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Cytokines comprise a large family of secreted ligands that are critical for the regulation of

immune homeostasis. Cytokines initiate signaling via dimerization or oligomerization of

the cognate receptor subunits, triggering the activation of the Janus Kinases (JAKs)/

signal transducer and activator of transcription (STATs) pathway and the induction

of specific gene expression programs and bioactivities. Deregulation of cytokines

or their downstream signaling pathways are at the root of many human disorders

including autoimmunity and cancer. Identifying and understanding the mechanistic

principles that govern cytokine signaling will, therefore, be highly important in order

to harness the therapeutic potential of cytokines. In this review, we will analyze

how biophysical (ligand-receptor binding geometry and affinity) and cellular (receptor

trafficking and intracellular abundance of signaling molecules) parameters shape the

cytokine signalosome and cytokine functional pleiotropy; from the initial cytokine binding

to its receptor to the degradation of the cytokine receptor complex in the proteasome

and/or lysosome. We will also discuss how combining advanced protein engineering

with detailed signaling and functional studies has opened promising avenues to tackle

complex questions in the cytokine signaling field.

Keywords: cytokine signaling, protein engineering, JAK/STAT signaling pathway, endosomal trafficking,

endosomes signaling

INTRODUCTION

Cytokines comprise a large family of soluble factors, which control virtually every aspect of
mammalian physiology (1–5). Deregulation of cytokines or cytokine-related pathways can result
in human diseases such as asthma, severe combined immunodeficiency (SCID) and certain cancers
(6–13), making this family highly relevant to human health. A poor mechanistic understanding
of how cytokine signaling is initiated and regulated in space and time, however, has hindered the
translation of these ligands to the clinic.

The cytokine signaling paradigm encompasses the binding of a cytokine to its surface receptors,
followed by the activation of receptor associated tyrosine kinases of the Janus Kinases family (JAKs)
(1, 14). JAKs in turn phosphorylate tyrosines in the cytokine receptor intracellular domains (ICD),
generating docking sites for the signal transducer and activator of transcription (STAT) factors
(2, 3, 15, 16). Upon receptor binding, STATs are phosphorylated by JAKs, forming homo- and
hetero-dimers, which translocate to the nucleus, bind specific promoter sequences and induce
defined gene expression programs and bioactivities (17–19). In recent years however, a series of
biophysical and protein engineering studies have provided new evidence which highlights the large
complexity of signaling triggered by a cytokine-cytokine receptor complex. This complexity allows
cytokines to produce a wide range of biological responses despite using a veryminimal set of surface
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receptors and effector signaling molecules. In this review, we will
focus on cytokines that engage the JAK/STAT signaling pathway
and on how the engineering of agonistic surrogate cytokines has
expanded our understanding of cytokine signaling and biology;
in addition we will discuss future directions in the context of
cytokine-based therapies.

STOICHIOMETRY OF THE
CYTOKINE-CYTOKINE RECEPTOR
COMPLEX IN THE PLASMA MEMBRANE

One of the most debated questions in the cytokine field concerns
the stoichiometry of the cytokine receptor complex in the absence
of ligand (20, 21). At first glance, this question seems to be
unimportant, given that all models agree that ligand binding is
the initial step for activating cytokine receptors. However, how
cytokine receptors are activated by cytokine binding has clear
functional implications—in particular for targeted engineering
of desired cytokine properties. Two opposing models have
emerged in the past years. The first model postulates that
cytokine receptors exist as preformed inactive dimers in the
plasma membrane that become active upon cytokine binding
through a conformational/structural rearrangement. Evidence
supporting this model is found primarily in homo-dimeric
systems such as erythropoietin (Epo) (22–26), thrombopoietin
(Tpo) (27, 28), and Growth Hormone (GH) (29–31), although
some reports in hetero-dimeric systems have also being reported
(32–35). The erythropoietin receptor (EpoR) was found to
exist as a dimer in crystals that did not include Epo (23),
and at the cell surface by immunofluorescence (26). Similar
observations were made for the GH receptor (GH-R) via
co-immunoprecipitation of differentially tagged receptors or
fluorescence and bioluminescence resonance energy transfer
techniques (29, 30).

A second model postulates that cytokine receptors diffuse
freely in the plasma membrane as monomers and only upon
cytokine binding are recruited into a complex to trigger signaling.
According to this model, cytokine receptor assembly is driven
by affinities, interaction rate constants and the respective
concentrations of all involved reactants. This leads to dynamic
equilibria betweenmonomeric and assembled receptors subunits,
which can be tuned by affinities and receptor concentrations
according to the law of mass action. There are also several
lines of evidence supporting this model: (a) this model predicts
a step-wise formation of cytokine receptor complexes. Indeed,
all cytokines described to date bind one of the receptor chains
with significantly higher affinity than the other one and step-
wise complex formation has been shown for several cytokines
both in in vitro and in vivo studies, including Epo and
IFN systems (36–38). (b) cytokine receptor chimeras where
the extracellular domains and/or transmembrane domains are
swapped by those of any other receptor still trigger signaling in a
ligand dependentmanner (39–45). (c) surrogate cytokine ligands,
e.g., antibodies (46–49) can trigger signaling, arguing against
precise conformational changes required for signal activation. (d)
Single particle fluorescence imaging studies in several cytokine
systems has shown that receptor subunits exist as monomers on

the surface of live cells at physiologically relevant cell surface
densities, and only form dimers upon ligand binding (48, 50–55).
Additionally, cytokines with mutations in the low-affinity chain
binding site (“site 2”) fail to induce receptor dimers in agreement
with the classical two-step binding mode.

A point to consider from all these studies is that in
many instances modified/tagged receptor constructs that are
ectopically expressed are used. Thus, the possibility that these
modifications inhibit or induce receptor assembly on their
own cannot be formally excluded, making it difficult to decide
which model is true for a given cytokine receptor system.
Nonetheless, due to the strong evidences supporting either
model, it is plausible that both models are correct to some extent
and that their relative contribution to cytokine signaling could
vary depending on cellular context, i.e., receptor and signaling
molecules abundance, as has been reported for the Epo system.

CYTOKINE-CYTOKINE RECEPTOR
COMPLEX STABILITY VS. ACTIVITY

A key factor contributing to signaling and bioactivity potency
and specificity by cytokines is the stability of the cytokine-
cytokine receptor interactions. Type I Interferons (IFNs) have
been used as a model system to study how receptor complex
stability influences signaling. The type I IFN family comprises
more than 15 different subtypes, all binding to the same receptor
complex formed by IFNAR1 and IFNAR2 subunits and activating
to the same extent the same JAK/STAT pathway (36, 56–
58). Yet, different IFN subtypes induce anti-viral and anti-
cancer responses with very different potencies (59–64). While
all IFNs exhibit a comparable antiviral activity, only IFNβ has
an exceptional antiproliferative activity, which is linked to its
anti-cancer potential. A series of biophysical, structural and
engineering studies has started to address this apparent lack
of correlation between signaling and activity output in this
family. Early studies elegantly showed that complex stability
critically contributed to the differential activities exhibited by
IFNs (59, 65–69). Indeed, an IFNα2 variant, engineered to
mimic the properties of IFNβ by enhancing IFNAR1 binding
affinity acquired potent antiproliferative activity (59, 66, 67).
More recently, structural and engineering studies have shown
that the topologies of the IFN receptor complexes formed by
the different IFNs are very similar and that their differential
activities likely result from different receptor binding kinetics
and signal activation (64, 70). Indeed, this differential kinetics of
STAT activation by type I IFNs result in the induction of two sets
of genes: robust genes that drive the antiviral response and only
require short pulses of IFN at low concentrations, and tuneable
genes that require sustained activation with higher doses of IFNs
and are linked to the anti-cancer responses. Induction of robust
genes is not very sensitive to changes in complex stability, while
the induction of tuneable genes is (71–73).

The ability of cytokine receptors to translate binding stability
into biological output potency is not restricted to type I IFNs
and can be found in other cytokine systems. IL-4 and IL-13
are two important immunomodulatory cytokines that bind the
same receptor complex comprised of IL-4Rα and IL-13Rα1 and
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activate STAT6 (8, 74). Yet, their activities are not completely
overlapping, with each cytokine exhibiting pockets of specificity
(75–77). Biophysical and structural studies have shown that the
kinetics of complex formation by these two cytokines is at the
root of their differences (5, 78, 79). While IL-4 binds first IL-4Rα

with high affinity and then recruits IL-13Rα1, IL-13 first binds IL-
13Rα1 and then recruits IL-4Rα. Importantly, in most immune
cells IL-4Rα appears to be the limiting factor (78, 80–83). As a
consequence, IL-4 by recruiting IL-4Rαwith higher efficiency can
activate signaling more efficiently than IL-13 and overall elicit
more potent biological responses (77). Despite this, IL-13 can
elicit specific biological responses not induced by IL-4, for which
we still lack a mechanistic understanding.

Viruses have taken advantage of the functional plasticity
exhibited by the cytokine system. Viruses often encode open-
reading frames that share sequence identity with known human
cytokines and mimic their biological properties (56, 84–86). A
classic example of this is viral IL-10 (vIL-10) (87). IL-10 is a
key immune-modulatory cytokine that controls the extent and
potency of the immune response by engaging a surface receptor
formed by IL-10Rα and IL-10Rβ receptor subunits to activate
STAT3 (11, 56, 88, 89). Interestingly two viruses, cytomegalovirus
(CMV) and Epstein-Barr (EBV), encode in their genomes
homologs of this cytokine (87). Of particular interest is the ebvIL-
10, which it is better known as vIL-10. Despite sharing a high
degree of sequence and structural homology with human IL-10
(hIL-10), vIL-10 only engages the anti-inflammatory responses
elicited by hIL-10 (90–92). vIL-10 inhibits the expression ofMHC
class II in monocytes and macrophages and the proliferation
of T cells (93), but fails to promote other hIL-10 activities
such as induction of thymocytes and mast cell proliferation or
upregulation of MHC class II by B cells (94–96). This differential
effect could be traced to the different complex stabilities elicited
by the two ligands, with vIL-10 binding more weakly to IL-
10Rα than hIL-10 (91). Overall, these studies describe an
intricate relationship between ligand-receptor complex stability
and signaling and biological outcomes by cytokines, which could
act as a source of functional heterogeneity and potentially be
exploited for therapeutic purposes.

ADDITIONAL FACTORS CONTRIBUTING
TO CYTOKINE-CYTOKINE RECEPTOR
COMPLEX STABILITY

Signal activation by cytokines is a very efficient process where
cytokines exhibiting a wide range of binding affinities activate
signaling to a similar extent. This suggests that other factors
beyond the sole affinity of the ligand for its receptor contribute
to form and stabilize the cytokine receptor complex (Figure 1).
Here we will highlight three cellular determinants that have been
the focus of attention in recent studies:

The role of the endosomal compartment in cytokine signaling
initiation and diversification has been proposed but not formally
proven (97–102). Early work in the EGF system showed that
EGF mutants with impaired EGFR binding affinity paradoxically
elicited more potent signaling responses (103). Through a series

of studies the authors showed that receptor complexes formed by
these mutants did not survive the endosomal acidic pH leading
to dissociation and recycling of the ligands and receptor to
the membrane, contributing to more sustained signal activation
by these mutants (103). More recently, studies utilizing TIRF
microscopy have revealed that the endosomal compartment
contributes to the formation and stabilization of the cytokine-
cytokine receptor complex, thus ensuring signaling fitness at
a wide range of environmental conditions (50, 104). Whether
endosomes serve as signaling platforms where cytokine receptors
encounter alternative signaling molecules to fine-tune their
activities, however, still remains an open question. Some evidence
of this can be found in a study which showed that phosphorylated
JAK1 and Tyk2 could be found in EEA1 positive endosomes upon
IFN stimulation (105). Additionally, mutations in the G-CSF
receptor that altered its intracellular traffic differentially affected
the signaling output and bioactivities engaged by this receptor
(106, 107). However, to date no direct evidence demonstrating
that endosomes function as signaling hubs for cytokine receptors
has been described. This dearth of knowledge originates from the
technical challenge that following and blocking cytokine receptor
complexes to intracellular compartments represents. Future
studies combining biochemistry and imaging methodologies will
be required to address this long-standing question.

Another factor contributing to cytokine-cytokine receptor
complex formation and stabilization is the actin cytoskeleton.
Two recent studies in the IFN and IL-4 systems have
shown that cytokine receptors are confined to cytoskeletal
microcompartments at the plasma membrane, which allows
quick reassembly of the cytokine-cytokine receptor complex after
dissociation (52, 55). Manipulation of these actin compartments
with small molecule inhibitors altered signaling downstream of
the IFN or IL-4 complexes (52, 55).

Yet another factor contributing to cytokine-cytokine receptor
complex stability are the JAK kinases associated to the receptors
intracellular domains. Early studies with type I IFN showed
that mutations in JAKs which did not affect receptor surface
expression decreased the number of high affinity IFN binding
sites in cells, suggesting an inside-out communication between
JAKs and the IFN receptor (108). More recent studies have
confirmed this initial observation and provided mechanistic
insight into this JAK-receptor communication. A first study
showed that two JAK2 molecules could interact in trans via
their kinase/pseudokinase domains when bound to the GH-R
homodimer, contributing to signaling initiation and propagation
(31, 109). A follow up study showed that a productive JAK1-
Tyk2 interaction was required to obtain maximal dimerization
efficiency in the IFN system. Indeed, lack of JAK1 resulted in a
reduction of the number of complexes formed by IFNα2, which
could not be assigned to lower levels of IFNAR1 or IFNAR2 on
the surface (51).

Overall these studies suggest that the cytokine system has
developed a series of check points to ensure that the cytokine-
cytokine receptor complex is formed and activates signaling.
The next topic we will address is whether we can exploit
these different factors contributing to cytokine receptor complex
formation to fine-tune cytokine signaling and responses.
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FIGURE 1 | Factors contributing to cytokine-cytokine receptor complex stability. (A) Ligand affinity for the receptor (pre-formed receptor complex). The affinity of the

ligand for the pre-formed receptor can enhance the stability of the ligand-receptor complex. (B) Ligand affinity for the receptor (stepwise receptor complex formation).

The ligand first binds to the high affinity receptor chain. This then allows recruitment of the second receptor chain. The affinity of the ligand for the high affinity receptor

chain and the affinity of the ligand-high affinity receptor complex for the second receptor chain can influence the stability of the complete complex. (C) Endosome

recycling. Endocytosis of the ligand-receptor complex from the cell surface to intracellular vesicles depletes ligands and receptors from the plasma membrane,

negatively regulating signaling. However some studies have suggested that there is a possibility that some ligand-receptor complexes may also be stabilized in the

endosome, leading to a stable complex being formed. Under certain circumstances the recycling of receptor components and ligands from the endosome back to the

plasma membrane also contributes to the formation of a stable complex. (D) Cytoskeleton compartmentalization. Cytoskeleton components such as actin can

contribute to the stability of a receptor complex by confining the movement of the receptor and thus increasing the opportunity for rebinding of the ligand. (E)

JAK/JAK interactions. Some studies have shown that interactions between JAKs can aid dimerization of the receptor complex and that JAKs can act in trans in

certain receptor systems.

EXPLOITING CYTOKINE ENGINEERING TO
DISCOVER NEW CYTOKINE BIOLOGY

Manipulation of cytokine binding properties via protein
engineering is a valuable tool with which we can better
understand cytokine biology and to fine-tune cytokine responses.
Above we have already introduced some examples focused on the
IFN system that help to better understand IFN biology. Next,
we will describe additional examples in other cytokine systems
which highlight the potential of cytokine engineering to address
complex biological problems.

IL-2 plays a critical role in regulating T cell responses,
making it an attractive target to treat autoimmune diseases and
cancer (5, 110–113). However, its use in the clinic is limited
due to severe toxicity resulting from its functional pleiotropy

(114–117). IL-2 can engage two types of receptor complexes
on the surface of responsive cells: the high affinity receptor
complex comprised of IL-2Rα, IL-2Rβ, and γc receptor subunits
and the intermediate affinity complex formed by IL-2Rβ and
γc subunits (5). Thus, T cells control their sensitivity to IL-2
by modulating their levels of the alpha receptor (113). Many
attempts to improve the clinical efficacy of IL-2 by fine tuning
its receptor binding properties have been carried out over the
years. One of the first studies was performed by Shanafelt and
colleagues, who proposed that IL-2-derived toxicity resulted from
engagement of the intermediate receptor present on NK cells,
which are believed to be the major source of the cytokines and
inflammatory mediators causing most of the toxicity associated
with high-dose IL-2 therapy (118). In order to specifically target
IL-2 to T cells and thus decrease its toxicity they used site
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directed mutagenesis to reduce the binding affinity of IL-2 to IL-
2Rβ (119). This IL-2 mutant could not engage the intermediate
affinity receptor, but still could activate signaling in the context
of the high affinity receptor, leading to a more than 3,000-fold
specificity for T cells over NK cells (119). In an experimental
lung metastasis model, sensitive to IL-2 therapy, this IL-2 mutant
showed similar levels of tumor inhibition to IL-2 but elicited
lower levels of morbidity as scored by general health examination
(119). However, in a later phase I trial this mutant did not
show advantage over wt IL-2 in anti-tumor responses or toxicity,
highlighting the complexity of this cytokine in an in vivo setting
(120). Another example of IL-2 engineering is found in studies
by the Wittrup lab. Using yeast surface display, the authors
engineered an IL-2 variant with high affinity for IL-2Rα. This
variant induced T cell proliferation more potently than wt IL-
2, suggesting that it could be a better alternative than wt for
cancer immunotherapy since lower doses of the variant would
be required to show efficacy which could result in lower toxicity
(121–123).

More recently, studies by Garcia and collaborators have
provided a series of IL-2 variants that have furthered our
understanding of IL-2 biology. Using yeast surface display, Levin
and colleagues engineered an IL-2 variant (Super-2) binding 200-
fold tighter to IL-2Rβ than wt (124). Super-2 can signal through
the intermediate affinity receptor as potently as through the high
affinity receptor, thus negating the regulatory role of the alpha
subunit. This in turn resulted in a stronger anti-tumor response
by Super-2 with a significantly lower toxicity when compared
to wt IL-2 (124). In a second study, Suman and colleagues
used Super-2 as a backbone to engineer a series of Super-2-
based cytokines where binding to γc chain was reduced (125).
Strikingly, the authors observed that rather than a complete
loss in response, these new variants activated signaling with
different amplitudes ranging from 100% activity to 50 and 10%
in accordance with their binding affinity (125). Interestingly, the
IL-2 mutant activating 50% activity could induce proliferation
of activated T cells, but not of naïve T cells, suggesting different
signaling thresholds required for proliferation in different T cell
differentiation stages (125).

In addition, a recent study has shown that IL-2 receptor
binding specificity can also be altered in a mutation-independent
manner by introducing PEG molecules in the IL-2 region
interacting with IL-2Rα. This new IL-2 variant, named NKTR-
214, has shown promising anti-tumor responses and decreased
toxicity and it is now finding its way to the clinic (126).

The IL-4/IL-13 system has also been the subject of protein
engineering studies. As described above, IL-4 binds two surface
receptor complexes: The type I receptor, consisting of the IL-4Rα

and γc subunits, which is found exclusively on hematopoietic
cells; and the type II receptor, composed of the IL-4Rα and IL-
13Rα1 chains, which is also shared by IL-13 (5, 78). A recent
work by Junttila and collaborators shed some light onto the
differential activities elicited by the two IL-4 complexes. Using
yeast surface display, the authors engineered two IL-4 variants
exhibiting high specificity for either the type I or the type II IL-
4 receptors (127). Detailed functional characterization of these
variants revealed that while T cell responses were exclusively

dependent on the type I IL-4 complex, in agreement with the
specific expression of this receptor in T cells, dendritic cell
maturation was dependent on the IL-4 type II complex (127).
These results agreed with previously published observations and
revealed functional dichotomy between the Type I and Type II
IL-4 receptors (128, 129).

The impact of complex formation kinetics and stability on
signaling and activities by the IL-4/IL-13 complex was further
explored in a recent work (50). In this study, we engineered
a range of IL-13 variants exhibiting different binding affinities
for the IL-13Rα1 receptor subunit. When we functionally
characterized these variants, we observed that large decreases
in binding affinity were required to marginally alter signaling
efficiency. Further increases in binding affinities, however, did
not improve signaling by IL-13. Through a series of modeling
simulations and experiments we concluded that transition
of the cytokine-cytokine receptor complex to the endosomal
compartment was the limiting rate factor for signaling potency in
the IL-13 system. Cytokine-cytokine receptor complexes capable
of undergoing endocytosis would be stabilized due to the high
local cytokine receptor concentration achieved in the limited
area of endosomes. Further stabilization of the complex beyond
that required to transit to the endosomes will have minimal
influence on signaling (50). Indeed, our data agreed with a recent
study highlighting the role of the endosomal compartment in the
formation of the IL-4/IL-13 complexes (104, 130). Interestingly,
this disconnect between binding affinity and signaling output
was not found when more complex biological responses, e.g.,
TF-1 cell proliferation and dendritic cell differentiation, were
analyzed, which in turn directly correlated with the stability
of the IL-13 complex (50). A possible explanation for this
apparent lack of correlation between signaling and activity could
be found in the different times used to study these processes.
While signaling is measured during the first few hours of
cytokine stimulation, biological responses often take days to
be observed. Surface receptors, signaling molecules and ligand
concentrations could be altered with time, leading to functional
diversification from an apparently similar starting point. An
example of this can be found in the type I IFN system, where
IFN stimulation leads to the upregulation of negative regulators
that preferentially inhibit short-lived IFN complexes (51, 131,
132).

CONCLUSIONS AND REMARKS

In this mini-review, we have summarized recent studies that
have underlined the intricate interplay of cytokine-receptor
complex stability and signaling and biological responses.
Additionally we have discussed recent findings that support
a scaffolding role for the JAK kinases in complex formation,
as well as interesting observations regarding the contribution
of the actin cytoskeleton and the endosomal compartment to
signaling robustness by cytokine-receptor complexes. However,
key standing questions remains in the field such as how binding
of a cytokine to its receptor triggers signaling, how signaling
specificity is generated, are endosomes contributing to fine tune
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cytokine signaling and biology and how cytokine functional
pleiotropy is generated. In order to answer these questions, which
would allow us to rationally manipulate cytokine responses and
harness their full therapeutic potential, future studies will
need to take advantage of recent advances in cryo-EM and
membrane protein structural biology to fully understand
the complex interconnectivity of the cytokine/cytokine
receptor/JAK/STAT complex. Additionally, advance microscopy
studies combined with proximity labeling methodologies such as
bioID could provide us with new insights into the role that the
endosomal compartment plays in shaping cytokine signaling and
responses.
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