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Iron is an essential micronutrient for most living species. In mammals, hemoglobin (Hb)

stores more than two thirds of the body’s iron content. In the bloodstream, haptoglobin

(Hp) and hemopexin (Hpx) sequester free Hb or heme. Pathogenic microorganisms

usually acquire iron from their hosts and have evolved complex systems of iron piracy

to circumvent nutritional immunity. Herein, we performed an evolutionary analysis of

genes coding for mammalian heme-binding proteins and heme-scavengers in pathogen

species. The underlying hypothesis is that these molecules are engaged in a molecular

arms race. We show that positive selection drove the evolution of mammalian Hb and

Hpx. Positively selected sites in Hb are located at the interaction surface with Neisseria

meningitidis heme scavenger HpuA and with Staphylococcus aureus iron-regulated

surface determinant B (IsdB). In turn, positively selected sites in HpuA and IsdB

are located in the flexible protein regions that contact Hb. A residue in Hb (S45H)

was also selected on the Caprinae branch. This site stabilizes the interaction with

Trypanosoma brucei hemoglobin-haptoglobin (HbHp) receptor (TbHpHbR), a molecule

that also mediates trypanosome lytic factor (TLF) entry. In TbHpHbR, positive selection

drove the evolution of a variant (L210S) which allows evasion from TLF but reduces affinity

for HbHp. Finally, selected sites in Hpx are located at the interaction surface with the

Haemophilus influenzae hemophore HxuA, which in turn displays fast evolving sites at

the Hpx-binding interface. These results shed light into host-pathogens conflicts and

establish the importance of nutritional immunity as an evolutionary force.

Keywords: iron piracy, nutritional immunity, positive selection, hemoglobin, hemopexin

INTRODUCTION

Iron is an essential micronutrient and serves as an ideal redox catalyst for basic cellular processes
including respiration and oxygen transport. However, this redox potential contributes to its high
toxicity (1). In humans, as in themajority of vertebrates, iron distribution is finely controlled. About
two thirds of total iron in the body is complexed within the porphyrin ring of heme as a cofactor of
hemoglobin (Hb) or myoglobin. At the intracellular level, ferritin also contributes to iron storage
and regulates its availability in the cell. Iron that is released upon cell lysis is quickly sequestered
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by specific proteins, such as transferrin, albumin, lactoferrin, and
hemopexin to prevent oxidative damage (2, 3). These proteins
have very high binding affinity for free and/or heme-complexed
iron (2).

Pathogenic bacteria and parasites also depend on iron for
their metabolic processes and usually acquire this metal from
their hosts. Thus, iron sequestration by host proteins prevents
toxicity and simultaneously limits its availability to invading
microbes, a situation referred to as “nutritional immunity” (4).
As a consequence of this, pathogens have developed a plethora
of molecular mechanisms to circumvent nutritional immunity
in order to scavenge iron from host proteins (5). Bacterial
pathogens, in particular, display very diversified molecular
strategies of iron piracy (5–7). Eukaryotic parasites such as
Trypanosoma brucei, the causative agent of African sleeping
sickness, also target host iron-binding proteins (e.g., transferrin
and hemoglobin-haptoglobin complexes) for iron acquisition
(8–11).

The competition for iron can thus be regarded as a
molecular arms-race between host iron-binding proteins and
microbial iron-scavengers (6). Molecular arms races often
develop into genetic conflicts whereby cyclical adaptation
and counteradaptation occur both in the host and in the
pathogen genomes (12). Indeed, previous work indicated that
the iron transport protein transferrin in great apes and TbpA,
a transferrin surface receptor expressed by several pathogenic
bacteria, have been engaged in an evolutionary conflict (13).
Both interactors show signatures of positive selection, which are
mainly localized at sites within the binding interface (13). These
findings raise the question as to whether other proteins involved
in nutritional immunity are similarly involved in molecular
arms races (6). This is highly likely, as heme-binding proteins
(hemoproteins) such as Hb and hemopexin (Hpx) represent
major reservoirs of iron and are targeted by several pathogens
that naturally infect humans and other mammals (7, 14).

To date, a number of iron uptake systems have been
characterized for different pathogenic organisms (7, 15).
Herein, we aimed to assess whether mammalian heme-binding
proteins and pathogen-encoded heme scavengers are engaged
in molecular arms races. We thus focused our attention
on microbial molecules that directly interact with heme-
binding proteins (e.g., systems that scavenge free heme were
not considered). Clearly, microbial molecules may evolve in
response to different pressures exerted by the host, the most
prominent one being the immune system. Likewise, microbial

Abbreviations: Hb, hemoglobin; Hp, haptoglobin; Hpx, hemopexin; TLF,

trypanosome lytic factor; HpHb, haptoglobin-hemoglobin complex; GARD,

Genetic Algorithm Recombination Detection; SLAC, Single-Likelihood Ancestor

Counting; ω (or dN/dS), non-synonymous substitution/synonymous substitution

rate ratio; PAML, Phylogenetic Analysis using Maximum Likelihood; BEB,

Bayes Empirical Bayes; FUBAR, Fast Unconstrained Bayesian AppRoximation;

FEL, Fixed effects likelihood; aBS-REL, adaptive Branch-Site Random Effects

Likelihood; MEME, Mixed Effects Model of Evolution; ORF, open reading

frame; MCMC, Markov Chain Monte Carlo; GMQE, Global Model Quality

Estimation; QMEAN, Qualitative Model Energy ANalysis; uGDT, unnormalized

Global Distance Test; LRT, Likelihood Ratio Test; SRA, serum resistance

associated; NEAT, NEAr Transporter domain; metHb, Methemoglobin; HbS,

Sickle hemoglobin.

pathogens are not the sole driver of mammalian hemoprotein
evolution. Therefore, we selected for our study a subset of
host-pathogen interactions with known molecular details, either
crystallographic or biochemical, on the protein portions/residues
that directly participate in the binding. This allows inference on
the underlying selective pressure: if the binding partners have
been exerting a mutual selective pressure, the selected residues
are expected to be mostly located at the binding interface (12).

Results of evolutionary analyses showed that mammalian
hemoproteins and microbial iron acquisition systems exerted
a mutual selective pressure resulting in widespread positive
selection.

MATERIALS AND METHODS

Study Design
The aim of our study was to determine whether mammalian
heme-binding proteins have been engaged in a molecular arms
race with microbial heme-acquisition systems. We thus focused
on the three major heme-binding proteins, namely Hb, Hp, and
Hpx. We excluded the α subunit of Hb due to the impossibility
of establishing orthology among mammalian genes (16), and Hp
due to extensive copy number variation in humans (17, 18). Thus,
evolutionary analyses were performed for Hpx and the Hb β

subunit.
Concerning microbial interactors, they were included in the

evolutionary analysis if the following criteria were met: (i)
the microbial molecule physically interacts with a mammalian
heme-binding protein; (ii) a suitable number of sequenced
genes (from different strains or species) encoding the microbial
protein are available in public databases; (iii) the details of the
interaction between the microbial molecule and the mammalian
heme-binding protein(s) are known at the molecular level.
These criteria restricted our analysis to the following microbial
proteins: HpHbR from Tripanosoma brucei; IsdB and IsdH from
S. aureus/S. argenteus; HpuA and HpuB from N. meningitidis
and N. gonorrhoeae species; HasA from P. aeruginosa; and HxuA
from H. influenzae (Figure 1).

Evolutionary Analyses in Mammalian
Phylogenies
Coding sequences ofHBB (Hb β subunit) andHPX (hemopexin)
were retrieved from the Ensembl database and from the
Nucleotide and Genome databases of National Center for
Biotechnology Information (NCBI). A complete list of species
analyzed for each gene and sequence accession IDs are reported
in Supplementary Table S1.

cDNA alignments were performed using the RevTrans 2.0
utility (19). Manual editing was only used to correct a few
misalignments in proximity of small gaps. Substitution saturation
was checked using Xia’s index implemented in DAMBE (20).
This test compares a entropy-based index of saturation (Iss)
with a critical value (Iss.c). If Iss is significantly lower than
Iss.c, sequences have not experienced substitution saturation. To
further assess saturation across the gene phylogenies, we used the
PAML (Phylogenetic Analysis using Maximum Likelihood) Free
Ratio (FR) model to estimate dS for all branches (21).
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Both alignments were screened for the presence of
recombination breakpoints using GARD (Genetic Algorithm
Recombination Detection) (22), a program that uses
phylogenetic incongruence among segments of a sequence
alignment to detect the best-fit number and location of
recombination breakpoints.

The average non-synonymous substitution/synonymous
substitution rate (dN/dS, also referred to as ω) was estimated
using SLAC (Single-Likelihood Ancestor Counting) (23), a tool
from the Hyphy package (24) based on a codon substitution
matrix and ancestral state reconstruction.

To detect positive selection, we used the site models
implemented in PAML package (25, 26). Specifically, we fitted
site models that allow (M2a, M8) or disallow (M1a, M7, M8a)
a class of sites to evolve with ω >1 to the data using the F3x4
and the F61 codon frequency models. Input trees were generated
by maximum-likelihood using the program PhyML (27). Results
were confirmed using the species tree as input (not shown).

Positively selected sites were identified using the Bayes
Empirical Bayes analysis (BEB, from model M8 with a cutoff
of 0.90) (28), the Fixed effects likelihood (FEL, with a default
cutoff of 0.1) (23), and the Fast Unconstrained Bayesian
AppRoximation (FUBAR, with a default cutoff of 0.90) (29). To
limit false positives, we considered a site as positively selected if it
was detected by at least two different methods.

We used the adaptive Branch-Site Random Effects Likelihood
method (aBS-REL) to identify specific branches with a
proportion of sites evolving with ω > 1. This method applies
sequential likelihood ratio tests to identify branches under
positive selection without a priori knowledge about which
lineages are of interest (30); branches identified using this
approach were cross-validated using the branch-site likelihood
ratio tests from PAML (models MA and MA1). To identified
sites evolving under positive selection on specific lineages we
used the BEB analysis from MA (with a cutoff of 0.90) and the
Mixed Effects Model of Evolution (MEME) (with the default
cutoff of 0.1) (31). MEME allows the distribution of ω to vary
from site to site and from branch to branch at a site. To limit false
positives, only sites confirmed by both methods were considered
as positively selected.

GARD (22), FEL (23), FUBAR (29), and MEME (31) analyses
were performed either through the DataMonkey server (32)
(http://www.datamonkey.org) or run locally (through HyPhy).

Evolutionary Analysis of
Pathogen-Encoded Interactors
Coding sequences for HpHbR from Tripanosoma brucei, IsdB
and IsdH from S. aureus/S. argenteus, HpuA and HpuB from
N. meningitidis and N. gonorrhoeae species, HasA from P.
aeruginosa, and HxuA from H. influenzae were retrieved from
NCBI Genome database. Detailed lists of strains analyzed for
each genus is reported in Supplementary Tables S2–S7.

cDNA alignments were performed using the RevTrans 2.0
utility (19). Because HpuA is subjected to phase variation due to
a stretch of polyG nucleotides at the beginning of the ORF, we
aligned the cDNAs downstream this sequence (33).

Positive selection in HpHbR, IsdB, and IsdH was detected by
application of the site models implemented in PAML (25, 26), as
described above. BEB (28), FEL (23), and FUBAR (29) methods
were applied to detect positively selected sites. This choice was
motivated by the fact that different species were analyzed for
these genes.

For HpuA, HpuB, HxuA, and HasA simultaneous inference
of selection and recombination for analysis of positive selection
was performed using omegaMap, a program based on a model of
population genetics and molecular evolution (34). The program
applies reversible-jump Markov Chain Monte Carlo (MCMC)
to perform Bayesian inferences of ω and ρ (recombination
parameter), allowing both parameters to vary along the sequence.
An average block length of 10 and 30 codons was used to
estimate ω and ρ, respectively. The set of priors is reported in
Supplementary Table S8. For each alignment, two independent
omegaMap runs, each with 1,000,000 iterations and a 50,000
iteration burn-in, were compared to assess convergence and
merged to obtain the posterior probabilities.

3D Structure Analysis, Homology
Modeling, and Protein-Protein Docking
Protein 3D structures for HpHbR-Hb, IsdB-Hb, IsdH-Hb, HpuA-
Hb, and Hxua-Hx were derived from the Protein Data Bank
(PDB IDs: 5hu6, 5vmm, 4ij2, 5ee4, and 4rt6, respectively). The
structures of HpuA of N. meningitidis and of N-terminal domain
of human hemopexin were obtained by homology modeling
using the KdHpuA (PDB ID: 5ee4_A) and the rabbit hemopexin
(PDB ID: 4rt6_B) structures as a template, respectively; analysis
was performed through the SWISS-MODEL server (35). The
accuracy of the models was examined through the GMQE
(Global Model Quality Estimation) and QMEAN (Qualitative
Model Energy ANalysis) scores (36). Because for HpuB no close
homologs were found in PDB, the 3D model was derived using
RaptorX server (37). The quality of the model was assessed by
considering p value and uGDT (GDT) (unnormalized Global
Distance Test).

For each complex, 3D-models were superimposed to
homologous complex using PyMOL (The PyMOL Molecular
Graphics System, Version 1.5.0.2 Schrödinger, LLC). The
refinement of the rigid body orientations of the two binding
partners and the optimization of side chain conformation were
performed using the docking_local_refine docking protocol from
ROSIE server (38, 39).

RESULTS AND DISCUSSION

In mammals, the majority of body iron is contained within
the protoporphyrin ring of the heme cofactor (40, 41). We
thus focused on iron acquisition systems based on heme-piracy.
In particular, we analyzed couples of host-pathogen interactors
whose complexed 3D structures were solved by crystallographic
techniques, or for which the molecular determinants of the
interaction are known. The couples of host hemoproteins and
pathogen-encoded heme acquisition systems analyzed herein are
summarized in Figure 1.
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FIGURE 1 | Heme uptake systems in eukaryotic and prokaryotic pathogens. Schematic overview of the analyzed interactions between host hemoproteins and

pathogen-encoded iron acquisition systems. Protein names are reported in the legend.

Adaptive Evolution of Hemoprotein Genes
in Mammals
We first investigated the evolutionary history of genes encoding
high-affinity heme-binding proteins in a large mammalian
phylogeny. In humans, as well as in other vertebrates, Hb
macromolecules in erythrocytes store more than two thirds of the
body’s iron content (40). In order to prevent oxidative damage
following erythrocyte lysis, haptoglobin (Hp) and Hpx patrol
the bloodstream for the presence of free Hb or free heme,
respectively (42).

Hb has a tetrameric structure composed by two α and two
β subunits. In Vertebrata, the α and β globin gene clusters
originated by whole genome duplication and subsequent gene
tandem duplication events from a common ancestral globin gene
(43). Herein, we wished to gain further insight into the evolution
of Hb in mammalian phylogeny by inter-specific comparison of
orthologous genes. Although the synteny across the two globin
gene clusters is generally conserved in mammals, we excluded
from our analysis the α subunit genes (HBA1 andHBA2) because
2 or 3 functional copies exist in the majority of mammalian
species, making it difficult to assign correct orthology and
paralogy relationships among duplicates (16). Similarly, the HP
gene was not included in the study due to the extensive copy
number variation in humans (17, 18).

Taking all these issues into account, we decided to focus our
analyses on the HBB (Hb β subunit) and HPX (hemopexin)
genes. We retrieved coding sequence information of placental

mammals belonging to the Euarchontoglires, Laurasiatheria,
and Afrotheria superorders. For HBB we excluded species
from Eulipotyphlans, Carnivores, Cetaceans, and some
Microchiropteran bats, as these lineages present a chimeric
HBB/HBD fusion gene primarily responsible for hemoglobin β

type subunit synthesis (44) (Supplementary Table S1). Because
recombination can generate false positive results (45, 46),
sequence alignments were screened for recombination using
GARD (22). No recombination breakpoint was detected forHBB
or HPX.

No evidence of significant saturation was obtained for any
alignment (Supplementary Table S9). Furthermore, no branches
showed dS ≥ 1 in either alignment.

We calculated the average non-synonymous
substitution/synonymous substitution rate ratio (ω) using

SLAC (23). As expected, ω values were lower than 1, indicating

purifying selection as the major driving force in shaping HBB
and HPX gene diversity (12) (Supplementary Table S10).

We thus applied the likelihood ratio tests (LRT) implemented

in the codeml program (26) to test whether positive selection

acted on a restricted subset of codons. For both genes,
neutral models were rejected in favor of positive selection

models, indicating that some codons evolved with ω > 1
(positive selection). These results were confirmed under two
different codon frequency models (Supplementary Table S11).
Positively selected sites in HBB and HPX were identified by
applying three different methods: BEB, FUBAR, and FEL. A
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conservative approach was adopted and only sites identified by
at least two methods were considered to be positively selected
(Supplementary Table S11).

For HBB, three positively selected sites were identified
(Figure 2A, Supplementary Table S11). All these sites are
surface-exposed and are not involved in the interaction with
α subunits, nor in the coordination of heme. For HPX, 19
positively selected sites were found, spanning throughout the
protein sequence (Figure 2A, Supplementary Table S11).

The branch site-random effects likelihood (aBS-REL)
method (30) was next adopted to analyse possible variations
in selective pressure along specific branches. The Caprinae
branch showed statistically-supported evidence of positive
selection in the mammalian phylogeny for HBB (Figure 2B).
This result was cross-validated and confirmed using the codeml
branch-site LRT models (47) (Supplementary Table S12).
Position 45 was identified as positively selected along the
Caprinae branch (Figure 2A). This site was determined through
BEB analysis (47) and with MEME, a method specifically
developed to detect episodic positive selection (Figure 2A,
Supplementary Table S12).

For HPX, episodic positive selection was detected in
the great roundleaf bat and in the dolphin lineages, but
no positively selected site was detected for either species
(Supplementary Table S12).

These data indicate that although purifying selection
represented the major evolutionary force, Hb and Hpx, two
highly abundant housekeeping proteins, were positively selected
during the evolution of placental mammals. In this respect, it
is worth noting that proteins involved in central homeostatic
processes are expected to be strongly constrained to preserve
their function, suggesting that a minority of sites will be able to
evolve in response to pathogen-driven selection without causing
an important loss of fitness (12). Emblematic in this respect is the
sickle cell mutation inHBB (HbS allele), which confers extremely
strong protection against severe malaria to heterozygotes
(48), but causes homozygotes to suffer severe symptoms and
premature death (48). How the HbS and other structural Hb
variants (i.e., HbC and HbE) protect from malaria is still
unclear but the mechanisms seem to be unrelated to nutritional
immunity, despite the use of Hb as a source of amino acids by
Plasmodium parasites (48, 49). Clearly, it is possible that some of
the selected sites we identified in HBB evolved in response to the
selective pressure exerted by mammalian Plasmodium parasites.
However, other pathogens exerted important selective pressure
on human populations and, more generally on their mammalian
hosts (see below). To assess whether the competition with heme
acquisition systems also played a role in the evolution of Hb and
Hpx, we analyzed the evolutionary history of microbial-encoded
interactors of these two hemoproteins. We relied on structural
modeling to infer the selective events at the binding interfaces.

The Haptoglobin-Hemoglobin (HpHb)
Receptor From African Trypanosomes
Trypanosomes are eukaryotic unicellular parasites with a
complex life-cycle, switching between mammalian and insect

hosts. Among African trypanosomes, T. brucei brucei, T.
congolense and T. vivax infect both domesticated and wild
mammals but are unable to infect humans and most other
primates because they are susceptible to two primate-specific
Trypanosome Lytic Factors (TLF1 and TLF2). In humans,
African sleeping sickness is caused by two T. brucei subspecies,
T. b. gambiense and T. b. rhodesiense, which evolved different
strategies to escape human TLFs. T. b. rhodesiense expresses
human serum resistance associated (SRA) protein (50), whereas
group 1 T. b. gambiense escapes human immune response
by a multifactorial mechanism that includes the reduction of
TLF1 uptake (51–53), which is mediated by the haptoglobin-
hemoglobin (HpHb) receptor (TbHpHbR) (54). In fact,
TbHpHbR is expressed at low levels in group 1 T. b. gambiense
and the receptor has acquired a mutation (L210S) that strongly
reduces its affinity for TLF1 (55–59). Therefore, in this parasite,
heme piracy and immune evasion are intertwined processes.

Recent evidence suggested that TbHpHbR evolved from an
ancestral Hb-binding receptor expressed in the epimastigote
stage of T. congolense and T. vivax (60). In parallel with its change
in expression pattern, TbHpHbR acquired higher affinity for
HpHb than for free Hb (which is not present in the blood stream)
and gained an extended C-terminal domain and a ∼50◦ kink in
the three α-helical bundle structure. Both elements are suggested
to favor the exposure of the receptor onto the cell-surface, that is
coated by a dense layer of variant surface glycoproteins (VSG) to
avoid immune clearance (60, 61) (Figure 2C).

To investigate whether positive selection contributed to
the evolution of HpHbR, we aligned the coding sequence
of the receptor from 67 trypanosome strains, including
T. b. rhodesiense, T. b. gambiense, T. b. brucei, T. evansi, and
T. equiperdum (Supplementary Table S2). HpHbR sequences
from other Trypanosome subgenera, i.e., T. congolense and
T. vivax, were excluded due to excessive divergence resulting in
unreliable alignments. We note that the high sequence identity
of the T. evansi and T. equiperdum genes to the T. brucei
HpHbR sequence (>98.5% identity) indicates that they represent
orthologs. However, the binding specificity for HpHb of these
receptors has never been investigated.

No evidence of recombination was detected with GARD.
Positive selection was tested as described above and significant
evidence was obtained, with 8 positively selected sites detected by
at least two methods (Figure 2C, Supplementary Table S13).

Notably, we identified L210 as a target of positive
selection. This residue is packed in the hydrophobic core
of the receptor head (Figure 2D) and the substitution
also leads to a reduced affinity for HpHb, suggesting an
overall destabilization of the head region, influencing the
conformation of the ligand binding site (58, 62). Thus, the
selective advantage conferred by TLF1 resistance is traded
off by T. b. gambiense with decreased iron uptake. However,
mutagenesis experiments indicated that the L210S substitution
totally abolishes TLF1 binding even at high concentrations,
whereas affinity for HpHb is decreased but binding still
occurs (58). Hence, the L210S selected site shifts the balance
between immune escape and nutritional needs to favor the
parasite.
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FIGURE 2 | Evolution at the interaction surface between Hb and Trypanosome brucei HpHbR. (A) Positively selected sites are mapped onto the β chain of Hb (HBB

gene product) and on Hpx. A multiple alignment of the β chain of Hb (amino acids 1–60) for a few of representative mammalian species is shown. Sites that are

(Continued)
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FIGURE 2 | positively selected in the mammalian phylogeny are marked in red; the site selected on the Caprinae branch is in green. Heme binding sites are indicated

as blue stars. (B) aBS-REL analysis of positive selection for HBB in mammals. Branch lengths are scaled to the expected number of substitutions per nucleotide. The

Caprinae branch is in green. (C) Schematic representation of trypanosome HpHbRs. Positively selected sites are shown in red. (D) 3D structure of human HpHb

bound to TbHpHbR (PDB code: 5hu6); Hb is shown in gray (light, β subunit; dark, α subunit), Hp in light-blue, and HpHbR in light orange. Positively selected sites are

mapped onto the structure; those that located at the contact interface are indicated in the enlargement. Hb-bound heme molecules are represented as blue sticks.

As for the other positively selected sites we detected in
HpHbR, three of these are located in the extended C-terminal
region of TbHpHbR (Figure 2C).

Analysis of the three-dimensional structure of TbHpHbR in
complex with HpHb (59) also indicated that residue S45 in
the Hb β subunit, which is positively selected in the Caprinae
branch, lies at the receptor-binding interface and was specifically
reported to stabilize the complex by a hydrogen bond with S161
of TbHpHbR (59, 62) (Figure 2D).

Interestingly, species belonging to Caprinae family are
susceptible to trypanosome infection (63). In particular, African
goats can be infected by a wide range of trypanosome species,
but the course of the disease is often mild or even sub-
clinical (63). Because parasitemia is usually low but persistent,
African goats are thought to have developed mechanisms of
trypanotolerance. African trypanosomes are heme auxotrophs; as
the S45H substitution in Caprinae species is likely to decrease
HpHb binding by trypanosomes, it may in turn influence
the persistence/severity of T. brucei infection. Experimental
studies to validate this hypothesis would be worthwhile, as
small-ruminants are likely to represent an important reservoir
of trypanosomes and caprine trypanosomosis is considered
an important factor in programs of disease prevention and
control (63).

Concerning humans, African trypanosomes are considered to
have acted as an important selective pressure. This is testified
by the observation that selection drove the frequency increase
of coding variants in the human APOL1 gene (which encodes
a component of TLFs) in Africans (64). These variants confer
high lytic activity against Trypanosoma brucei rhodesiense, but
predispose to kidney disease (64). The fact that, with the
exclusion of the Caprinae branch, we did not detect Hb
selected sites at the interaction surface with TbHpHbR is
not in contrast with these observations. As mentioned above,
structural/functional constraint limit the possibilities of Hb
adaptive evolution. Also, in analogy to the APOL1 variants, sites
that evolved in response to T. brucei-mediated selective pressure
may have not reached fixation in human populations and would
therefore go undetected in the analyses we performed. Finally,
selected sites at the TbHpHbR interface may be located in Hp,
which we could not analyse.

Heme Acquisition Systems in
Gram-Positive Bacterial Pathogens
Several Gram-positive bacteria use the Iron-regulated Surface
Determinant system (Isd) to recruit host hemoproteins, to extract
heme molecules, and to funnel them to a permease across the cell
membrane (7, 65, 66). Isd genes encode proteins anchored to the
cell-surface and containing NEAT (near transporter) domains

responsible for heme and/or hemoprotein binding. The Isd-
dependent heme uptake system was well characterized in the
Staphylococcus genus. This system is composed of 9 different
Isd proteins, named “A” through “I”; IsdB and IsdH are the
primary receptors for Hb and HpHb complexes, respectively (67)
(Figure 1).

We retrieved and aligned IsdB and IsdH coding sequences
of strains belonging to the S. aureus and to S. argenteus
species, which represent a major cause of human clinical disease
(68) (Supplementary Table S3). Due to the high phenotypic
similarity, S. argenteus has often been misclassified as S. aureus,
and it was only recently identified as a new species (68, 69).

GARD detected one breakpoint in IsdB and two breakpoints
in the IsdH gene (Figure 3). Positive selection was tested
independently for the sub-regions of both genes, split accordingly
to the location of recombination breakpoints.

For IsdB region 1, the neutral models were rejected
in favor of the positive selection models (after Bonferroni
correction for two tests, to account for alignment splitting)
(Supplementary Table S13). In this region, two sites were
identified as positively selected, T65 and E157 (Figure 3). This
latter site is located on loop 2 of the NEAT-1 domain (IsdBN1),
which displays high homology to IsdHN2, for which the 3D
structure in complex with hemoglobin was solved (70, 71). Based
on this structure, E157 is located at the binding interface with Hb
(Figure 3). Indeed, this residue lies just upstream the aromatic
residues -FYHY- (Figure 3), in a region presenting a high degree
of flexibility. Notably, this region was shown to modulate the
strength of hemoglobin binding and of heme capture, as observed
by comparing the affinity for Hb in IsdB mutagenesis studies
(71, 72).

T65 is in the N-terminal segment of IsdB, for which
structural information are unavailable (Figure 3). Although this
domain was not reported to be directly involved in hemoglobin
interaction, together with NEAT-1 it enhances the heme-transfer
from oxidized hemoglobin (metHb) toNEAT-2 domain, affecting
the enzymatic kinetic of heme assimilation (73).

For IsdH, evidence of positive selection was detected only
in the terminal region, with 8 sites identified as positively
selected (Figure 3, Supplementary Table S13). All these sites
are located downstream the third NEAT domain, spanning
throughout an aspartic acid-rich region before the sortase
cleavage site. Unfortunately, no structural or functional data
have been reported for this protein region (Figure 3) (70, 74).
This C-terminal (Ct) fragment is present also in other Isd
components anchored to the cell wall. Among Isd proteins,
the Ct portion has variable length and may act as a spacer
to position Isd proteins sequentially onto the cell wall, thus
enabling the correct heme recruitment and its relay across the
membrane (73).
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FIGURE 3 | Positive selection at the interaction surface between Hb and S. aureus IsdB/H. A schematic representation of the domain structure of IsdB and IsdH is

shown. Domains are color-coded as reported in the legend (left). The highly homologous regions between the two receptors are indicated by the hatched lines.

Positively selected sites are reported in red, recombination breakpoints as yellow stars. The 3D structures of human Hb in complex with IsdBN1−linker−N2 (cyan) and

IsdHN2−linker−N3 (orange) are shown (PDB IDs: 5vmm and 4ij2). Hb is color-coded as in Figure 2. In both representations, two Isd proteins are reported, bound to

the α and β Hb chains. The first NEAT domain is contoured, whereas the linker region and the second NEAT domain, if solved in the crystal, are in transparency.

Positively selected sites are in red, the conserved -FYHY- motif responsible for Hb binding is in green.

IsdB and IsdH are homologous and bind hemoproteins with a
similar mechanism, despite the differences of substrate specificity
for Hb or HpHb complexes, respectively. Both crystallographic
and kinetic data have demonstrated that Hb capture by the
IsdB/H NEAT domains occurs with a similar mechanism for
the α and β chains, although Hb β chain binding is weaker
(70, 73, 75). Notably, we observed that A14, detected as positively
selected in the mammalian phylogeny for HBB, lies at the
interaction surface with IsdBN1, as well as with IsdHN2 (Figure 3)
(70, 75). Positively selected sites T51 and D53 contribute to form
an exposed region on the Hb β chain and face IsdBN1/IsdHN2

when the α chain is bound (Figure 3). However, analysis of
atomic distances suggests that these residues are not directly
involved in complex formation.

Hb binding by IsdB (but not by IsdH) is strictly required for S.
aureus hemoglobin-derived iron acquisition and virulence
(72, 76). IsdB specifically recruits heme from oxidized
hemoglobin (metHb), which is released in the bloodstream
when bacterial-secreted toxins cause erythrocyte lysis (77). The
high-affinity of IsdB for human metHb allows its utilization as
preferred iron source during the early phase of staphylococcus
infection, leading to host colonization (78).

S. aureus is a human-specific pathogen and approximately
25–30% of healthy humans are persistently or intermittently
colonized with S. aureus (79). This figure was most likely
higher in the past (80) and nasal carriage represents a risk
to develop staphylococcus-associated diseases (81). IsdB binds
human Hb with increased efficiency compared to Hb from
other mammalian species, suggesting a specific adaptation
to the human host (82). Thus, interspecies variation at
site A14 may affect hemoglobin capture by staphylococcal
IsdB and contribute to determine its host range and/or
pathogenicity. Indeed, mice expressing human hemoglobin
are more susceptible to systemic infection from S. aureus
strains that carry an intact IsdB gene, but not from 1IsdB
strains (82).

Interestingly, experiments in mice have shown that anti-
IsdB (and anti-IsdA) antibodies which interfere with heme
binding protect the animals against abscess formation and
lethal challenge. This effect is not mediated by increased
clearance of the pathogen via opsonophagocytic killing (83).
Conversely, protection seems to be mediated by the abolition
of the physiological functions of IsdA/IsdB, namely heme
scavenging from hemoglobin (83). This observation provides
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FIGURE 4 | Positive selection at the interaction surface between Hb and N. meningitidis HpuA/HpuB. (A) omegaMap results: the posterior probability of positive

selection (ω >1) along N. meningitidis HpuA and HpuB coding sequences are plotted. The hatched red lines correspond to a posterior probability of selection equal to

0.95. Positively selected codons are in red. Codon positions refer to N. meningitidis FAM18 strain (HpuA ID:A1KW50; HpuB ID: A1KW51). (B) The 3D structure of

human Hb in complex with N. meningitidis HpuA (model, cyan). Hb is color-coded as in Figure 2. HpuA loops 1 and 5, involved in Hb interaction, are in yellow.

Positively selected sites are in red. Positively selected sites located at the contact interface are labeled. Hb-bound heme molecules are represented as blue sticks.

(C) Model of proposed cooperation between HpuA (cyan) and HpuB (model, blue) for heme import, associated with the membrane. Positively selected sites are in red,

Hb-bound heme molecules are represented as violet sticks.

insight on an aspect of host-pathogen interactions that is
extremely relevant from a medical perspective, namely the
targeting of pathogen virulence, as opposed to approaches
that rely on microbial killing (84). Indeed, most microbial
iron acquisition systems are not necessary to establish host
colonization but represent virulence factors (14) (see also
sections below). The control of pathogen virulence or the
elicitation of host tolerance (e.g., damage limitationmechanisms)
are regarded with increasing interest as possible therapeutic
interventions, as they are not expected to select for pathogen
populations resistant to drugs or vaccines (84). Heme scavengers
and siderophores may represent attractive candidates for such
approaches.

Heme Acquisition Systems in
Gram-Negative Bacterial Pathogens
The outer membrane of Gram-negative bacteria represents
an additional barrier to heme acquisition. Gram-negatives
have thus evolved elaborate heme-uptake systems, including
outer-membrane receptors for host hemoproteins and secreted
hemophores (7).

Neisseriaceae

Bacteria from the Neisseriaceae family present different receptor
systems for heme uptake: HmbR and/or HpuAB. HmbR
specifically extracts heme from hemoglobin, whereas HpuAB can
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extract heme from Hb-Hp complexes, as well (85, 86) (Figure 1).
The molecular evolution of HmbR in Neisseria meningitidis was
already investigated, demonstrating that positive selectionmainly
targeted portions of the receptor predicted to be surface-exposed
(87). To date, very little is known about HmbR structure and the
mechanisms of hemoglobin recruitment and heme transport and
only some residues likely involved in heme coordination have
been identified (88).

We thus focused on the HpuAB system, which is composed
of two proteins, HpuA and HpuB, whose expression is finely
controlled by an iron-repressed operon (89). HpuA, a lipoprotein
anchored to the outer membrane, is required for the high-affinity
interaction between Hb and HpuB, which is the TonB-dependent
receptor (90). The high-resolution 3D-structure of HpuA from
Kingella denitrificans (KdHpuA) in complex with human Hb was
recently solved, indicating a direct interaction between the two
proteins (91).

Although no structural or functional data are available for
HpuB, we extended our evolutionary analyses to this gene for the
sake of completeness.

A previous work analyzed the genetic diversity of this
system in a relatively small phylogeny including both pathogenic
and non-pathogenic Neisseria species. The authors interpreted
patterns of HpuA/B diversity in terms of immune selection (92).

Because recombination is high in Neisseriaceae (93), the
HpuA and HpuB coding sequences from N. meningitidis
and N. gonorrhoeae species (Supplementary Tables S4,S5) were
analyzed separately with omegaMap, a population genetics
method that simultaneously estimates recombination rate and
selection. In particular, selection is inferred in terms of ω

estimation, better described in this case as the relative occurrence
of non-synonymous and synonymous polymorphisms (34). The
HpuAB system is subject to mononucleotide repeat-mediated
phase variation (33). We analyzed the region downstream the
repeat tract in HpuA, irrespective of the sequence phase.

No signal of positive selection was observed inN. gonorrhoeae
species for either gene. Conversely, many positively selected sites
were detected in N. meningitidis, both for HpuA and for HpuB
(Figure 4A). Our results for N. meninigitidis are in agreement
with those reported by Harrison and colleagues (92) for Family
B Neisseriaceae, strongly suggesting that the signals of selection
they detected were accounted for by N. meningitidis isolates.

We thus reconstructed the structural model of HpuA of
N. meningitidis FAM18 strain by homology modeling. The
KdHpuA (chain A), complexed to Hb, was used as template
(91) (Supplementary Table S14). A local docking refinement
was performed to find the optimal fit between the NmHpuA
model and human Hb. Positively selected sites were mapped
onto the best-scored structure (ranked by interaction energy). All
positively selected sites are located on the long surface-exposed
loops (Figure 4B). These sites include residues in loop1 and
loop5, which are involved in Hb interaction. In particular, loop1
primarily influences affinity for Hb in KdHpuA (91).

As with HpuA, we reconstructed the three-dimensional
structure of N. meningitidis HpuB (FAM18 strain) (Figure 4C).
Because sequences in PDB database display very low identity
with NmHpuB, the model was reconstruced with the RaptorX

server, reaching a good quality assessment. The server identified
the crystal structure of transferrin binding protein A (TbpA)
of N. meningitidis in complex with C-terminal domain of
human transferrin (Supplementary Table S15) as best template.
NmTbpA is an integral outer membrane protein belonging to
the family of Ton-B depend transporters. Positively selected
sites of HpuB in N. meningitidis strains were mapped onto the
structure, confirming that positive selection acted on surface
exposed loops likely involved in Hb and/or Hpua recognition
(Figure 4C). Indeed, similar results were obtained by Harrison
and coworkers with a different HpuB model reconstructed by
homology modeling using ShuA from Shigella dysenteriae as the
template (92).

In N. meningitidis, the HpuAB and the HbmR systems
are thought to be involved in pathogenicity, as most disease-
associatedmeningococcal strains encode one or bothHb receptor
systems, and clonal complexes causing high disease rates encode
both HpuAB and HmbR (33). Results herein indicate that
HpuA and HpuB, evolved under strong positive selection in
N. meningitidis and that several HpuA selected sites are located
in loops that determine Hb binding. As mentioned above,
previous reports on the evolution of HpuA/B in Neisseriaceae
suggested that the host immune system shaped diversity at the
surface-exposed loops. We do not exclude that immune selection
contributed to the evolution of Hb receptors. As in the case
of TbHpHbR, the same sites might modulate both immune
evasion and iron acquisition. Indeed, this is most likely also the
case for TbpA, which was previously shown to be engaged in
a genetic conflict with primate transferrin (13). Most positively
selected sites in the TbpA proteins from H. influenzae and
N. gonorrhoeae are located on exposed loops, but only some
of them are within the binding interface with transferrin (13),
suggesting that immune selection also contributed to shape TbpA
diversity.

In contrast with the strong selection observed in
meningococcal strains, we did not detect positive selection
at HpuA/B in N. gonorrhoeae. The two Neisseria species colonize
distinct ecological niches in the human host and display
remarkably different dissemination routes. Thus, the selective
pressure acting on iron acquisition systems may vary depending
on the relative abundance of available sources. In fact, most
gonococcal strains isolated from human patients are phase off
for HpuA/B with the exclusion of those deriving from women
in their early menses (94). Moreover, N. gonorrhoeae strains
isolated to date do not express HmbR, which is present as a
frame-shifted pseudogene (95). Overall, these observations
suggest that gonococci are less dependent on Hb as an iron
source than meningococci and thus that the selective pressure
acting on HpuA/B is weak in N. gonorrhoeae.

Haemophilus Influenzae

Among Gram-negative bacteria, Haemophilus influenzae is a
heme auxotroph human commensal/pathogen. To sustain its
aerobic growth it developed different strategies to acquire heme
from different host sources. In addition to Hb, H. influenzae also
targets hemopexin (Hpx) as a host heme source. Hpx is present
at relatively low concentrations in body fluids, but it has a very
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FIGURE 5 | Positive selection at H. influenzae Hxua-Hpx interaction surface. (A) omegaMap results for HxuA are shown as in Figure 4A. Codon positions refer to H.

influenzae Rd KW20 strain (ID:P44602), used as reference. (B) Cartoon representation of HxuA (cyan) in complex with the N-terminal domain model of human Hpx

(light gray). The HxuA secondary structure elements that provide residues involved in Hpx interaction are in blue, the M-loop in yellow, HxuA positively selected sites in

red, and Hpx positively selected sites in green. Positively selected sites in Hpx that are located at the contact interface are indicated in the enlargement.

high affinity for heme (96). H. influenzae HxuA is a hemophore
displaying high-affinity binding for Hpx (97, 98) (Figure 1).
AlthoughH. influenzae is uniquely found in human hosts, HxuA
can accept heme from both human and rabbit hemopexins (99).

By applying omegaMap, we detected several signals of
positive selection for H. influenzae HxuA (Figure 5A,
Supplementary Table S6). The crystal structure of HxuA in
complex with the N-terminal domain of rabbit hemopexin
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was recently solved (100). Starting from this structure,
we used homology modeling to reconstruct the three-
dimensional model of human hemopexin N-terminal domain
(Supplementary Table S14). The model was then superimposed
onto the rabbit Hpx structure and an optimization of the lateral
chains of the two binding partners was performed.

Results indicated that HxuA positively selected sites (100) are
mainly located at the mobile junctions of the three parallel β-
sheets that define the right-handed β-helix structure of HxuA.
In particular, positive selection targeted the first two β-strands at
the N-terminus, as well as two long insertions containing α-helix
elements that are responsible for Hpx binding (100) (Figure 5B).

As for Hpx, five positively selected sites (A156, L172, G175,
M177, and S181) are located at the interaction surface with
HxuA. Specifically, in our human Hpx model, S181 stabilizes
the complex through a polar bond with the carbonil group of
D738 in HxuA, whereas A156 contributes to the binding with an
hydrophobic interaction (Figure 5B) (100).

Overall, these results suggest that Hpx and HxuA evolved in
the context of a genetic conflict, as evidence of positive selection
was found for both interactors at the binding interface. No
positively selected sites were found in the HxuA M-loop that
is responsible for heme-scavenging from Hpx, suggesting that
selection mainly acted to establish and maintain Hpx binding.

Haemophilus influenzae is an obligate commensal/pathogen
and its host range is restricted to humans. The bacterium
asymptomatically colonizes the nasopharynx and is absolutely
dependent on host-derived heme for its aerobic growth. The
HxuA/B/C gene cluster is a virulence factor for H. influenzae
(101), which is one of the few bacterial species that can utilize
Hpx as an iron source. HxuA may therefore allow H. influenzae
to successfully compete with other microbial colonizers for iron
acquisition.

Notably, H. influenzae and related bacteria are likely to have
exerted a considerable selective pressure on humans and on other
mammals. This bacterium represents the second most common
cause of childhood pneumonia, a disease that accounted for 16%
of all deaths of children under 5 years in 2015 (http://www.who.
int/mediacentre/factsheets/fs331/en/, Updated September 2016).
Moreover, H. influenzae belongs to the Pasturellaceae family,
which includes several other pathogenic species for humans
and animals. Among these, Mannheimia haemolytica (102) and
Haemophilus parasuis (103) express HxuA homologs, suggesting
that the arms race between HxuA and HPX is long-standing.

Pseudomonas Aeruginosa

As H. influenzae, P. aeruginosa encodes a specific hemophore
uptake system. Together with a direct system for heme
uptake called Phu (Pseudomonas heme uptake), the bacterium
secretes the HasA (Heme assimilation system) hemophore,
which targets Hb and free heme molecules (Figure 1).
This receptor has been characterized and the structural
determinants for heme coordination and Hb binding were
defined (104, 105). HasA coding sequences for 94 P. aeruginosa
strains (Supplementary Table S7) were aligned and analyzed by
omegaMap as described above. Unlike all other heme scavengers
analyzed, no signals of positive selection were detected. The

reasons for this are probably manifold. First, HasA targets both
Hb and free heme, suggesting that the selective pressure for Hb
recognition is relatively weak. Second, P. aeruginosa possesses
a plethora of systems for iron acquisition, targeting not only
hemoproteins and heme, but also ferrous iron (feo system)
(106) and ferric cytrate (fec system) (107). Moreover, as it is
the case of S. aureus, P. aeruginosa possesses siderophore-based
systems (108) and a heme biosynthetic pathway (109). Heme
synthesis is necessary to P. aeruginosa fitness, as observed in
mutants inactivate for HemY, a heme biosynthesis gene, which
are unable to colonize the murine gastrointestinal tract (110).
Notably, within-host selection of mutations in the promoter of
the Phu system occur and confer a growth advantage during
chronic infections in cystic fibrosis patients (111). Thus, the
redundancy of molecular strategies to cope with iron-limitation
in P. aeruginosa (112), most likely results in no or mild selective
pressure on HasA.

CONCLUSIONS

It is becoming increasingly clear that host-pathogen genetic
conflicts are not confined to genes directly involved in immune
response, but extend to loci that, for different reasons, encode
molecules interacting with viral or microbial components (12).
For instance, signatures of pathogen-driven positive selection
were described for housekeeping proteins that function as
incidental viral receptors (12). Proteins involved in nutritional
immunity represent another class of molecules that play essential
roles unrelated to “classical” host defense, but also interact
with pathogen-encoded proteins to avoid micro-nutrient piracy.
Evidence that genes involved in nutritional immunity can be
targets of positive selection was first obtained for transferrin
and more recently for lactoferrin (13, 113). We now extend
these observations by showing that Hb and Hpx represented
positive selection targets during mammalian evolution and that
the selective pressure was most likely exerted by pathogenic
microrganisms, which in turn evolved to subvert nutritional
immunity.

Indeed, we detected selected sites at the interaction surface
with mammalian hemoproteins in several molecules encoded by
pathogenic microorganisms, both prokaryotic and eukaryotic,
and carrying extremely different heme acquisition systems.
This suggests that the molecular arms race for iron piracy is
widespread and additional players will most likely be described
in the future.
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