary to
expectations, gene expression analysis of postmortem cerebral
cortex and cerebellum tissues from ASD patients showed
upregulation of genes associated with barrier proteins (e.g.,
Claudin-5 and TRiC) compared to controls; the same analysis
of small intestine duodenal tissue revealed decreased expression
of barrier protein-associated genes (90). Together, these data
suggest that the epithelial cell barrier integrity in the gut is
compromised, but barrier protein expression in the brain is
increased in ASD.

The microbiome is also implicated in the neuroinflammation
hypothesis underlying the ontogeny of neurodevelopmental
disorders. With respect to ASD, anatomical evidence of unusual
and sustained brain overgrowth in autistic children first alluded
to improper cellular responses wherein the hyperproliferative
stage of early neurodevelopment continues unchecked and
unresolved (91, 92). Thus, the neuroinflammation hypothesis
stipulates neonatal microbial dysbiosis leads to improper
priming of the immune system, which leads to reduced
synaptic pruning and brain overgrowth in ASD. Paradoxically,
immunohistochemical and cytokine profiling of brain tissue
and cerebrospinal fluid samples from ASD patients showed
abundance of activated microglia and increased expression

FIGURE 2 | Comparative timelines for human microglia, gut microbiome, and

neuronal development. Critical stages in brain development coincide with

infant gut colonization to suggest maternal microbiome may serve as an

important inoculum in priming the neuroimmune system.

of macrophage chemoattractant factor-1 (MCP-1) and tumor
growth factor-β1 (TGF- β1) in cerebral cortex, white matter, and
cerebellum (93). Additional studies of ASD postmortem brain
tissue also depicted decreased numbers of ramified, or resting
state, microglia in gray and white matter and increased primed,
or activated, microglia in gray matter of ASD brains compared to
control samples (7, 94). The exact mechanism by which activated
microglia neglect to phagocytose excess myelin, synapses and/or
neurons, and whether this is mediated by a microbiome-immune
crosstalk, is yet unknown.

Increasing evidence suggests the microbiome plays
a contributing role in the function of microglia in
neurodevelopment. A number of models were used to evaluate
cause and effect through a reductive process that includes the
use of GF models. Erny, et al., found that compared to specific-
pathogen free (SPF) mice, GF microglia had marked differences
in mRNA expression profiles, including a reduction in genes
associated with cell activation and immune signal transduction
(9). While no gross or histologic abnormalities were observed in
the central nervous system, GF microglia displayed an immature
morphology, reduced capacity to respond to a viral infection
challenge, and significant reduction in expression of regulators
of microglia cell proliferation, differentiation, activation, and
transformation (9). Additionally, microglia of antibiotic-treated
and Ffar2−/− mice that do not express the receptor gene for
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SCFA-binding also resembled a GF phenotype, which could be
rescued by oral feeding of SCFAs in the former group but not
the latter (9). Thus, bacteria-derived metabolites likely play a
necessary and sufficient role in proper microglia development,
although the mechanism(s) regarding how microbiota influence
microglia-neuron interactions during development and the
behavioral consequences that ensue following dysbiosis remain
elusive.

CONCLUSION

The numerous microbiome-related studies across disparate
scientific disciplines agree on a prevailing hypothesis that
the microbiome is capable of communicating via immune,
metabolic, and endocrine signals to modulate brain health
and disease. The current evidence base from both human
and animal studies to support this hypothesis, however, are
largely correlational without definitive understanding of cause.
The mechanisms by which the microbiome asserts microglial
changes during neurodevelopment are also not yet known,
although transgenic mice and single cell sequencing methods
continue to inform molecular processes that are likely to be
involved. At present, the majority of microbiome-related studies
are conducted in adult mice and assume a linear direction
of influence from microbiota to the host. In recognition of
the microbiome’s role in neurodevelopmental processes, future
studies should include appropriate experimental models that

address the maternal gut-fetal gut axis as well as the possibility
of multidirectional signaling pathways.
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