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CARD11 functions as a key signaling scaffold that controls antigen-induced lymphocyte

activation during the adaptive immune response. Somatic mutations in CARD11 are

frequently found in Non-Hodgkin lymphoma, and at least three classes of germline

CARD11 mutations have been described as the basis for primary immunodeficiency.

In this review, we summarize our current understanding of how CARD11 signals, how its

activity is regulated, and how mutations bypass normal regulation to cause disease.
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INTRODUCTION

Our understanding of the immune system has benefited greatly from the study of the molecular
circuitry in lymphocytes that governs antigen recognition and the cellular and systemic response
to pathogens. This circuitry is elaborate, highly regulated, sensitive, and specific. As the study
of immune cell signal transduction has highlighted networks of molecules that translate antigen
sensing into lymphocyte action, it has also revealed how the dysregulation of signaling machinery
can precipitate disease, including immunodeficiencies, autoimmunity syndromes, leukemia, and
lymphoma.

CARD11 is a fascinating, multi-domain scaffold protein that plays a key role as a signaling
hub during the adaptive immune response. Underscoring its importance, the CARD11 gene
is extremely intolerant to loss-of-function (LOF) mutation or genetic variation in the human
population (1, 2). Since its discovery in 2001 (3), many studies have revealed its obligate role
in antigen-mediated lymphocyte activation and its susceptibility to mutations that can cause
immunodeficiency or contribute to the development of lymphoma. CARD11 is best understood
at present as a signal integrator that translates B cell receptor (BCR) and T cell receptor (TCR)
triggering into the activation of NF-κB, JNK, and mTOR (Figure 1). Several excellent reviews have
summarized the biological roles of CARD11 gleaned from mice and humans deficient in CARD11
or its signaling partner proteins (4–8). Here we will review our current understanding of (1) how
the structure of CARD11 allows it to function as a signal-responsive scaffold; (2) how CARD11
orchestrates downstream signaling events; (3) the mechanisms that limit or terminate CARD11
signaling activity; (4) how gain-of-function (GOF) disease-associated CARD11 mutations bypass
normal regulation; and (5) how LOF disease-associated CARD11 mutations disrupt CARD11
activity.
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FIGURE 1 | CARD11 relays signaling from antigen receptors to NF-κB, JNK,

and mTOR.

OVERVIEW

CARD11 can be thought of as a string of protein-protein
interaction domains, each of which presents surfaces for the
binding and regulation of interaction targets (Figure 2A). The
protein interacts with more than 20 different proteins during
signaling, and it has evolved to present its interaction surfaces
dynamically in response to signaling inputs (Figure 2B). Prior
to receptor engagement the protein exists in a closed, inactive
state. Receptor engagement leads to the conversion of CARD11
to an open, active scaffold that binds signaling partners.
Cofactor binding leads to the generation of downstream signaling
intermediates that activate the IKK complex, a central target in
the canonical NF-κB signaling pathway, as well as JNK2, and
mTOR. Following activation, binding partners dissociate from
CARD11 and the protein returns to the inactive state. This cycle,
from closed to open and back to closed states, is thought to occur
over the course of approximately 60minutes following BCR or
TCR engagement.

MAINTENANCE OF THE CLOSED
INACTIVE STATE

Like many signaling proteins that promote cellular proliferation
and activation and whose signaling could be dangerous if
dysregulated, CARD11 contains an internal autoinhibitory
domain that keeps CARD11 inactive in the absence of receptor
triggering (9–11). This domain, termed the Inhibitory Domain
(ID), is located in the primary sequence between the Coiled-coil
and PDZ domain (Figure 2A). Remarkably, the autoinhibitory
action of the ID is accomplished by four small Repressive
Elements (REs), ranging in size from 11 to 53 amino acids, that
function cooperatively with redundancy (12, 13). Other than a
short 5-residue region of homology between RE2 and RE3, the
four REs do not resemble each other. While the mutation of
any single RE has little to no effect on basal CARD11 signaling,
their combinatorial mutation cooperatively increases activity,
and the simultaneous mutation of all four leads to a remarkable
640-fold enhancement of activity (12). The four REs function
together to prevent cofactor binding to CARD11 prior to receptor
engagement, but it is not completely clear how they do so. RE1,
RE2, and RE3 interact with other CARD11 domains, including

the CARD, LATCH, Coiled-coil, L3, and GUK, with somewhat
overlapping intramolecular specificities, presumably to maintain
CARD11 in a conformation in which protein-interaction surfaces
of the CARD and Coiled-coil are inaccessible (13). However,
RE4, which may be the most potent inhibitory element, does
not appear to participate in intramolecular interactions and likely
functions in cooperation with the other REs through an unknown
mechanism, possibly via the recruitment of a repressor in trans.

RECEPTOR-INDUCED ACTIVATION OF
CARD11 SCAFFOLD POTENTIAL AND
CONVERSION TO THE OPEN ACTIVE
STATE

Antigen receptor engagement by antigen in the appropriate
context leads to a cascade of signaling events upstream of
CARD11 that have been extensively reviewed (14). At present,
it appears that the inputs that CARD11 receives from upstream
signaling consist of phosphorylation events within the ID (9,
10, 15–17). Serines 564, 567, 577, and 657 all appear to
be phosphorylated as a result of antigen receptor signaling.
Somehow the modification of these residues leads to sufficient
neutralization of RE activity to allow CARD11 signaling cofactors
to bind and signaling events to ensue. Serines 564 and
657 appear to be targeted by PKCβ in B cells and PKCθ

in T cells, while serine 567 appears to be phosphorylated
by IKKβ. The kinase that targets serine 577 has not yet
been reported. Additional phosphorylation events may also be
important for maximal CARD11 activity, depending on cellular
context (18–20). The phosphorylation-mediated activation of
CARD11 scaffold activity may occur in a step-wise manner,
with an initial step that elicits some IKKβ kinase activity and
a subsequent step in which IKKβ phosphorylation of serine
577 promotes full scaffold activity (15, 21). Precisely how
the phosphorylation events convert CARD11 into an active
scaffold remains mysterious. It is possible that phosphorylation
induces a conformational change in CARD11 that disallows RE-
mediated inhibitory intramolecular interactions. Alternatively,
the phosphorylated residues may be recognized by an unknown
factor in trans that actively prevents cooperative RE action.

RECEPTOR-INDUCED RECRUITMENT OF
SIGNALING COFACTORS

Upon activation, the protein interaction surfaces of CARD11
become accessible for binding to a variety of proteins
(Figure 2B). Bcl10 was the first protein shown to bind
CARD11, with MALT1 recruited indirectly through Bcl10. These
observations led to the notion of a “CBM complex,” which
is a misleading misnomer because it ignores the binding of
other critical factors to CARD11. Bcl10 requires both the CARD
and Coiled-coil domain of CARD11 for its recruitment at
physiological levels of expression (11). The CARD and Coiled-
coil are also required for the recruitment of TRAF6, IKKγ,
and Caspase-8 (11). The CARD alone is required for TAK1
binding (11), while the Coiled-coil alone is required for binding
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FIGURE 2 | Activation of CARD11 activity during antigen receptor signaling. (A) Domain structure of CARD11. (B) Transition of CARD11 from closed, inactive to

open, active states and back again. Dashed lines indicate mapped protein-protein interactions. Abbreviations: CARD, Caspase Recruitment Domain; L, Latch; CC,

coiled-coil; ID, Inhibitory Domain; PDZ, PSD-95/Discs-Large/ZO-1 domain; SH3, Src Homology 3 domain; GUK, Guanylate Kinase domain; RE1, Repressive Element

1; RE2, Repressive Element 2; RE3, Repressive Element 3; RE4, Repressive Element 4; L3, Linker 3; L4, Linker 4.

to HOIP, the catalytic subunit of the Linear Ubiquitin Chain
Assembly Complex (LUBAC) (22). CK1α is recruited through
the Coiled-coil and ID (23). The preponderance of protein
interactions occurs through the N-terminal half of CARD11
that includes the CARD, LATCH, and Coiled-coil, although
the C-terminal PDZ-SH3-MAGUK region can bind the ADAP
adapter (24) and AIP (25). In T cells, the site of CARD11

complex assembly appears to be the immunological synapse
(26, 27).

In addition to the intramolecular interactions mediated by
the REs in the ID, two other CARD11 regions have been
shown to mediate CARD11-CARD11 interactions. The Coiled-
coil domain, predicted to form four discontinuous regions with
coiled-coil character, mediates assembly of CARD11 into an
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oligomer of undetermined stoichiometry. The SH3-GUK domain
tandem has also been shown to participate in modular inter- and
intramolecular binding interactions that appear to be required for
higher order clustering of CARD11 visible via microscopy (28).

CARD11-DEPENDENT SIGNALING
EVENTS IN ANTIGEN RECEPTOR
SIGNALING

The transient recruitment of cofactors to CARD11 ultimately
leads to the activation of the IKK complex in the canonical NF-
κB activation pathway. As it assembles cofactors into complexes,
CARD11 orchestrates ubiquitinylation and phosphorylation
events that somehow work together to promote IKK kinase
action on inhibitory IκB proteins that tether NF-κB in
the cytoplasm. The phosphorylation of IκBs promotes their
ubiquitinylation and degradation by the proteasome, which
allows NF-κB to stably translocate to the nucleus to bind target
genes.

BCL10 POLYUBIQUITINYLATION

The signal-induced recruitment of Bcl10 and HOIP to CARD11
allows HOIP (enzyme) to conjugate Bcl10 (substrate) with linear
ubiquitin chains, to produce LinUbn-Bcl10 (22). LinUbn-Bcl10
then binds the IKK complex through the UBAN domain of IKKγ

(22) in an interaction thought to be required for IKK complex
kinase activation (29). LinUbn-Bcl10 is a signaling intermediate
that determines the extent of NF-κB activation downstream of
CARD11 triggering. For a range of hyperactive CARD11 variants
(see below), the levels of LinUbn-Bcl10 produced by each variant
correlates with the degree of NF-κB activation it achieves (22).
Signaling through LinUbn-Bcl10 accounts for 50-60% of the
signaling output of CARD11 to NF-κB. In addition to CARD11,
TCR-induced LinUbn-Bcl10 generation also requires MALT1,
but not the SHARPIN subunit of LUBAC (22).

Bcl10 is also conjugated with K63-linked ubiquitin chains
during antigen receptor signaling (30, 31) to form Ubn(K63)-
Bcl10. This modification, mediated by cIAPs, has been shown
to be a prerequisite for linear ubiquitinylation of Bcl10 in the
context of chronic BCR signaling (32).

IKKγ POLYUBIQUITINYLATION

CARD11 facilitates the polyubiquitinylation of IKKγ with K63-
linked chains in response to antigen receptor triggering (33),
which is accomplished by a MALT1-associated E3 ligase activity
(34). Linear ubiquitinylation of IKKγ has also been implicated
in the antigen receptor pathway (35, 36). Since CARD11 recruits
both HOIP and IKKγ upon activation, CARD11 likely facilitates
LUBAC action on IKKγ.

MALT1 POLYUBIQUITINYLATION

MALT1 is also conjugated with K63-linked ubiquitin chains
during signaling, which facilitates its interaction with IKKγ (37);

however, MALT1 polyubiquitinylation has not been formally
shown to require CARD11. TRAF6 has been implicated as the
E3 ligase for this process, and its recruitment by CARD11 may
promote its action on MALT1.

MALT1 PROTEOLYTIC ACTION

CARD11 is also required for MALT1 protease activity on several
targets, including Bcl10 and MALT1 itself (7, 38–40). MALT1
cleaves the inhibitory deubiquitinase A20 (41, 42) to limit its
removal of polyubiquitinylated MALT1, thereby extending the
time-course of NF-κB activation. MALT1 also cleaves the NF-
κB subunit RelB, limiting its potential to repress transcriptional
activation by RelA and c-Rel (43). In addition, MALT1 cleaves
the HOIL-1L subunit of LUBAC and in so doing limits the
degree of NF-κB activation downstream of CARD11 (36, 44,
45). MALT1 has also been shown to cleave the deubiquitinase
CYLD to maximize NF-κB and JNK activation (46–48). CARD11
may promote MALT1 protease activity by activating enzymatic
potential, by recruiting enzyme to substrate, or both, but further
studies are required to define mechanisms.

MTOR ACTIVATION

The activation of mTOR downstream of TCR engagement
also requires CARD11, in a role independent of IKK complex
activation (49, 50). CARD11 signaling tomTORC1 depends upon
the proteolytic activity of MALT1 (49) and the rapid uptake
of glutamine through the ASCT2 glutamine transporter (50).
CARD11 signaling promotes ASCT2 expression and ASCT2
associates with CARD11, Bcl10, and MALT1 during signaling,
suggesting an active regulation of transporter activity (50).

JNK ACTIVATION

CARD11 is also required for the activation of JNK signaling
following antigen receptor triggering (51, 52), in a manner that
also requires Bcl10 and MALT1. For JNK activation, CARD11
appears to promote Bcl10 oligomerization, followed by the
binding of Bcl10 to TAK1, MKK7, and JNK2, which is thought
to engage this MAP kinase cascade for JNK2 activation leading to
increased levels of c-Jun and c-Jun phosphorylation (53, 54).

BCL10 FILAMENT FORMATION

CARD11 fragments that include the CARD, LATCH and
portions of the Coiled-coil domain have been shown in vitro
to nucleate the formation of helical filaments of Bcl10 (55, 56).
These Bcl10 filaments assemble through interactions between
Bcl10 CARD domains and polymerize in a unidirectional
manner (56). MALT1 and TRAF6 cooperatively associate with
the Bcl10 filament (56) and stimulate MALT1 proteolytic
activity (55). Bcl10 mutations that affect filament formation
perturb NF-κB activation by overexpressed Bcl10 in cells (55),
implicating these structures in CARD11 signaling. However,
further work is needed to bolster the importance of Bcl10
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filaments in antigen receptor signaling through CARD11 in vivo
at physiological levels of expression, resolve how Bcl10 and
MALT1 ubiquitinylation is accommodated or promoted by Bcl10
filament formation, and explain the mechanistic relationship
between Bcl10 filament formation and other steps in CARD11
signaling that require the L3, SH3, L4, and GUK domains, which
are required for physiological CARD11 signaling but are not
required to nucleate Bcl10 filaments.

MODULATION AND TERMINATION OF
CARD11 SIGNALING

Multiple mechanisms have evolved to tune and terminate
CARD11 signaling to ensure appropriate pathway output and
avoid pathological immune cell activation and proliferation.
First, cofactor association to CARD11 is regulated. The E3 ligase
RNF181 limits the steady-state level of Bcl10 through K48-linked
ubiquitinylation and degradation, thereby limiting the amount of
Bcl10 that can bind CARD11 (57). Once signaling initiates, the
kinesin GAKIN competes with Bcl10 for binding to CARD11 and
limits the dwell time of CARD11 at the immune synapse (58).
The phosphatase PP2A removes an activating phosphate from
CARD11, which limits cofactor binding to CARD11 (59). Once
CK1α is recruited to CARD11 in a step required for signaling,
it phosphorylates CARD11 to inhibit the extent of CARD11
signaling (23).

Second, cofactors that associate with CARD11 in a
signal-inducible manner rapidly dissociate from CARD11
during the initial ∼60minutes after receptor triggering. The
mechanisms of complex disassembly remain poorly defined,
but disassembly limits the generation of CARD11-promoted
signaling intermediates. In some contexts, cofactors disassemble
from CARD11 in an obligate step in productive signaling, such
as in the assembly of complexes containing p62, Bcl10, MALT1,
and the IKK complex that can prolong IKK activation (60, 61).

Third, key polyubiquitinylated signaling intermediates,
including LinUbn-Bcl10, Ubn(K63)-Bcl10, and Ubn(K63)-
MALT1 rapidly disappear as the result of the action of A20 (42),
CYLD (46, 47), and likely other deubiquitinases. The removal of
these potent intermediates attenuates the extent and duration
of IKK complex activation. Fourth, CARD11 and Bcl10 are
themselves degraded to limit signaling, and perhaps make cells
refractory to immediate re-initiation of the CARD11-dependent
pathway (15, 62–66).

SOMATIC GAIN-OF-FUNCTION CARD11
MUTATIONS IN LYMPHOMA

The dysregulated, constitutive signaling to NF-κB observed
in several types of leukemia and lymphoma endows the
transformed cells with a proliferative and survival advantage
through the induction of pro-proliferative and anti-apoptotic
NF-κB gene targets (40, 67–69). Leukemias and lymphomas
exploit a variety of strategies of genomic alteration to
achieve constitutive NF-κB activity. The regulation of CARD11
activity by an internal autoinhibitory domain makes CARD11

highly susceptible to mutations that can cause GOF signaling
independent of upstream antigen receptor engagement. GOF
CARD11 mutations occur in approximately 10% of cases of
the Activated B Cell-Like (ABC) subtype of Diffuse Large
B Cell Lymphoma (DLBCL) (70), but they have also been
observed in other DLBCL subtypes (71–76), as well as in
Acute T-cell Leukemia/Lymphoma (77), Sézary syndrome (78,
79) Mantle Cell Lymphoma (80), and Angioimmunoblastic T-
cell lymphoma (81). In many cases, however, the signaling
potency of CARD11 alleles found in patient biopsies has not
been thoroughly characterized, or confirmed to be required for
aberrant proliferation, as has been done for many CARD11
mutations found in ABC DLBCL. Figure 3 depicts lymphoma-
associated mutations that have been directly shown to potently
increase CARD11 signaling.

GOF CARD11 mutations cause constitutive hyperactive
CARD11 signaling by bypassing the action of the four REs
in the ID that normally keep CARD11 basally inactive (13,
22, 31, 82) (Figure 4). Mutations in the CARD, LATCH, and
Coiled-coil of CARD11 disrupt the function of multiple REs
to allow partial conversion of CARD11 to an open, active
state that can recruit Bcl10 (31, 82) and HOIP (22), but not
other factors recruited during normal antigen receptor signaling,
including TAK1, TRAF6, IKKγ, and Caspase-8 (31, 82), at least
for the mutants that have been characterized. The spontaneous
recruitment of Bcl10 and HOIP to GOF CARD11 variants leads
to the spontaneous generation of LinUbn-Bcl10, the levels of
which appear to determine the quantitative output of NF-κB
activation (22). Potent GOF mutations in the CARD, LATCH,
and Coiled-coil can enhance basal CARD11 signaling by 80-
to 160-fold (31, 82), and they appear to do so in part by
interfering with inhibitory intramolecular interactions mediated
by multiple REs (13). Potent GOF point mutations do not
occur in the ID itself, due to the redundant action of the
four REs; three or more REs would have to be disabled to
achieve a comparable level of dysregulated signaling (12). For
ABC DLBCL cells, the quantitative degree to which a GOF
CARD11 allele activates NF-κB largely correlates with its ability
to support aberrant cell proliferation (31, 70). However, the
dysregulation of B cell proliferation in vivo by a CARD11 GOF
allele requires both NF-κB and JNK activation (83). CARD11
GOF mutations in lymphoma occur in the presence of many
other genomic alterations. While overexpression of an extremely
potent CARD11 GOF allele is sufficient to cause lethal B cell
proliferation (83), in human lymphomas it is likely that multiple
genomic lesions cooperate with a GOF CARD11 mutation
to maintain the proliferation and survival of the transformed
cells.

GERMLINE CARD11 MUTATIONS IN
PRIMARY IMMUNODEFICIENCY

One of the most exciting recent developments in the study
of CARD11 has been the recognition of germline CARD11
mutations in primary immunodeficiency. Three different forms
of primary immunodeficiency (PID) have been described so
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FIGURE 3 | Lymphoma-associated CARD11 mutations. Mutations are depicted that have been validated to have at least a 3-fold increase in CARD11 signaling in a

quantitative signaling assay. ABC, Activated B Cell-like; DLBCL, Diffuse Large B Cell Lymphoma; GCB, Germinal Center B cell; MCL, Mantle Cell Lymphoma; PCNSL,

Primary Central Nervous System Lymphoma; ATLL, Acute T cell Leukemia/Lymphoma; TFH, Follicular T helper; PTCL, Peripheral T cell Lymphoma.

far that result from germline mutations in the CARD11
gene, (1) CARD11 deficiency, (2) BENTA disease, and (3)
Immunodeficiency with atopy.

CARD11 deficiency caused by homozygous LOF mutations
in CARD11 was first reported in two studies in 2013 (84, 85).
These patients, who presented with severe Pneumocystis jirovecii
infections as infants, displayed normal T and B cell counts but
hypogammaglobulinemia, deficits in mature or differentiated B
and T cells (CD4 and CD8), reduced Treg numbers, and defective
B and T cell activation in vitro. The homozygousmutations found
in these patients include a deletion of exon 21 that results in
a lack of detectable CARD11 expression (85) and a premature
stop codon at glutamine 945 in the GUK domain (84) (Figure 5).
Notably, family members that are heterozygous for these alleles
do not present with immunodeficiency.

BENTA disease (B cell Expansion with NF-κB and T cell
Anergy), caused by heterozygous GOF CARD11 mutations, has
been described in 16 patients so far beginning in 2012 (86–90).
BENTA patients experience recurrent ear, sinopulmonary,
and viral infections (molluscum contagiosum, BK virus,
Epstein-Barr virus), and exhibit a profound expansion in the
number of B cells, a skewing of B cells toward transitional
states, an unresponsiveness of T cells to antigen, and a poor
antibody response to pneumococcal and meningococcal
capsular polysaccharides. BENTA-associated mutations are
located in the CARD (C49Y), LATCH (G116S, G123S,
G123D, E127H), and Coiled-coil (E134G, H234L+1235-
8) domains (Figure 5). Some (C49Y, G123S, G123D) are
identical to those found in DLBCL. The alleles induce
constitutive NF-κB activation in lymphocytes, presumably
through the same signaling intermediates discussed above,
but it remains unclear precisely how their constitutive
signaling results in disparate effects in different immune
cell subtypes.

Immunodeficiency with atopy, caused by heterozygous, LOF
CARD11 mutations that appear to act as strong dominant
negative alleles, was reported in 2017 by two studies (91, 92). In
the five families described so far, affected individuals experience
severe atopic dermatitis, recurrent pneumonia, and other upper
respiratory tract infections, asthma, and food allergies with
varying severities. While patient B cells exhibit mild defects
in antigen-induced activation, patient T cells display reduced
activation and proliferation in vitro, consistent with a poor T
cell response to prior antigen exposure. Patients also display
elevated serum IgE levels but low-to-normal levels of other Ig
classes. CARD11 mutations that cause Immunodeficiency with
atopy have been found in the CARD (R30W, E57D), Coiled-coil
(L194P, dupM183-K196), and GUK (R975W) (Figure 5). E57D
and L194P have been shown to interfere with recruitment of
Bcl10 and MALT1 to CARD11 following TCR signaling (91),
while R30W appears to have a milder effect on recruitment
of these cofactors to CARD11 (92). This class of dominant
negative mutants has also been shown to disrupt CARD11
signaling to mTOR and to the activation of MALT1 protease
activity (91).

CURRENT KEY QUESTIONS AND
OPPORTUNITIES

What Is the 3D Structure of CARD11?
A thorough understanding of how CARD11 is kept inactive
prior to signaling, and how CARD11 converts to an open, active
scaffold will require determination of the three-dimensional
structure of CARD11 in “closed” and “open” states. Structural
studies so far have solved the structure of the CARD domain
of CARD11 and have modeled how the CARD11 CARD can
nucleate the formation of Bcl10 filaments (55, 56, 93, 94).
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However, the structure of 90% of the protein is unknown.
Structural information will be invaluable for understanding
how the multiple domains in CARD11 signal to its targets

FIGURE 4 | Oncogenic CARD11 signaling. Lymphoma-associated

gain-of-function mutations in the CARD, LATCH, and Coiled-coil are

represented by asterisks.

and how GOF and LOF mutations induce or disrupt CARD11
activity.

How Does CARD11 Mediate IKK Complex
Activation?
It remains unclear precisely how CARD11 signaling results
in the activation of IKK kinase activity. The generation of
ubiquitinylated Bcl10, MALT1, and IKKγ species is thought to
induce a network of interacting proteins, in which ubiquitin
chains are recognized by specific domains within signaling
cofactors. This web of intermolecular binding can induce the
proximity and clustering of IKK complexes, but how kinase
activity is induced under physiological conditions, and whether
other requisite components have yet to be discovered are unclear.
It should also be explored whether CARD11 simply recruits
enzymes (E3 ligases, kinases, protease) to their substrates or
whether CARD11 binding plays a more active role in allosteric
regulation of catalytic activity or substrate competency.

What Is the Physiological Function of the
Four REs?
Although it is clear that the four REs within the ID function
cooperatively to keep CARD11 inactive prior to signaling, it
remains unclear why the protein has evolved this unique array
of redundant repressive elements. RE redundancy does prevent
unwanted GOF mutations from occurring in the ID, but it does
not prevent their occurrence in the CARD, LATCH, and Coiled-
coil. It is possible that the REs determine the kinetics of CARD11
“activation” during signaling, or the kinetics by which CARD11
returns to the basal inactive state following signaling, but further
studies are needed to test these hypotheses.

How Precisely Do CARD11 GOF and LOF
Alleles Cause Immunodeficiencies of
Variable Phenotype?
The discovery of patients with germline CARD11 LOF and
GOF mutations provides exciting opportunities for obtaining
insight into the molecular mechanisms of CARD11 signaling
and the cellular interplay of immune cell subtypes affected by
CARD11 dysfunction. It remains unclear why some CARD11
LOFmutations are dominant negative andmanifest disease when
heterozygous, while other CARD11 LOF mutations manifest

FIGURE 5 | CARD11 mutations identified in three classes of primary immunodeficiency.
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disease only when homozygous. In addition, it is not firmly
established whether all disease-associated CARD11 alleles affect
signaling to mTOR and JNK, or which dysregulated pathways
downstream of CARD11 are responsible for which disease
manifestations. Also unknown is whether modifier genes in the
patients studied have influenced their presentation, since only
a small number of patients have been identified so far. It will
be interesting to see whether additional CARD11 alleles will
be discovered in the human population, leading to variable
phenotypes of immunodeficiency and atopy.

What Other Signaling Pathways Depend on
CARD11?
Several studies have implicated a role for CARD11 in pathways
distinct from antigen receptors, including those emanating from

activating NK cell receptors (95–97), OX40 (98), and the IL-2
receptor (99). Themechanistic role of CARD11 in these pathways
deserves further study. It is possible that additional signaling
pathways will be identified that rely on CARD11 activity, and if
dysregulated, may contribute to human disease.
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