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MM cells express high levels of CD38, while CD38 is expressed at relatively low levels

on normal lymphoid and myeloid cells, and in some non-hematopoietic tissues. This

expression profile, together with the role of CD38 in adhesion and as ectoenzyme,

resulted in the development of CD38 antibodies for the treatment of multiple myeloma

(MM). At this moment several CD38 antibodies are at different phases of clinical testing,

with daratumumab already approved for various indications both as monotherapy and

in combination with standards of care in MM. CD38 antibodies have Fc-dependent

immune effector mechanisms, such as complement-dependent cytotoxicity (CDC),

antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular

phagocytosis (ADCP). Inhibition of ectoenzymatic function and direct apoptosis induction

may also contribute to the efficacy of the antibodies to kill MM cells. The CD38 antibodies

also improve host-anti-tumor immunity by the elimination of regulatory T cells, regulatory

B cells, and myeloid-derived suppressor cells. Mechanisms of primary and/or acquired

resistance include tumor-related factors, such as reduced cell surface expression levels of

the target antigen and high levels of complement inhibitors (CD55 and CD59). Differences

in frequency or activity of effector cells may also contribute to differences in outcome.

Furthermore, the microenvironment protects MM cells to CD38 antibody-induced ADCC

by upregulation of anti-apoptotic molecules, such as survivin. Improved understanding

of modes of action and mechanisms of resistance has resulted in rationally designed

CD38-based combination therapies, which will contribute to further improvement in

outcome of MM patients.
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INTRODUCTION

CD38 was discovered in 1980 by E.L Reinherz and S. Schlossman, and is a type II transmembrane
glycoprotein. CD38 plays a role in regulation of migration, receptor-mediated adhesion by
interaction with CD31 or hyaluronic acid, and signaling events (1–3). Furthermore, CD38 also
has ectoenzymatic activity and is involved in the generation of nucleotide metabolites, which play a
role in the control of intracellular calcium stores (4). Under normal conditions, CD38 is expressed
at relatively low levels on myeloid and lymphoid cells and in some non-hematopoietic tissues
(1). In contrast, normal plasma cells and multiple myeloma (MM) cells have high levels of CD38
expression, whichmakes CD38 an interesting target for therapeutic antibodies targeting cell surface
molecules in MM.
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Currently, daratumumab (fully human; Janssen
Pharmaceuticals) is the first CD38-targeting antibody, which
is approved as single agent and in combination with several
standards of care in MM (4). Additional CD38 antibodies that
are under clinical evaluation include isatuximab (chimeric;
Sanofi), MOR202 (fully human; Morphosys), and TAK-079 (fully
human; Takeda) (5). CD38 antibodies are not only evaluated
in relapsed/refractory MM, but also in patients with newly
diagnosed MM (6). Furthermore, various preclinical studies,
case reports, and clinical trials have already demonstrated
promising results of CD38 antibodies in other malignancies such
NK/T cell lymphoma, T-cell acute lymphoblastic leukemia, and
immunoglobulin light-chain amyloidosis (7–11).

Although, immunotherapy with CD38-targeting antibodies
is an attractive approach because of a favorable toxicity profile
and high activity of CD38 antibodies alone or in combination
with standards of care, there is substantial heterogeneity in
quality and duration of response among patients. In this
review, we will first describe the different modes of action of
CD38 antibodies: Fc-dependent immune effector mechanisms,
direct effects, and immunomodulatory effects. This is followed
by a discussion of several host- and tumor-related factors
that influence daratumumab efficacy. We will also discuss
which mechanisms contribute to the development of acquired
resistance to CD38 antibodies. An increased understanding of
mechanisms underlying variability in sensitivity or acquired
resistance to CD38-targeting antibodies, may lead to new
strategies to improve the effectiveness of CD38 antibody-based
treatment. Our review will not discuss all details of the clinical
studies which evaluated CD38 antibodies, and for this topic
we refer to several excellent and recently published reviews
(5, 12–14).

MECHANISM OF ACTION OF
CD38-TARGETING ANTIBODIES

Classic FC-Dependent Immune Effector
Mechanisms
CD38 antibodies kill tumor cells via Fc-dependent immune
effector mechanisms including complement-dependent
cytoxicity (CDC), antibody-dependent cell-mediated cytotoxicity
(ADCC), antibody-dependent cellular phagocytosis (ADCP),
and apoptosis upon secondary cross-linking (4, 5, 15). ADCC,
ADCP, and crosslinking, are dependent on the interaction of the
Fc region of the antibody with Fcγ receptors (FcγRs) expressed
on immune effector cells. Importantly, the CD38-targeting
antibodies differ with respect to their potency to induce CDC,
ADCC, ADCP, or apoptosis upon secondary cross-linking (16).
This may be explained in part by unique epitopes of the different
CD38 antibodies.

ADCC
Therapeutic antibody-mediated ADCC results in lysis of
antibody-coated tumor cells by effector cells. NK-cells play
a critical role in ADCC mediated by therapeutic antibodies.
Indeed, depletion of NK-cells markedly reduced the capacity of

daratumumab to kill MM cells via ADCC (17). Upon the binding
of FcγRs to the Fc tail of the CD38-targeting antibody, NK-
cells release toxic proteins including granzymes and perforins,
which will kill the target cells (18). In addition, macrophages,
neutrophils, eosinophils, and γδ T-cells have also been shown
to induce ADCC against tumor cells coated with a therapeutic
antibody (19, 20), but their role in CD38 antibody-induced
ADCC is currently unknown and requires further investigations.

ADCP
In the process of ADCP, phagocytosis of antibody-opsonized
tumor cells occurs via binding of FcγRs (such as FcγRIIA
and FcγRIIIA), which are present on monocytes and
macrophages. Phagocytosis contributes to the anti-tumor activity
of CD38-targeting antibodies (16, 21). Interestingly, individual
macrophages have the ability to quickly and sequentially engulf
multiple daratumumab-coated tumor cells, indicating that
ADCP is an efficient killing mechanism of daratumumab (21).

Uptake of antibody-opsonized cancer cells by antigen-
presenting cells, such as macrophages and dendritic cells
may also lead to enhanced antigen presentation, which may
contribute to the development of tumor antigen-specific CD4+

and CD8+ T-cell immune responses (22, 23). This has been
demonstrated for several therapeutic antibodies (24), but
additional investigations are required to analyze to what extent
FcγR-mediated enhancement of antigen presentation contributes
to the anti-MM activity of CD38-targeting antibodies.

CDC
Binding of C1q to the Fc tail of the therapeutic antibody initiates
the complement cascade, ultimately resulting in the generation
of the membrane attack complex (MAC) and subsequently
permeabilization of the cell membrane (25, 26). Deposition
of complement components, such as C3b, on the surface
of the target cell, is also the consequence of complement
activation. These deposited complement components interact
with complement receptors on phagocytic cells resulting in
the engulfment of the tumor cells. In addition, complement
activation also leads to generation of C3a and C5a. C5a increases
expression of activating FcγRs, while at the same time reducing
inhibitory FcγRs, which leads to enhanced phagocytosis capacity
of effector cells. C3a and C5a also recruit immune cells to
the tumor. Altogether, this indicates that there may be synergy
between complement and the FcγR system in eliminating tumor
cells (27, 28).

Daratumumab is the most effective inducer of CDC of all
currently available CD38 antibodies (4). Indeed, daratumumab
was selected from a panel of 42 antibodies based on its ability to
strongly induce CDC (29).

Direct Effects
In an antibody screen, isatuximab was selected for further
evaluation based on its ability to directly trigger MM cell death
in the absence of cross-linking agents and independently of
effector cells, even in cells harboring p53 mutations (30, 31).
These direct effects are independent of Fc fragment binding to Fc
receptors (30). Isatuximab-mediated MM cell death is mediated
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by the classical caspase-dependent apoptotic pathway, as well
as the lysosomal cell death pathway, which is characterized by
lysosomal enlargement, lysosomal membrane permeabilization,
and cathepsin hydrolase release (30). Isatuximab induces
reactive oxygen species production, which occurs downstream
of lysosomal activation and contributes to MM cell death (30).
Daratumumab and MOR202 lack the ability to directly induce
MM cell death (16). In addition, CD38 antibodies also modulate
the enzymatic activity of CD38, whichmay contribute toMM cell
death (4, 16).

It is currently unknown whether CD38 antibodies also
modulate the activity of key signal transduction pathways
that regulate growth and survival, as has been described for
other therapeutic antibodies, such as rituximab (32). A better
understanding of these potential effects, may lead to improved
CD38 antibody-based combinations.

Immunomodulatory Effects
Next to the classic Fc-dependent mechanisms of action,
daratumumab has also immunomodulatory effects via the
elimination of CD38-positive immune suppressor cells, such as
regulatory T cells (Tregs), regulatory B cells, andmyeloid-derived
suppressor cells (4, 33, 34). The depletion of these suppressor
cells in the bone marrow (BM) microenvironment explains the
increase in T-cell numbers, T-cell clonality, as well as T-cell
activity following the initiation of daratumumab treatment (33,
35). Furthermore, T-cells also contain higher levels of granzyme
B after exposure to daratumumab, which indicates that they have
improved killing capacity (36, 37). Altogether, this suggests that
daratumumab treatment leads to an improved host-anti-tumor
immune response, which may be important for sustained disease
control (33, 34).

Laboratory experiments showed that isatuximab also has
immunomodulatory activity, but at this moment no data are
available from isatuximab-treated patients. Isatuximab inhibits
the suppressive function of Tregs by reducing their numbers,
decreasing immune inhibitory cytokine production including IL-
10, and blocking their trafficking. This results in improved NK-
and T-cell-mediated anti-tumor immune responses (38).

Interestingly, exhausted T-cells not only express high levels of
well-known inhibitory receptors, such as PD-1, but also CD38
(39, 40). Recent findings suggest that the NADase activity of
CD38 also contributes to the development of T-cell exhaustion
via reducing nicotinamide adenine dinucleotide (NAD+) levels
in T-cells, resulting in decreased Sirt1/Foxo1 activity (40). Indeed,
elevated levels of NAD+ in T-cells are required for an optimal
anti-tumor T-cell immune response (40). Importantly, CD38
inhibition on T-cells by anti-CD38 antibodies improved anti-
tumor activity in mouse models by increasing NAD+ levels (40).

MECHANISMS OF RESISTANCE

In a pooled analysis of 148 patients who received daratumumab
treatment as single agent at a dose of 16 mg/kg in the first
in human phase 1/2 GEN501 study (41) or in the Sirius study
(42), at least partial response (PR) was achieved in 31% of the
patients including at least very good partial response (VGPR)

in 13.5% and complete response (CR) in 4.7% (43). These
patients were heavily pretreated with a median of five prior
lines of therapy with 86% double-refractory to a proteasome
inhibitor and an immunomodulatory drug (IMiD) (43). The
median duration of response was 7.6 months. The median
progression-free survival (PFS) and median overall survival (OS)
were 4.0 and 20.1 months, respectively. This indicates that
daratumumab induces durable responses in heavily pretreated
patients. However, the majority of the responding patients
develop progressive disease during daratumumab monotherapy.
In addition, more than half of the patients does not respond
to single agent daratumumab. Importantly, the other CD38-
targeting antibodies, isatuximab and MOR202, induce similar
response rates with similar response duration, when compared to
daratumumab in a heavily pretreated patient population (44–46).

To improve these results, various CD38-based combinations
were evaluated. Preclinical studies showed enhanced anti-
MM activity when IMiDs or proteasome inhibitors were
added to CD38-targeting antibodies (17, 47). IMiDs improve
CD38 antibody-mediated ADCC, ADCP, direct effects, as
well-immunomodulatory activity (additional details are
given below) (17, 30, 36, 48). It is currently less clear why
proteasome inhibitors combine well with CD38 antibodies,
but this is probably related to the pleiotropic effects of
proteasome inhibitors on both the MM cells and the tumor
microenvironment (49). Based on these preclinical data,
CD38 antibodies were combined with several standards of
care for the treatment of relapsed/refractory MM patients.
Adding daratumumab to lenalidomide-dexamethasone (DRd)
or bortezomib-dexamethasone (DVd), led to significant
improvements in clinical outcome: higher response rate, higher
frequency of minimal-residual disease negativity, and improved
PFS (50, 51). Based on these results, DRd and DVd were
approved by both FDA and EMA for the treatment of MM
patients with at least one prior line of therapy (4). The FDA also
approved daratumumab in combination with pomalidomide-
dexamethasone (DPd), while in Europe the results of the phase
3 APOLLO study (DPd vs. pomalidomide-dexamethasone)
are required for approval of this combination. Isatuximab and
MOR202 can also be effectively combined with IMiDs and
proteasome inhibitors (44, 52–54).

In the following section, we will describe what is currently
known about mechanisms of primary and acquired resistance
to CD38-targeting antibodies. At this time, the majority of
information about modes of resistance is derived from preclinical
and clinical studies which evaluated daratumumab.

Effect of Prior Treatment
Daratumumab as monotherapy was tested in heavily pretreated
MM patients (43), but not in untreated newly diagnosed
MM patients. However, laboratory studies performed with
BM aspirates from MM patients, containing tumor cells
and autologous effector cells, showed that the efficacy of
daratumumab to induce CDC or ADCC was very heterogeneous,
but without a significant difference in ADCC or CDC
between samples from patients with newly diagnosed MM
or relapsed/refractory disease (55). Also, in the subgroup of
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patients with lenalidomide- and bortezomib- (double) refractory
MM, the activity of daratumumab was comparable to that
observed in samples obtained from newly diagnosed patients or
relapsed/refractory patients with less prior treatments (55). Data
generated from these preclinical studies indicates that resistance
to steroids, anthracyclins, alkylators, IMiDs, and proteasome
inhibitors is not associated with reduced sensitivity to ADCC and
CDC mediated by daratumumab (55).

Daratumumab is also being evaluated in patients with
intermediate-risk and high-risk smoldering MM (SMM) (56).
In these patients with a premalignant asymptomatic precursor
disease at high risk of progression to symptomatic disease,
daratumumab was evaluated in three different treatment
schedules: short (16mg/kg; one 8-weeks cycle with daratumumab
administered once weekly), intermediate (16 mg/kg, one 8-weeks
cycle with daratumumab administered once weekly, followed by
daratumumab once every 8 weeks during cycle 2–20), and long
(16 mg/kg, one 8-weeks cycle with daratumumab once weekly,
then eight infusions every 2 weeks, followed by eight infusions
every 4 weeks, and then infusions every 8 weeks during cycle 8–
20) (56). At least PR was achieved in 38%, 54%, and 56% and
at least VGPR in 15%, 24%, and 29% in the short, intermediate,
and long treatment schedules, respectively. This is a higher
response rate when compared to the efficacy of daratumumab in
highly pretreatedMM. Possible explanations for a better response
in SMM include increased genetic instability from SMM to
MM, altered interactions with the BMmicroenvironment during
disease progression, and impairment of the host immune system
during evolution from SMM to MM.

Interestingly, it was recently demonstrated that reintroduction
of a previously failed IMiD in daratumumab-refractory patients
while continuing daratumumab as a backbone, can be active in
heavily pretreated MM patients (57). Similarly, the combination
of pomalidomide-dexamethasone and daratumumab induces a
33% response rate in patients previously demonstrated to be
refractory to both pomalidomide and daratumumab (58). In
addition, 52% of heavily-pretreated lenalidomide-refractory MM
patients achieve at least PR with the combination of isatuximab
plus lenalidomide-dexamethasone, which is higher than what
would be expected with isatuximab as a single agent (52).
Altogether, this suggests that the synergistic effects between
IMiDs and daratumumab, such as enhanced NK-cell and T-cell
activity, potentially overcome refractoriness to both anti-MM
agents.

Cytogenetic Abnormalities
The presence of high-risk cytogenetic abnormalities, such as
del(17p), t(4;14) and t(14;16) is associated with a impaired
survival of MM patients. High-risk MM patients benefit from
CD38 antibodies, but the poor risk cytogenetic abnormalities still
have a negative impact on clinical outcome in patients treated
with CD38-targeting antibodies.

Twenty percent of high-risk patients achieved at least
PR in the SIRIUS study (daratumumab monotherapy), while
this was 29.4% for standard-risk patients (42). Interestingly,
deep sustained response with daratumumab monotherapy in a

high-risk patient was associated with profound reduction in Treg
frequency and T-cell expansion (59).

In the randomized phase 3 POLLUX and CASTOR studies,
the addition of daratumumab to Rd or Vd markedly improved
the outcome of high-risk patients, when compared to Rd or Vd
only. However, poor-risk conferred by the presence of del(17p),
t(4;14), or t(14;16) was not completely abrogated by adding
daratumumab (60). Although overall response rates with the DPd
combinationwere similar forMMpatients with standard or high-
risk disease, the median PFS was inferior in high-risk patients,
when compared to standard risk patients (3.9 vs. 10.3 months),
while OS was similar in both groups (61). Also high-risk patients
treated with isatuximab plus lenalidomide-dexamethasone or
isatuximab plus pomalidomide-dexamethasone had a lower
response rate, when compared to standard-risk patients (52, 62).

It is likely that other tumor-related factors, such as mutations
in oncogenes and tumor suppressor genes, and activation status
of signaling pathways also contribute to the variability in
response to therapy with CD38 antibodies, but this requires
further investigation. A better understanding of the role of
molecular and biochemical mechanisms of resistance may
also contribute to new combination treatments that overcome
resistance.

CD38 Target Antigen
CD38 and Primary Resistance
Extent of daratumumab-associated ADCC andCDC is associated
with expression levels of CD38 on the cell surface (55).
Indeed, CD38-overexpressing clones were more susceptible
toward ADCC and CDC, when compared to the non-transduced
parental cell lines (55). There is also marked heterogeneity in
intensity of CD38 expression on primary MM cells without
a difference between MM cells from newly diagnosed or
relapsed/refractory patients (55). Similar to the observations with
cell lines, daratumumab-mediated ADCC and CDC was less
effective against MM cells with low CD38 expression (55).

To further understand the heterogeneity in response, we
analyzed CD38 cell surface expression levels in 102 patients,
who received 16 mg/kg daratumumab as monotherapy in the
GEN501 and Sirius studies to analyze the impact of CD38
expression levels on response. In this analysis, MM patients who
achieved at least PR had higher baseline CD38 expression levels,
when compared to patients who achieved less than PR (63).
Because of the substantial overlap in CD38 expression levels
between responders and non-responders, selecting patients based
on CD38 expression alone does not seem warranted.

Since CD38 expression is a key determinant of susceptibility
of MM cells to daratumumab-mediated ADCC and CDC, as
well as clinical response, several groups are evaluating agents
that increase CD38 protein levels to improve the efficacy
of daratumumab. Binding of all-trans retinoic acid (ATRA)
to the retinoic acid receptor affects gene expression, which
includes increased expression of CD38 (64, 65). This can be
explained by the presence of a retinoic acid-responsive element
in the first intron of the CD38 gene (66). Interestingly, ATRA
also increased CD38 expression levels on MM cell lines and
primary MM cells without having an effect on MM cell viability
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(55). ATRA-induced CD38 upregulation markedly enhanced
daratumumb-mediated ADCC and CDC against MM cells.
Furthermore, ATRA increased the activity of daratumumab in
MM cells, which were resistant to daratumumab in the absence
of other drugs (55). Also in a humanized mouse model, ATRA
and daratumumab showed synergistic anti-MM activity (55).
A clinical study is currently evaluating the value of adding
ATRA to daratumumab-refractory patients. Furthermore, the
histone deacetylase inhibitor panobinostat induces epigenetic
modifications that lead to enhanced expression of CD38 (67).
The increase in CD38 antigen density by panobinostat resulted
in improved daratumumab-mediated ADCC (67).

CD38 and Acquired Resistance
There is a rapid decrease in CD38 expression levels on the MM
cell surface during daratumumab-treatment (63, 68). Directly
following the first datatumumab infusion an ∼90% reduction in
CD38 expression levels is noticed on non-depletedMM cells (68).
A similar CD38 reduction is observed at the time of progression
during daratumumab therapy. The reduction in CD38 cell
surface expression is a transient phenomenon, because CD38
levels are restored to baseline levels on the MM cells ∼6 months
after the last daratumumab infusion (63). Daratumumab-
mediated CD38 reduction is a general phenomenon, which is
also observed on non-tumor cells, such as normal B-cells, T-
cells, NK-cells andmonocytes (68). Daratumumab reduces CD38
on the cell surface by several mechanisms. First, in responding
patients daratumumab may select for MM cells with lower
CD38 expression levels, while preferentially killing the MM cells
with higher levels of CD38 (68). In addition, recent studies
showed that daratumumab treatment results in the clustering
of CD38 molecules into distinct polar aggregates, which can
subsequently be released as tumor-derived microvesicles (69).
Direct internalization may also contribute to loss of CD38.
Finally, active transfer of CD38-daratumumab complexes and
accompanying cell membrane from MM cells to monocytes
and granulocytes also contributes to CD38 reduction (68). This
process of trogocytosis is in part FcγR-dependent (68).

Reduced CD38 expression on non-depleted MM cells is
associated with protection against ADCC and CDC (63, 68).
Reduced daratumumab-mediated ADCC and CDC induced by
CD38 loss was also observed in patients with persistent response
(68). Interestingly, ATRA also increased CD38 expression, almost
to pretreatment values, in these daratumumab-resistant MM
cells, leading to improvements in daratumumab-mediated CDC
and ADCC.

Importantly, the reduction in CD38 expression levels, which is
associated with impaired classic Fc-dependent immune effector
mechanisms, was similar in responding and non-responding
patients (63). Indeed, CD38 expression is also reduced in
patients with sustained high quality response, suggesting that
CD38 reduction is not necessarily associated with escape from
daratumumab-mediated killing, but indicates that the pressure to
keep MM cells in a state of low CD38 expression, may also offer
clinical benefit. Reduced CD38 expressionmay result in impaired
adhesion to stromal cells via CD38-CD31 interactions leading
to reduced growth and impaired protection against apoptosis

(70). Moreover, daratumumab-mediated trogocytosis may also
impair the ability of tumor cells to interact with the protective
BM microenvironment by reducing expression of several other
adhesion molecules (such as CD49d, CD56, and CD138) on
MM cells (68). In addition, daratumumab-mediated reduction
of CD38 on MM cells may also result in reduced generation of
immunosuppressive adenosine molecules (71), and thereby an
improved host-anti-tumor immune response (72–74).

Soluble CD38 and Anti-drug Antibodies
Soluble CD38 may neutralize CD38-targeting antibodies and
thereby have an impact on pharmacokinetic profile and response.
In the GEN501 and Sirius daratumumab monotherapy studies,
soluble CD38 was found in only 2 out of 110 patients (63).
Both patients achieved a PR with daratumumab treatment. To
the best of our knowledge, impact of soluble CD38 levels on
clinical outcome was not reported in the studies with MOR202
and isatuxumab (5).

In a similar way, development of anti-drug antibodies may
lead to impaired activity of CD38 antibodies. Up till now,
anti-daratumumab or anti-isatuximab antibodies have not been
detected (41, 42, 50, 75), while development of anti-drug
antibodies is a rare event with MOR202 (76).

CDC Resistance
Several fluid phase regulators, as well as membrane-associated
complement-inhibitory proteins, such as CD46, CD55 andCD59,
protect healthy tissues against accidental complement attack.
These complement inhibitors have also been shown to confer
protection of tumor cells against several therapeutic antibodies
(77–79).

In an analysis of 23MM and lymphoma cell lines,
daratumumab-sensitive cell lines had lower CD59 and
CD55 expression, when compared to CDC-resistant cell
lines (63). No difference was found for CD46 (63). Removal
of the glycosylphosphatidylinositol-anchored CD55 and CD59
molecules from the cell surface with phospholipase-C, rendered
cell lines more sensitive to daratumumab-mediated CDC. In
contrast, expression levels of these complement inhibitors
were not associated with extent of complement-mediated
lysis of primary MM cells by daratumumab (63). Similarly,
in the GEN501 and Sirius studies (MM patients treated
with 16 mg/kg daratumumab as single agent), there were no
differences in pretreatment expression levels of CD46, CD55
and CD59 between responding and non-responding patients
(63). However, at the time of progression during daratumumab
therapy, a marked increase in CD55 and CD59 was observed on
both MM cells localized in the BM, as well as on circulating MM
cells (63). Interestingly, in some MM tumors there are coexisting
subpopulations of tumor cells with markedly different levels of
CD55 and CD59 expression. During daratumumab therapy, the
selective pressure resulted in selection of daratumumab-resistant
MM cells with high expression of complement-inhibitory
proteins (63).

ATRA improved CDC to a higher extent than ADCC,
which was explained by the reduction of CD55 and CD59 by
ATRA, next to its effect on CD38 expression (55). Importantly,
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ATRA also reduces CD55 and CD59 expression levels in
MM cells obtained from patients with daratumumab-refractory
disease, which together with CD38 upregulation, leads to
improved daratumumab-mediated CDC (63). Although the
histone deacetylase inhibitor, panobinostat, induces a marked
increase in CD38 expression on MM cells, CDC was not
enhanced, probably as a result of a concomitant increase in CD55
and CD59 expression (67).

ADCC Resistance
NK-Cells
In experiments with patients’ samples, daratumumab-mediated
ADCC was superior in samples with a high NK-cell to MM
cell ratio, when compared to samples with a low ratio (55,
80–83). Similar associations were found between efficacy of
daratumumab to kill primary MM cells and frequency of
activated NK-cells defined as CD3−/CD56+/CD16+ (55).

This indicates that agents that have the ability to induce
NK-cell activationmay enhance daratumumab-mediated ADCC.
Indeed, IMiDs, such as lenalidomide and pomalidomide, induce
NK-cell activation and synergize with daratumumab in ADCC
assays (17, 47, 84). In preclinical experiments, IMiDs also
improve daratumumab-mediated ADCC in case of lenalidomide-
refractory MM cells, indicating that the immune system of
these patients is still able to respond to the immunomodulatory
effects of IMiDs (17). Similarly, lenalidomide also increases
anti-MM activity of CD38-targeting antibodies in patients with
lenalidomide-refractory MM (52). Blocking the three main
inhibitory KIR receptors (KIR2DL1/2/3) on NK cells with the
IPH2102 antibody also leads to improved NK-cell activity against
tumor cells (85, 86). This monoclonal antibody also enhances the
efficacy of daratumumab-induced, NK-cell-mediated ADCC via
the modulation of KIR-inhibitory signaling (87). Interestingly,
KIR and HLA genotypes have an impact on the clinical outcome
of MM patients receiving treatment with isatuximab plus
lenalidomide-dexamethasone (88).

ADCC requires activation of FcγRs, which are present on
the cell surface of NK-cells. Allelic variants of FcγRs with
different functionality are implicated in differential response to
antibody-based therapy in lymphomas and solid tumors (89–
91). The FcγRIIA-131H or FcγRIIIA-158V polymorphisms are
associated with a higher affinity for IgG, when compared to
their allelic counterparts (92, 93). In addition, the FcγRIIB-
232T polymorphism is not able to associate with lipid rafts and
thereby markedly weaker in its negative regulatory activity (93).
In patients treated with daratumumab monotherapy, FcγRIIIA
and FcγRIIB variants have a modest impact on response and PFS,
but have no significant effect on OS (94).

Although daratumumab-mediated ADCC is enhanced by
agents that increase NK-cell activity, CD38 is highly expressed
on NK-cells, which explains their rapid reduction in peripheral
blood and BM after infusion of daratumumab (95). This
reduction in NK-cells may impair tumor cell killing (95, 96). The
rapid NK-cell depletion occurs due to daratumumab-mediated
NK-cell fratricide via ADCC (NK-mediated cytotoxicity against
neighboring NK-cells) (96). As expected, the residual NK-cells
have low CD38 cell surface expression levels (68, 96). NK-cell

numbers increase again 3–6 months after the last daratumumab
infusion (95). Importantly, responding and non-responding
patients experience similar reductions in NK-cell frequencies.
Themultiple mechanisms of action of daratumumabmay explain
the lack of association between extent of NK-cell depletion and
efficacy of treatment. In addition, no relationship was observed
between PFS or occurrence of side effects including infections
and maximum reduction in NK-cells (95). Outcome following
daratumumab therapy may be enhanced by administration of
ex vivo expanded NK-cells (96). In addition, pretreatment of
expanded NK-cells with F(ab)2 fragments of daratumumab to
avoid NK-cell fratricide may represent an alternative approach
to improve daratumumab-mediated ADCC in patients. However,
feasibility and efficacy of this approach should be assessed in
clinical trials. At this moment there is no clinical data on NK-
cell frequencies available from patients treated with isatuximab or
MOR202, but in ex vivo assays isatuximab and, to a lesser extent,
MOR202, also reduce NK-cell numbers (95).

Bone Marrow Stromal Cells
It is well-known that stromal cells protect MM cells against
various anti-MM drugs, such as dexamethasone, doxorubicin,
melphalan, lenalidomide, and bortezomib, via soluble factors
or cell adhesion (97–100). It was recently shown that stromal
cells also confer protection of MM cells against daratumumab-
induced ADCC (101). This protection was not mediated via
alteration of target expression levels or suppression of NK
cell activity, but possibly via upregulation of anti-apoptotic
molecules, such as survivin and Mcl-1 (101).

ADCP Resistance
Similar to CDC and ADCC, capacity of daratumumab to induce
phagocytosis is in part dependent on CD38 expression levels (21).
Furthermore, in ex vivo experiments a high monocyte-MM cell
ratio resulted in improved killing of MM cells (55). Similar to
ADCC, ADCP also requires activation of the FcγR. As described
in the previous section, FcγR polymorphisms have a modest
impact on efficacy of CD38 antibodies to eliminate tumor cells
(94). Interestingly, it was recently shown that CD47 on MM cells
inhibits phagocytosis induced by CD38 antibodies via ligation
to SIPRα, which is expressed on phagocytes (102). Blockade of
CD47-SIPRα “don’t eat me” signaling may therefore increase
the clinical activity of CD38 antibodies. In addition, low-dose
cyclophosphamide potentiates daratumumab-mediated ADCP
via enhancing FcγR expression levels on macrophages and
reducing CD47 levels on tumor cells (103, 104). IMiDs also
enhance the tumoricidal activity of macrophages and promote
ADCP (48). Other possible determinants of ADCP efficiency of
CD38 antibodies include target cell size and shape (105, 106).

Resistance to Direct Effects
Extent of isatuximb-mediated direct anti-MM activity is in part
dependent on CD38 target expression levels. Indeed, CD38-
overexpressing cell lines were more sensitive to the direct
cytotoxic effects of isatuximab, when compared to the parental
cell lines (30). IMiDs enhance the direct apoptotic effects
of isatuximab (30). In this respect, pomalidomide was more
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potently enhancing direct cytotoxic effects than lenalidomide
(30).

Acquiredmechanisms of resistance to these direct effects, such
as altered activity of signal transduction pathways, are currently
unknown, and require further investigations.

Resistance to Immunomodulatory Activity
In patients treated with daratumumab as single agent,
the frequency of activated T-cells declines when patients
experienced relapse (33). Future studies are needed to
evaluate why the number of activated T-cells is reduced at
the time of relapse. In addition, single-cell RNA sequencing
in patients treated with daratumumab plus IMiD revealed
that responding patients are characterized by higher CD28
expression on T cells, a significantly larger cluster of
central memory T cells, and a M1 activated macrophage
signature, when compared to resistant or progressing
patients (107).

It is currently unknown whether tumor-associated factors,
such as mutations in the antigen processing and presentation
pathways, loss of neoantigen expression, or insensitivity to T-
cell effector molecules are associated with primary or acquired
resistance to CD38-targeting antibodies (108).

Compensatory upregulation of multiple inhibitory immune
checkpoints, which is implicated in the resistance to programmed
cell death-1 (PD-1) or programmed death ligand-1 (PD-L1)
inhibitors, may also contribute to development of resistance
to the immunomodulatory activities of CD38 antibodies (108,
109). Indeed, preclinical data suggest that immunomodulatory
activity of CD38 antibodies can be enhanced by combining
a CD38 antibody with a PD-1/PD-L1 inhibitor. For example,
in MM, lung cancer, and colon adenocarcinoma mouse
models targeting the CD38 and PD-1 pathway with the
combination of a CD38 antibody and PD-1 antibody resulted
in enhanced anti-tumor activity, when compared to targeting
either pathway alone (110). This was accompanied by increased
T-cell infiltration and T-cell activation in the tumors with
combined anti-CD38 and anti-PD-1 treatment (110). In addition,
another group showed that CD38 expression is increased
following therapy with a PD-L1 inhibitor in a lung cancer
mouse model, which was associated with impaired CD8+

T-cell function (111). This suggests that increased CD38
expression is a novel resistance mechanism to PD-1/PD-
L1 antibody treatment. As expected, enhanced antitumor
activity was observed when a CD38 antibody was combined
with a PD-L1 inhibitor in this lung cancer mouse model
(111).

Based on these preclinical studies, various clinical trials are
evaluating whether the anti-MM activity of CD38 antibodies can
be enhanced by immuno-oncology combinations with PD-1 or
PD-L1 inhibitors (5). Furthermore, this antibody combination is
also tested in other tumors irrespective of expression of CD38 on
the tumor cells (5).

Furthermore, IMiDs not only enhance ADCC and ADCP, but
also increase CD38 expression levels on Tregs, which leads to
enhanced isatuximab-induced inhibition of Tregs in the presence

of IMiDs (38). This indicates that IMiDS also enhance the
immunomodulatory activity of CD38 antibodies.

CONCLUSIONS AND FUTURE
PROSPECTS

CD38-targeting antibodies utilize multiple effector mechanisms
including classic Fc-dependent immune effector mechanisms,
but also the recently discovered immunomodulatory mode of
action contributes to anti-tumor activity. These pleiotropic
mechanisms of action explain the high activity of the
CD38 antibodies as single agent in heavily pretreated MM
patients.

The efficacy of CD38-targeting antibody therapy can be
improved by adding a partner drug with a different mode of
action. Indeed, addition of an IMiD or proteasome inhibitor to
a CD38 antibody leads to markedly improved outcome. Further
improvement may be achieved by addition of an agent that has
the ability to enhance complement activation, NK-cell-mediated
ADCC, macrophage-mediated ADCP and/or host-anti-tumor T-
cell immunity. Indeed, a better understanding of mechanisms
that contribute to innate and acquired resistance has already
resulted in the rational design of several new combinations with
daratumumab, which are currently evaluated in clinical trials
(Figure 1).

At the moment of development of resistance to a CD38
antibody-based treatment, an alternative treatment regimen can
be selected based on several patient- and tumor-related factors,
such as type of prior therapies, presence of comorbidities, and
aggressiveness of relapse (112, 113). Alternatively, patients that
develop resistance to a CD38 antibody may benefit from adding
another drug, such as ATRA, that reverses resistance to CD38
antibodies. Several trials are currently evaluating such agents
in patients who developed CD38 antibody-refractory disease
(Figure 1). Another approach is to switch to a different CD38
antibody with different mode of action in case of refractoriness
to CD38 antibody treatment. However, although functional
differences exist between the CD38-targeting antibodies
(16), it is currently unclear whether resistance to one CD38-
targeting antibody confers resistance to all CD38 antibodies. A
phase 1 trial is currently evaluating the value of isatuximab
in daratumumab-refractory patients (NCT02514668).
Alternatively, resistance to CD38 antibody-based therapy
may also be reversed by adding a synergistic partner drug
or changing the partner drug, while continuing the CD38
antibody (57).

Development of next generation CD38 antibodies with
optimized CDC or ADCC capacity, by using new antibody
engineering techniques, may also lead to more effective
CD38-targeting antibodies. For example, the ability of the
antibody to activate complement can be enhanced by generating
targeted single amino acid changes in the Fc region of
the antibody, which allows for hexamer formation upon
binding to antigens on a cell (25, 26, 114). In addition, Fc
glycosylation (glycoengineering) improves the affinity of the
antibody for FcγRs. Indeed, the glycoengineered Fc portion
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FIGURE 1 | Mechanisms of primary and acquired resistance to CD38 antibodies. CD38-targeting antibodies have Fc-dependent immune effector mechanisms:

complement-dependent cytoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent cell-mediated cytotoxicity (ADCC). NK cells

play an important role in CD38 antibody-mediated ADCC, but the possible additional role of other effector cells, such as macrophages, neutrophils, eosinophils, and

γδ T-cells, is currently unknown. Daratumumab and isatuximab also have immunomodulatory effects via the eradication of CD38-positive regulatory T-cells, regulatory

B-cells, and myeloid-derived suppressor cells, which is associated with CD4+ and CD8+ T-cell expansion, and probably a better host-anti-tumor immune response.

In addition, CD38 inhibition on T-cells by anti-CD38 antibodies may also contribute to improved anti-tumor activity by increasing NAD+ levels in T-cells. It is currently

unknown whether MOR202 has immunomodulatory effects. In addition, isatuximab also directly induces MM cell death by both the classical caspase-dependent

apoptotic pathway and lysosomal cell death pathway. Determinants and mechanisms of primary or acquired resistance to these individual modes of action are

indicated (in purple), as well as strategies of how to improve these mechanisms of action in order to improve sensitivity and prevent development of resistance

(indicated in red). In case the indicated agents have been tested or are being tested in a clinical trial, we added between brackets the CD38 antibody in the

combination regimen (D, daratumumab; I, isatuximab; M, MOR202). General mechanisms of resistance include the presence of high-risk cytogenetic abnormailities

and development of anti-drug antibodies. Of note, most data with respect to mechanisms of resistance to CD38 antibodies is derived from studies, which evaluated

daratumumab. Additional studies are required for isatuximab and MOR202.

of obinutuzumab enhances the binding affinity to FcγRIIIA,
leading to enhanced ADCC and ADCP (115). Furthermore,
bispecific antibodies that simultaneously bind to two distinct
targets (epitopes on two distinct proteins or two epitopes
on a single protein) may offer therapeutic benefit. In this
respect, a CD38xCD3 bispecific antibody has been shown to
stimulate T-cell-mediated killing of MM cells (116). Moreover,
a CD38xCD59 bispecific antibody may have increased CDC
activity by simultaneously targeting CD38 and neutralizing
CD59 (117).

In conclusion, an increased understanding of host-
and tumor-related features that underlie differential
therapeutic efficacy and contribute to resistance toward

CD38 antibodies, may lead to further optimization and
individualization of treatment and a better outcome for MM
patients.
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