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The immune system provides host protection to infection with pathogenic organisms,

while at the same time providing tolerance upon exposure to harmless antigens.

Thus, an impaired immune function is associated with increased susceptibility to

infections with increased disease severity and thereby necessitating the therapeutic

use of antibiotics. Livestock performance and feed efficiency, in addition to their health

status, are dependent on the microbial load of their gut, the barrier function of the

intestinal epithelium and the activity of the mucosal immune system, all of which can

be modulated by dietary components. The majority of feeds that are consumed in pets

and livestock have been processed. Processing promotes a non-enzymatic reaction

between proteins and sugars called Maillard reaction (MR). Maillard reaction products

(MRPs) and advanced Maillard reaction products (AGEs) determine taste, smell, and

color of many food products therefore the MR is highly relevant for the feed industry.

MRPs interact with different types of immune receptors, including the receptor for

advanced glycation end products (RAGE) and immunomodulatory potential of feed

proteins can be modified by Maillard reaction. This MR has become an important

concern since MRPs/AGEs have been shown to contribute to increasing prevalence of

diet-related chronic inflammatory states in the gut with negative health consequences

and performance. The immunomodulatory effects of dietary MRPs and AGEs in livestock

and pet animals are far less well-described, but widely considered to be similar to

the relevant concepts and mechanisms obtained in the human field. This review will

highlight immunological mechanisms underlying initiation of the innate and adaptive

immune responses by MRPs/AGEs present in animal feeds, which are currently not

completely understood. Bridging this knowledge gap, and taking advantage of progress

in the human field, will significantly improve nutritional quality of feed and increase the

prevention of diet-mediated inflammation in animals.
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INTRODUCTION

Protein Quality of Animal Feeds
Dietary proteins are a source of amino acids and the
ability to absorb amino acids and use them for protein
synthesis determines their quality and their required dose
to meet the requirement (1). The efficiency with which
individual amino acids are utilized for e.g., development, growth,
immunocompetence, and lactation depends not only on the
concentration of amino acids and their bioavailability in foods,
but also on the relative proportions to each other. Protein quality
and synthesis decrease when the amino acids in the food are
imbalanced or even absent, e.g., tryptophan is the least abundant
amino acid in foods, while lysine is often the limiting essential
amino acid in animal feeds (2, 3). Proteins are essential in foods,
not only for its nutritional value, but they also determine food
structure, perception, and immunomodulatory capacity. These
functional characteristics are dependent on physico-chemical
conditions like pH, ionic strength, temperature, or pressure, and
the individual behavior of protein and their amino acids are
largely unknown and unpredictable. There is a need to better
understand these parameters in food production as they, have a
significant effect on food quality. Often enzymes are part of these
dietary proteins and these include proteases, hydrolyzing large
protein molecules into smaller peptides, and peptidases, releasing
single amino acids from terminal ends of proteins and peptides.
Mainly proteases are used in processing to improve visual
appeal, taste, yield, nutritional value, and physical properties of
dietary proteins. Processing technologies affect the quality of
protein foods and thereby also its safety and for this reason
novel processing technologies, e.g., high pressure processing,
pulsed electric field, radiofrequency and cold plasma, have been
developed.

Amino acids contained within the dietary protein can undergo
crosslinking and glycation reactions, including the “Maillard
reaction” (MR) or glycation, which is named after the French
physician and chemist, Louis Camile Maillard, who in 1912
described this reaction for the first time (4). It was, however,
John Hobbs in 1953 who proposed the mechanism for the
chemistry of the Maillard reaction as know it today (5). The
MR is also known as the non-enzymatic browning reaction and
typically involves amino acids (e.g., lysine, arginine) and reducing
sugars (e.g., fructose, glucose) that progresses via a series of
chemical rearrangements resulting in the formation of MR
products (MRPs). MRPs include Schiff bases, Amadori products
and consequently advanced glycation end products (AGEs) as
the final products. The advanced products are produced via
either an oxidative or non-oxidative pathway. Pentosidine and
N-(carboxymethyl)lysine (CML) are examples of glycoxidation
(glycation and oxidation) and pyrraline is a product of a non-
oxidative pathway (6). The MR is positively correlated with
the temperature and the duration of heating of proteins in the
presence of reducing compounds predominantly sugars. Higher
temperatures increase the reactions where long-term thermal
processing with relatively lower temperatures may result in
comparable results. The type and concentration of available
sugars in the environment are linked to the progression of the

reaction with, for instance, glucose-rich products showing a
slower glycation rate in comparison with those rich in fructose
(6). Of the 20 amino acids naturally occurring in food proteins,
lysine due to its ε-amino acids and arginine because of its
guanidine side group are the most susceptible amino acids but
also histidine and tryptophan can be involved in the MR as well
as the α-amino or N-terminal amino group of any amino acid or
peptide, respectively (7).

As lysine is the most reactive amino acid, modification
produces modified lysine derivatives (8), including formation of
a Schiff ’s base, which is a reversible but unstable compound.
Subsequently, this base rearranges into the Amadori compound,
ε-N-deoxyketosyllysine (9). The latter reaction is irreversible and
can proceed further into advanced Maillard reaction products,
and ultimately give rise tomelanoidins, leading to brown coloring
of processed feeds. Because amino groups are involved in several
steps of the Maillard reaction, a strong decrease of the availability
of amino acids can occur. Amadori products and AGEs resulting
from the MR may absorbed, metabolized by gastrointestinal
bacteria to other components or leave unaltered via the feces.
Once absorbed AGEs may be metabolized to other components,
retained in the body or leave unaltered via the urine. Melanoidins
are only partially digested and absorbed by the intestines andmay
be retained in the kidneys. In contrast to high molecular weight
melanoidins, low molecular weight non-absorbed melanoidins
are degraded in the intestines (10).

Food Processing
Food processing has been a routine procedure for increasing the
taste, safety, texture, longevity, and bioavailability of nutritional
components (11). Humans have long been utilizing different
methods such as salting, fermenting, smoke processing, and
heating in order to get to conserve food and obtain desirable
product features. Among all the above-mentioned procedures,
thermal processing is the most commonly used method of our
modern time. Ever since the exploration of fire, cooking raw
materials improved the taste and digestibility of food. High
temperatures have been widely used by the food industry with
a number of these processes involving product temperature
reaches up to 250◦C to changes the appearance and occasionally
the structure of the food. Food processing may result in products
of similar composition, but with markedly different physiological
effects, due to differences in structure and physicochemical
properties. In general, food processing has a major influence
on its nutritional components and modifies biological properties
of biomolecules resulting in various effects on consumer’s body
once ingested (2, 12). Some of these modifications have a
direct and instant effect on the user such as improved olfaction
and gustation as well as digestibility of dietary components
(e.g., starch, amino acids). Other modifications may show their
influence even years after processed foods have been consumed.
The latter is mainly the results of the accumulation of modified
components in the body and their gradual effects on cells
and tissues over time. The accumulation of AGE-modified
proteins correlates with the pathogenesis of several chronic
inflammatory diseases including diabetes, rheumatoid arthritis,
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and Alzheimer’s disease (13–17). The focus of this review is
on immunomodulatory effects of dietary MRPs and AGEs in
livestock and pets as this is far less well-known than in the human
situation and have therefore used relevant knowledge from the
human field. Immunomodulatory activity of MRPs and AGEs
in feeds are based on concepts and mechanisms that are equally
relevant and applicable in humans and animals.

Advanced Glycation End Products (AGEs)
The final glycated products of the MR are commonly referred
to as glycation end-products (AGEs). In laboratory animals and
humans, consumption of large quantities of such AGEs were
shown to induce pathological alterations and therefore AGEs are
increasingly subject of safety studies (18). Advanced glycation
end products are either produced endogenously (in vivo) due
to physiological processes such as oxidative stress and aging
or are formed exogenously (in food) following the progression
of the MR (19). Glycation changes protein structures and this
may result in malformation and malfunction of affected proteins.
Small endogenously formed glycated and misfolded proteins are
targets for intracellular degradation by the 20S proteasome of
the Ubiquitin-proteasome-system (UPS) (20). However, these
small proteins when oxidized further and following cross-linking
reactions, may form larger structures. The formation of big and
bulky glycated proteins blocks the activity of proteasomes and
makes them resistant to degradation leading to the accumulation
of such molecules in the cells and tissues (13). Another
mechanism for eliminating AGE-modified proteins is via the
lysosomal system. Cellular receptors recognize these modified
proteins (especially from exogenous sources) and internalize
them into endosomes. The AGE-containing endosomes are then
fused to cytosolic lysosomes where lysosomal proteases process
and break down these modified proteins (21). The degraded
peptides are then cleared from the body through the urinary
system with a, hitherto, poorly defined mechanism.

ADVANCED MAILLARD REACTION
PRODUCTS AND THEIR POSSIBLE
EFFECTS ON HEALTH

MR and Damaged Dietary Proteins
The most common form of dietary AGEs are protein-bound,
while some are either in free state of bound to peptides. These
protein-AGEs are enzymatically hydrolyzed into small fractions
that can either be absorbed in the small intestine of remain unable
to be absorbed, and thus is absorption related to digestibility of
the dietary AGEs (22). The abundance of α-dicarbonyl groups
in processed feed and their relevance in the formation of AGEs,
determines the digestibility, nutritional value and health impact
of protein-AGEs (23).

The MR can occur at temperatures similar to that of the
human body (24). As an example, a fraction of hemoglobin
(HbA0) reacts with glucose under in vitro conditions, yielding
the MR product HbA1c and further reaction products including
Schiff ’s base and Amadori compounds. In diabetics high

concentrations of HbA1c are present and these consist of α-
amino-1-deoxyfructose at the N-terminal valine amino acid in
the β-chain (24).

The concentration, nutritional value and digestibility of amino
acids (esp. lysine) in feed ingredients and diets may be reduced
due to heat treatment of feed ingredients (10). Feeding broiler
chicken or weanling piglets a heat-damaged soybean meal diet,
a decrease in body weight and carcass weight was observed
compared to feeding untreated soybean meal. These negative
effects of heat damage on performance, however, were partially
mitigated by adding crystalline amino acids to the diets (25). Heat
damage also may cause losses in vitamins, e.g., loss of vitamin B6
and thiamine when storing milk powder at 70◦C (26).

The structural and functional properties of proteins can be
modified due to covalent interactions and the cross-linkage of
proteins during the formation of such AGEs. The resulting
resistance to digestion, delays the turnover rate of these proteins
and this accumulation of AGEs may hinder tissue repair (27).
Moreover, these Ages bind to receptors widely expressed on tissue
cells and as a consequence oxidative stress, vasoconstriction,
excessive collagen deposition, and inflammatory responses are
stimulated (27–30). The development of chronic systemic
inflammation (metaflammation) can be the consequence of
prolonged exposure to AGEs and metaflammation is observed
in many cancers in both humans and dogs (31). Canine diets
should therefore limit stimulation of the AGE/metaflammation
axis resulting in less carcinogenic activity. Such diets offer
opportunities to be tested for AGE and metaflammation
accumulation that result in lower prevalence and incidence of
cancer in dogs.

A low MRP diet in a mouse model resulted in decreased
body weight, lowering of insulin concentration during fasting,
increased HDL levels in plasma, and reduction of a high-fat
diet-induced insulin resistance (32). Also in human diabetics,
complications associated with impaired wound healing were
improved when MRPs were avoided in the diet (3, 32).

Advanced glycation end products have been associated
with the etiology of age-related diseases in humans, such
as atherosclerosis, nephropathy, retinopathy, osteoarthritis,
neurodegenerative diseases, and diabetes mellitus. Also in dogs
such age-related diseases occur, withmany similarities to humans
(33). In aging dogs with e.g., diabetes mellitus, increased
tissue levels of AGEs were found (34), but also in conditions
like carteracts, osteoarthritis (35), neurodegenerative canine
cognitive dysfunction syndrome (28), vascular dysfunction, and
atherosclerosis (29, 30). The limited exposure to dietary AGEs
and a reduced AGEs pool during calorie restriction could explain
the widely described beneficial effects on aging and related
complications (36–40).

Adverse Effects of MR on Bioavailability of
Lysine and Other Dietary Compounds
The MR importantly results in blockage of lysine thereby
reducing the biological availability of the lysine amino acid but
also together with the crosslinking hinder hydrolysis of the
protein by digestive enzymes. This has has been demonstrated
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in animal feed ingredients, like dairy products (41), dried grains
used as the feed for pigs, soybeans (42), carrots (43), peas
(44), and maize (45). The thermally induced reduction in lysine
bioavailability in the presence of sugar, depends on the level
and duration of temperature application, water activity and
pH of the environment during processing (46). Furosine (ε-N-
(furoylmethyl)-L-lysine), which is related to the early stage of the
MR, is an indicator of the formation and presence of Maillard
products such as fructoselysine, lactuloselysine, and lysinoalanine
and of the losses in available lysine.

Next to the impaired bioavailability of lysine, MRPs have
a strong mineral chelating power affecting the availability of
minerals such as calcium, iron, and phosphorus (47, 48).

Rérat et al.(49) used an in vivo pig model to study feeding of
a protein source with a high level of MR-induced blocked lysine
on the kinetics of digestion, nutrient absorption and excretion,
including amino acids but also minerals. The pigs were fed with
non-processed milk (MR free) or skimmed milk processed to
obtain about 50% of lysine blockage due to the early stages
of Maillard reaction. Consumption of processed skimmed milk
induced a lower absorption of milk sugars glucose and galactose.
This was in part due to the loss of milk-derived lactose as this
was converted into lactuloselysine and lactulose. In addition,
reduced amounts of lysine, cysteine, and alanine were found due
to absorption and these appeared in the portal blood in pigs fed
the processed skimmed milk suggesting that lactuloselysine was
not bioavailable. The fecal excretion of amino acids was higher
in the group of pigs fed processed skimmed milk confirming
the impaired digestibility of proteins modified via MR (49).
Thermal processing of milk was shown to induce damage of
casein resulting in a decreased bioavailability of lysine and this
lysine blockage was reflected in the lower growth rate of kittens
fed with heated casein (50). A decreased protein digestibility
results in a diet high in the MRPs and consumption led to
47% higher excretion of fecal nitrogen, 12% lower absorption
of nitrogen, and a 6% lower nitrogen digestibility in a group
of adolescent males (51). The MRP-rich diet was also shown to
affect the absorption of phosphorus, resulting in a decrease of the
phosphorus balance (52). Some MRPs can directly inhibit brush
border enzymes as shown for glucose-lysine reaction compound
(2-formyl-5-(hydroxymethyl)pyrrole-1-norleucine) in vitro but
also in vivo in a rat study (53, 54).

Moreover, fructoselysine, an Amadori adduct of glucose to
lysine, was detected in the portal blood and urine of pigs fed with
processed skimmed milk in amounts corresponding to 18.6% of
the ingested quantity. This suggested that the galactose residue of
lactuloselysine is released by enzymes in the gut lumen and/or in
the epithelial brush border and subsequently transported through
the intestinal barrier (49). Both early and advanced glycation
end products were detected in the blood of rats after feeding a
MR-rich diet. Approximately 26.0 to 29.0% of ingested dietary
CML in rats was excreted in urine, compared to 15.0 to 22.0%
in feces (55). In humans, protein-bound fructolysine urinary
excretion ranged from 1.4 to 3.5% of the ingested amount (56).
In contrast, about 10% of diet-derived AGEs were absorbed in
healthy subjects, and two thirds of these AGEs remained in
the body while one-third of the absorbed AGEs was excreted

into the urine within 3 days. Low molecular weight AGEs are
water-soluble and are not substrates for liver detoxifying enzymes
and therefore rapidly excreted. Consumption of high molecular
weight pentosidine led to excretion of only 2% AGE resulting in
accumulation, endothelial perturbation and vascular disease (57).

Influence of Cross-Linking Immunogenicity
of Proteins
The MR but also heat treatment alone during thermal processing
of food can result in cross-linking of the proteins. Methylglyoxal,
a common intermediate in the MR in vivo and in vitro,
has been shown to be involved in the formation of cross-
linked aggregates via lysine, arginine, or cysteine. Normal
physiological concentrations of methylglyoxal are sufficient to
induce these reactions resulting in different fluorescent products
that resemble proteins characteristic for aging and diabetes
development (58–60). Furthermore, dehydroalanine may react
with lysine and cysteine residues to form cross-linked products
such as lysinoalanine (LAL) and lanthionine (61). LAL was
found in the urine, plasma, liver and kidneys of rats fed with
heat-modified casein (55). However, the study of Hellwig and
colleagues suggests that LAL is broken down during the digestion
process into larger peptides (61). Next to the formation of
LAL, MR, and/or denaturation of proteins during the heat
treatment may initiate hydrophobic interactions between the
proteins and formation of new disulfide-bonded aggregates
(62). The cross-linking of proteins decreases their digestibility
(63) but also affects the immunogenicity and allergenicity of
proteins (64–67). Roth-Walter and colleagues demonstrated
an impaired uptake of aggregated β-lactoglobulin and α-
lactalbumin by intestinal epithelial cells. In a mouse model,
protein aggregation was shown to increase the uptake into
Peyer’s patches. Compared to non-aggregated proteins, this
uptake promoted significantly higher mucosal Th2-associated
antibody responses and cytokine production profiles (64). Also
exposure to cross-linked β-lactoglobulin was shown in mice to
elicit a stronger allergic sensitization probably due to enhanced
resistance to gastrointestinal proteolysis, retrogradee protein
transport to Peyer’s patches, and an altered uptake and processing
in antigen-presenting cells (65). Liu and colleagues showed that
agglomeration of whey proteins during heating is positively
correlated with the decreasing water activity and progress of
the MR. Moreover, the formation of aggregates was associated
with the formation of ligands binding to the cell-bound but also
sRAGE (the soluble form of receptor for advanced glycation end-
products), which reflects increased immunoreactivity of MR-
modified agglomerates (66, 67).

IMMUNE-RELATED EFFECTS

Influence of AGEs on Immune System
In general, AGEs affect biological procedures in three levels; the
first effect is an alteration in signal transduction pathways, which
happens following the AGE-receptor interaction. Secondly, via
altered signaling, AGEs induce or inhibit the production of
certain cytokines, hormones, and free radicals. Finally, as a
result of AGEs effects and increased pro-oxidative activities,
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the proteins in the target tissues modify leading to functional
deregulations (68).

There is substantial evidence on the association of MRPs
with immunity stimulation and immune system responses (69,
70). The interaction begins with the recognition of MRP’s
conformational epitopes by the pattern recognition receptors
(PRRs) and subsequently a downstream signaling to the nucleus
for mainly, NF-kB activation and consequent cellular responses
(71). Multiple PRRs have the potential recognition ability and
binding affinity for MRPs but their interaction may lead to
various responses (72, 73). Both early and advanced glycation
products are related to an increase in oxidative stress along with
inflammatory response (70, 74). As a consequence of interactions
of AGE to the RAGE receptor, increased production of pro-
inflammatory cytokines such as TNF-α, IL-1β, and IL-6 occurs in
endothelial cells and monocytes (75). An increase in free radicals
and oxidative stress aggravates the inflammatory state (auto-
amplifying) and may eventually affect long-lived proteins such
as collagen and elastin (76).

MRP and AGEs that are absorbed in the gut and arrive in
the mucosal tissue are being confronted with the local mucosal
immune system. This exposure induces immune activation
leading to local effects in the gut, including induction of
tissue damage and inflammation, and the start of an activated
immune response leading to T-cell activation and (IgA) antibody
production. Besides a local activation of the immune system in
the gut, activated immune cells can also travel to the mesenteric
lymph node and arrive through the portal vein into the liver and
systemic circulation, leading to consequences in the entire body.
One such example of a systemically activated immune response
is allergy. Dietary AGEs (dAGEs) have various allergenicity and
immunogenicity properties in terms of food allergy (77, 78).
The mechanism for initiation and progression of the reactions
are still under debate. However, it was shown that depending
on the structure and type of glycated proteins, these molecules
might increase or attenuate allergic reactions. An increase in
allergenicity of roasted peanut with an accompanied increase
in IgE reactivity was reported (79, 80). Besides, Hilmenyuk
et al. demonstrated that mature DCs loaded with AGE-modified
proteins induced a higher T helper 2 (Th2) response (81)
what promotes an allergic reaction. In addition, the cross-linking
between the proteins as a result of heating makes them resistant
to proteolysis and also may increases the allergenicity properties
of the products. That was confirmed by increased sensitizing
capacity of glycated β-Lactoglobulin when compared to the
native form of the molecule (65), which could be because of neo-
allergen generation. In contrast, heating may also denature the
proteins and consequently, destroy or mask the conformational
epitopes that leads to a reduced allergenicity (82).

Cellular Receptors for AGEs
A series of cell surface receptors present on antigen presenting
cells (APCs) have an affinity to bind and interact with AGEs.
According to the glycoprotein structure of AGEs, these receptors
mostly have carbohydrate recognition domains (CRDs) and/or
domains to interact with available peptides. There is a wide range
of cellular receptor with such characteristics, however, not all

of them bind to AGEs. In addition, the AGE receptors do not
bind to modified proteins with similar affinity, which may lead
to dissimilar responses. Taking into account the studies related
to AGEs, six membrane-associated receptors are considered
valuable.

RAGE

RAGE or receptor for advanced glycation end products is a
multi-ligand receptor and is a member of the immunoglobulin
(Ig) superfamily. This receptor is expressed by different cell
types including monocytes/macrophages (83), endothelial cells
(84), and dendritic cells (85). They recognize a wide range of
molecules such as AGEs and amyloid-β peptides and are involved
in activation, migration, and maturation of different cells. The
presence of excessive amounts of AGEs or large increases in
inflammatory conditions will up regulate RAGE expression and
activation. Following their activation, Reactive Oxygen Species
(ROS) generation and inflammatory responses are exerted which
may lead to chronic inflammatory disorders if the stimulation
persists. Three variants of the RAGE protein were described: full-
length RAGE, N-truncated RAGE, and soluble RAGE (sRAGE)
and all of these share various common core operational domains.
The latter form (sRAGE), which has a molecular weight of ∼46–
50 kDa is secreted extracellular and contains the extracellular
ligand-binding domain and regulates RAGE levels by negative
feedback mechanisms (86).

Galectin-3

AGE-R3/Galectin-3 is a member of lectin family, which along
with two other components (AGE/R1/OST-48 and AGE-R/80K-
H) forms the AGE-R complex. This complex and mainly
the extracellular ∼32 kDa Galectin-3 subunit, was shown to
bind with high affinity to AGE-BSA on macrophages (87).
This multiple function receptor interacts with glycoproteins via
its carbohydrate recognition domains (CRDs) and N-terminus
domain. It is also a major regulator of biological processes
including acute and chronic inflammation (88, 89). According to
this capacity of Galectin-3 for interacting with glycoproteins such
as AGEs and also its importance in immune responses.

SR-AI

Scavenger receptor class A1 (SR-AI) with the molecular weight
of ∼77 kDa (as monomer), belongs to the family of macrophage
scavenger receptors (MSR) and consists of six different domains.
Likewise other receptors of this family, SR-AI is mainly involved
in mediating phagocytosis of microorganisms. Being generally
expressed on monocytes and macrophages as well as DCs, these
membrane-bound PRRs have versatile functions and have a
wide range of ligands. In addition to microbial ligands, they
bind to modified molecules including glycated proteins such as
AGEs with high affinity and facilitate their endocytosis. They
are one of the key role players of innate immunity responses
and are involved in, for instance, macrophage polarization and
pathogenesis of diseases such as atherosclerosis (90).

CD36

CD36 (SR-BIII) is a glycoprotein belonging to the scavenger
receptor family and is present on macrophages. Similar to other
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members of this family, the 88 kDa CD36 has a large repertoire
of ligands and binds to microbial ligands as well as modified self-
molecules. This multi-function receptor participates in activities
such as phagocytosis, antigen presentation and apoptotic cell
clearance and contributes to inflammatory responses (91).
Several studies showed CD36 as an AGE-binding receptor, which
facilitates the cellular uptake of these glycated molecules (92).

DC-SIGN

DC-specific ICAM3-grabbing non-integrin (DC-SIGN; CD209)
is a member of the type II transmembrane receptor family. It
is present on the cell membrane of dendritic cells and mediates
their adhesion process to T lymphocytes (93). DC-SIGN is
abundantly expressed on DCs and contains a C-terminal lectin
domain as it a member of the C-type lectin family (94). DC-
SIGN binds to several ligands and exerts a variety of responses
based on them. For instance, it was shown that following
the DC-SIGN interaction with mannose-containing molecules,
production of IL-10, IL-12, and IL-6 increased where after
binding to fucose-containing ligands only IL-10 production was
upregulated (95). This potential ability to bind to carbohydrates
makes this receptor a candidate to bind modified glycoproteins
and specifically AGEs.

MMR

The type I transmembrane mannose receptor (MR; CD206) is
another member of the C-type lectin family with 8 carbohydrate
recognition domains (CRDs) (96). With no capacity to bind
galactose, MR preferentially binds to mannose and fucose and
with a lower affinity to glucose (97). It is also shown that MR
(CD206) acts as pattern recognition receptor (PRR) and enhances
the uptake and presentation of antigens by DCs (98). This
potential capacity to bind to carbohydrates and aiding DCs in
antigen internalization makes this mannose receptor a candidate
to bind AGEs.

Antigen Presenting Cells
T-lymphocytes (T cells), as the effector cells of the adaptive
immune system, are not able to recognize free antigens
(99). Dendritic cells (DCs), macrophages, and B-lymphocytes
have the ability to internalize antigens and present antigen-
derived peptides to T cells on their major histocompatibility
complex class II (MHC II) molecules. These cells are known as
professional antigen-presenting cells (APCs) because displaying
endogenously obtained peptides is one of the main integral parts
of their function (100). DCs and macrophages (as mononuclear
blood cells) are the primary immune cell types that establish
the link between innate immunity and adaptive immune system.
The APCs in general internalize and process complex antigens
and subsequently, via different pathways, display the peptides
on their MHC-binding groove. Following this presentation and
based on the type and nature of the antigen, proliferation and
differentiation of T lymphocytes begin and various forms of
immune responses are generated. DCs mainly play a role in
introducing antigens to naïve T cells where macrophages and
B cells are involved in activating T cells in cell-mediated and
humoral responses respectively (101). The whole process of

antigen recognition, presentation, and activation is essential for
a proper immune response to different perturbations and APCs
play a key role in this regard.

When AGEs interact with receptors expressed on APC, these
AGEs can be internalized and presented in the context of MHC
class II molecules to specific T-cells. In a mouse model, AGE-
modified ovalbumin was phagocytosed much more efficiently by
scavenger receptor class A types I and II (SR-AI/II) expressed
on myeloid dendritic cells compared to non-modified native
OVA. This enhanced antigen presentation led to the increased
activation of ovalbumin-specific CD4+ helper T cells (81).
An enhanced uptake of FITC-labeled AGE-modified ovalbumin
was observed in human DCs, and this was mediated by the
AGE-binding mannose receptor, scavenger receptor, and also
by macro-pinocytosis by these cells. As a result, the resulting
T cell activation led to an increased Th2 cytokine production
(IL-5, IL-4, and IL-6), compared to the non-glycated ovalbumin-
loaded DCs that induced a significant Th1 (IFN-γ) or regulatory
T-cell cytokine production profile (IL-10) (102). A schematic
representation of how feed derived GE affect several aspects of
the metabolism are depicted in Figure 1.

ADVANCED GLYCATION END PRODUCTS
IN DIFFERENT ANIMAL FEEDS

AGEs in Milk and Dried Whey Proteins
The dairy industry generate large volumes of liquid cheese
whey that are processed to produce different whey products,
including whey protein concentrate, whey protein isolate, and
several individual whey proteins. These processed whey products
are widely used as additives or supplements to animal feeds
including sows and neonatal piglets, young ruminants (calves),
dogs, cats, poultry and aquaculture (103–106). In pig industry,
early weaning is becoming a common practice to boost efficient
and economic production systems. The sudden change from
sow’s milk to solid feed and accompanied change in husbandry
conditions, provide strong stressors to the piglet and its
health. To minimize the impact increasingly milk replacers are
being provided stabilizing gut microbiota, preventing intestinal
dysfunction and improve performance (107). Cow’s milk because
of its balanced nutrient composition makes it a suitable feed for
neonatal piglets. Even dairy cattle are fed whey proteins being a
side-product of the cheese manufacturing industry. Liquid, solid,
or condensed whey or products derived thereof are applied (108).
Moreover, lactose and dried whey are used as supplements in
poultry diets (104, 105). Lactose is not absorbed from intestine
in poultry due to their inability to secrete lactase. Instead, lactose
is fermented to lactic acid and volatile fatty acids (VFA), and
these products promote the colonization of the intestinal tract
by Lactobacilli. Elevated VFA concentrations are considered
beneficial as they induce a decrease of the caecal pH and alter
the oxidation and reduction potentials, and together this may
suppress the growth of potentially pathogenic bacteria (104, 105).
Therefore, supplementation of the diet with dried whey proteins
sounds to be an effective method in enhancing the productivity
of broilers.
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FIGURE 1 | Metabolism of feed derived AGEs. Upon processing of animal feeds, protein-bound and free AGEs appear in the feed. These AGEs can be released in the

intestinal tract as a consequence of the interaction with digestive enzymes and also intestinal microbiota. When absorbed, these AGE mat interact with the mucosal

immune system by binding to several receptors (RAGE, CD36, Galectin-3, SR-A1, mannose receptor) expressed on immune cells. In particular, innate immune cells

may subsequently become activated (through activation of the NF-kB pathway) and produce reactive oxygen species (ROS), and cytokines. Together these activities

may skew the resulting T-cell activation and contribute to the development of increased oxidative stress, metaflammation and tissue damage, cancer cardiovascular

diseases, metabolic syndrome and type 2 diabetes, and dementia and premature aging. The uptake of AGE in the intestinal tract can also result in appearance in the

systemic circulation here these compounds will be degraded in the liver and be excreted in the urine. Collectively, these activities of AGEs explain their effects on

health, welfare, growth, and performance of the animal in ways very similar to those known from the human field.

The combination of proteins, sugar, and high temperatures
during thermal processing of milk and whey proteins makes
milk and other dairy products prone to glycation and creation
of AGEs. In milk, whey proteins are the most heat vulnerable
proteins and are subject to glycation (109). Intensive heating
has been already shown to promote the formation of Maillard
reaction products in whey. Intensive dry heating at a lower
water activity (aw= 0.23) favors the protein aggregation and
the occurrence of Maillard reaction of whey proteins (66, 67).
Moreover, dry heating promoted aggregation of whey proteins
and thereby the formation of sRAGE-binding ligands which
influence the immunogenicity of the food compounds (66,
67). RAGE is considered an innate immunity related pattern
recognition receptor that recognizes mainly conformational
secondary structures, such as β-sheets and fibrils, rather than the
primary amino acid sequence of proteins (110). This may suggest
that thermally induced increase in the content of β-sheets also
favors the aggregation of whey proteins and at the same time
the binding to sRAGE (66, 67). Effects of protein denaturation
during the heating are specially known for whey proteins (111).
Accordingly, investigating an interaction between these AGE-
modified proteins and cellular receptors on immune cells (as a
crucial encounter and interaction point) seems worthwhile.

AGEs in Pet Foods
Pet animals, including dogs and cats, are most often fed
commercial foods that are highly processed and which
they consume during their entire live. The main processing
procedures for these foods rely on heat treatments (e.g.,
extrusion, sterilization, drying) to improve their nutrient
digestibility, shelf life, and safety. As a result, the proportion of
reactive lysine is on average, 73% (range 39–100%) of total lysine,
while foods for growing dogs may supply less lysine content
than the animals require and is recommended. As a consequence
higher AGEs contents in plasma from dogs suffering from canine
diabetes mellitus and impaired renal function compared with
healthy control animals fed for prolonged periods with these
processed foods (3).

The ingredients used to formulate pet foods and the types of
processing appear to be key factors for the MRP concentrations
in the final product. On average and on a dry matter basis, higher
MRP and AGEs amounts occur in canned foods than in pelleted
and extruded foods. van Rooijen et al. (112) calculated that the
content of CML and HMF that are present in commercial pet
foods are, on average, within the range reported in processed
human food products. However, the average daily intake (mg/kg
body weight0.75) of HMF was 122 times higher for dogs and 38
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times higher for cats than the calculated average intake for adult
humans, while the average daily intake of CML was comparable
to the intake of adult humans (112). This study also highlighted
the importance of measuring the reactive lysine content in foods
for growing dogs used as weaning diets.

The important questions remains whether theMRP and AGEs
contents reported in pet foods are physiologically relevant in
these animals and this depends, in part, on the bioavailability
of these MRP components. The observed increase in urinary
excretion with increasing dietary intake indicates that dietary
MRPs are absorbed from the gastro-intestinal tract of adult cats
and excreted in the urine. The observed decrease in urinary
recovery with increasing intake suggests a limiting factor in
digestion, absorption, metabolism or urinary excretion. Whether
such absorbed dietary MRP affect the long term health of pet
animals has, hitherto, not been studied.

AGEs in Pig Feed
Proteins are the main macronutrient in swine feed and, thus,
understanding the absorption and the utilization by the animal is
important for successful swine production and the sustainability
of this sector. Storage and in particular processing conditions
largely determine the nutritional value of important feed
ingredients and this is most likely dependent on the combination
of heating and humidity parameters that induces the formation
of MRP (113). Many different processing conditions of feed
ingredients are generally used in swine diets (e.g., soybean meal,
dried distillers grain, corn, maize gluten feed). Heat processing
to improve nutritional quality and to remove solvents that are
commonly used during oil extraction is commonly required
when producing oilseed ingredients (soybean meal, canola
meal, sunflower meal, and cottonseed meal). These procedures
comprise varying degrees of heat with the risk to be deleterious
to protein quality, especially when applying high temperature
regimens. As discussed above lysine, being the most important
limiting amino acid in swine feed ingredients, is the most reactive
amino acids in the MR. Consequently, lysine is commonly
added to diets of swine in crystalline form to ensure that the
balance of absorbed and available amino acids closely aligns
with the requirements for protein synthesis to ensure optimal
performance.

AGEs in Cattle Feed
Conventionally fed cows regularly consume concentrated and
processed feed containing MRP and AGEs as a consequence
of heating and these compounds can be measured in the milk.
Organically fed cows only get non-heated feed such as grass
or silage. Thus, organic milk is supposed to contain fewer
glycated proteins and the contents and composition can now
be measured (114). Dietary MRPs like pyrraline can be found
in the urine originating from blood clearance, and therefore it
was speculated that cows excrete AGEs in milk during lactation
and thereby expose the suckling newborn. The milk yield of
dairy cows has increased significantly over the past decades
(115) and thus, a cow needs a ration with a higher energy
density and more nitrogen compared to its natural food sources.

Thus, the use of processed molasses, soybean meal, and rapeseed
meal are increasingly used with the risk of exposure to elevated
MRP levels (116). Dietary MRPs, are able to influence the
rumen microbiota (117). In addition, also the digestibility of
the roughages used to formulate dairy rations, is often low and
therefore MRP-containing concentrates that can be absorbed are
necessary to ensure dairy productivity. Processed milk proteins
using hydrolysis but also heat-induced glycation, display anti-
oxidant and anti-inflammatory activities and thereby enhanced
functional properties. Raw beef and pork naturally have a small
proportion of protein-bound AGEs, while that is much more
in raw chicken breasts. Therefore, there is no strong influence
of the protein content on the total amount of protein-bound
AGEs in beef. The commercial processing strategy, will thus
largely determine the final amount of protein-bound AGEs
(118).

AGE and Lameness in Dairy Cattle
One of the most prominent and serious health and welfare
problems in dairy cattle worldwide is lameness (or laminitis),
mostly due to injury or inflammatory disease in the hoof (119,
120). The prevalence of lameness of dairy cows ranges from
2 to 55% throughout the world depending on area, and has
dramatically increased in herds over the past 20 years (121).
Apart from the fact that lameness is considered to be a crucial
welfare issue, lameness has also a significant economic impact
due to a loss in milk production (122–124), reduction in fertility
(125–127), and hence an increased risk of culling (128, 129).
Laminitis can be defined as a diffuse aseptic inflammation of
the dermis of the claw (Pododermatitis aseptica diffusa) and is
considered to be an important cause of lameness (130–132). It
is well-documented that laminitis-related claw lesions including
hemorrhage of the sole and the white line along with sole ulcers,
are considered to be the most important causes of lameness
in dairy cows (119, 133, 134). Many predisposing factors are
associated with the occurrence of laminitis including farm
management, housing, genetics, breeding, and nutrition (135,
136). Although nutrition is widely related to the development
of laminitis, the mechanisms underlying the characteristics of
ration and/or feeding management and how these contribute to
laminitis occurrence have not yet been extensively studied.

Also in equines, laminitis can occur and the role of
obesity and insulin resistance are well known factors that
are closely related to the development of laminitis (137–
139). The role of insulin was experimentally confirmed by
inducing laminitis in clinically normal horses by prolonged
infusions of insulin and glucose to maintain physiological
levels of plasma glucose (140). The presence of dietary AGEs
was suggested to be involved in the development of insulin-
induced laminitis. Also in cattle, the combination of dietary
AGEs and insulin resistance in development of laminitis was
suggested (141). It has been shown that insulin resistance is
often seen in early lactating cows (142, 143), which may be
exacerbated by high intakes of rapidly fermentable carbohydrates
or starch (144). Interestingly, high prevalence of laminitis
lesions, i.e., hemorrhage of the sole and white line are
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often observed during early lactation (145–148). It can be
argued that the occurrence of laminitis during early lactation
may be related to insulin resistance and the formation of
AGEs.

Advanced glycation end products are derived from glucose
through intermediates such as glyoxal, 3-deoxyglucosone and
methylglyoxal (149, 150) and it has been postulated that
methylglyoxal is a major source of intracellular and plasma
AGEs (151). It has been shown that under in vitro conditions,
the enzymes glyoxalase I and II act in concert to convert
methylglyoxal into D-lactate, thereby, preventing the formation
of AGEs. In bovines and equines suffering from a systemic
acidosis induced by the feeding of high amounts of fermentable
carbohydrates and subsequent acidosis of either the rumen or
cecum, bovine plasma levels of D- lactate may increase up to
25 mMol/L (152, 153). Unfortunately, the end product D-lactate
exerts a negative feedback on the activity of glyoxalase I but
this notion may be of interest in relation to the development of
laminitis. Apart from the potential that AGEs may be derived
frommethylglyoxal that originate from the animals intermediary
metabolism, methylglyoxal can also be formed during the
anaerobic fermentation of rapidly fermentable carbohydrates
(154, 155). It was already mentioned that methylglyoxal is
converted toD-lactate under physiological conditions. Therefore,
it can be speculated that under practical feeding conditions
of cows and horses, the fermentation of rapidly fermentable
carbohydrates results in the accumulation of both D-lactate
and methylglyoxal. Methylglyoxal is toxic to cells (156), which
ultimately results in the lysis of bacteria (155) and the subsequent
release of lipopolysaccharides, which are implicated in the
etiology of laminitis in both bovines (132) and equines (157, 158).
Alternatively, methylglyoxal may be absorbed by the rumen
epithelium and across the epithelium of the gastro-intestinal tract
of bovine and equine and subsequently triggers the formation of
AGEs.

DISCUSSION

Thermal processing of food alters the chemical and biological
characteristics of the food components. An example of
biochemical changes as a result of heating is the creation of MRPs
and AGEs. The MR modified proteins are created in presence of
sugars and heat. These molecules are present in various forms in
a heterogeneous mixture that justifies their diverse bioactivities.

Feed components and formulation, but also feed processing
determine intestinal health and disease resistance. Protein
feeds that contain MRP and AGE can cause expansion
of intestinal microbiota and together with potentially gut
barrier damaging compounds can compromise epithelial barrier
function and cause immune stimulation resulting in lower
growth, performance and ultimately, in development of disease.

Animals reared and kept in industrial systems are subjected
to immunological stress, that together with the pathogen load,
the husbandry environment, the feed composition and regimen,
and the installed vaccination program determine the immune
status. As a consequence, inflammation can occur associated

with the release of pro-inflammatory cytokines, the mobilization
of nutritional reserves, suppressed nutrient absorption in the
gut, and body fluid loss like diuresis and diarrhea. Therefore,
inflammation will come at a significant nutrient cost. By
activation of the adaptive immune response, specific antibodies
will be produced that will consume a relatively small nutrient
cost. Thus, dietary immunomodulators and/or vaccines that
enhance immune responsiveness and minimize immunological
stress will positively affect health, growth, and performance.

The dietary glycated proteins (dAGEs) have shown to have
immunomodulatory properties (159, 160). There is substantial
evidence to support the association of these glycated proteins
with several chronic disorders, which are principally caused
due to the accumulation of AGE-modified proteins in cells and
tissues (161–164). A probable mechanism for such an immune-
stimulatory effect could be the interaction between the AGEs
and the antigen presenting cells including macrophages and DCs
(165, 166). The pattern recognition receptors present on the cell
membrane of these cells recognize the modified proteins, form
complexes, and initiate internalization. As a result, activation of
the NF-kB transcription factor occurs, leading to the production
of pro-inflammatory cytokines and also induction of oxidative
stress. Additionally, since macrophages and DCs are APCs,
peptides derived from the processed antigens will be presented to
CD4+ T-cells on their MHC-II molecules. The combination of
presented antigens and secreted cytokine will activate the T-cells
and induce cellular responses leading to a chronic inflammatory
state if the stimulation persists or the inhibitory mechanisms are
inefficient for resolving the homeostasis.

Due to the large diversity of AGEs that are formed during
Maillard reactions, various cellular receptors were shown to
have binding affinity for these AGEs. Among these receptors,
RAGE is the most referred and studied one and sRAGE is the
soluble variant of this receptor (167–169). The transmembrane
and intracellular signaling domains, which are present in RAGE
but not sRAGE, are crucial for transducing the signal to the
nucleus and activation of NF-kB (170). However, as sRAGE still
carries the ligand-binding domain (V domain), it has a similar
binding affinity to AGE-modified proteins as RAGE itself (171).
In vivo, sRAGE plays a decoy role and binds to circulating AGEs,
thereby regulating the interaction between membrane-associated
RAGE and the AGEs (110). This interaction between plasma
sRAGE and AGEs decreases the risk of undesirable inflammatory
response since unlike RAGE, these complexes are assumed to
be degraded (172). Indeed, lower plasma levels of sRAGE were
reported in patients with chronic inflammation (173). Likewise
RAGE, Galectin-3 interacts with the AGEs and contributes to
subsequent cell signaling and also uptake of these modified
proteins (174). Since this receptor lacks the transmembrane
domain, Galectin-3 links to other members of AGE-R complex
namely AGE/R1/OST-48 and AGE-R/80K-H. The available CRD
on Galectin-3 has an affinity for lactose (175), which may
explain the potential interaction with food or feed-derived AGEs.
Activation of Galectin-3 leads to an alteration in biological
processes including the immune responses and inflammation
(176, 177). Furthermore, SR-AI and SR-BIII (CD36) are two
members of the macrophage scavenger receptor family that were
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shown to bind to the glycated proteins (178, 179). These two
receptors basically facilitate the endocytosis of the AGEs and are
abundantly present on phagocytes (180). The cellular responses
following the interaction of these receptors and the AGEs are
involved inmultiple functions including immune (allergic or/and
inflammatory) response (181).

As mentioned before, RAGE is the most recognized receptor
for AGEs and the majority of the available studies have focused
on this receptor. The structure of the protein is important for
driving its biological activities and any modification in this
assembly leads to an altered function. As a result of the heat,
the hydrogen bonds and polar hydrophobic interactions in
secondary and tertiary structures of the proteins are distorted
(109). Therefore, the alpha-helixes and beta-sheets are disrupted
and the molecule loses its natural folding and 3-dimensional
shape. Furthermore, the denatured proteins undergo crosslinking
and agglomeration (182). Two or more denatured molecules
covalently attach to each other and form new structures that
possibly do not match the characteristics of any of the parent
molecules. These new molecules are usually rather bulky with
altered conformational epitopes that might be recognized by the
cellular receptors. Liu et al. showed the association of RAGE
binding with whey protein agglomeration (170). In general, the
RAGE receptor binding is higher in heated and glycated proteins
as they went through structural alterations and became more
potent for receptor binding when compared to the unheated

samples (183). Generally, glycated proteins (AGEs) have a higher
affinity for binding to sRAGE, CD36, SR-AI, and Galectin-3
(16, 183–185).

CONCLUSION

In conclusion, during the heating of foods and feeds, protein
denaturation, glycation, and agglomeration can occur. These
modifications in protein structures, increased their binding
affinity to cellular receptors that are mainly present on antigen-
presenting cells: namely sRAGE, CD36, SR-AI, and Galectin-
3.Although both heated and glycated proteins show an increased
receptor binding capacity, the effect of glycation is generally more
prominent when compared to the heated one. Despite the proven
relation of the MR to affect the protein quality by impairing
the bioavailability of amino acids and minerals, decreasing the
digestibility and increasing the immunoreactivity of proteins,
more information on the physiological and immunological
effects of the consumption of MRPs rich diets by animals is
urgently needed to the benefit of the health, welfare, growth, and
performance of animals.
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