
MINI REVIEW
published: 11 October 2018

doi: 10.3389/fimmu.2018.02165

Frontiers in Immunology | www.frontiersin.org 1 October 2018 | Volume 9 | Article 2165

Edited by:

Shahram Kordasti,

King’s College London,

United Kingdom

Reviewed by:

Andrea G. S. Pepper,

University of Sussex, United Kingdom

Arjan Van De Loosdrecht,

VU University Medical Center,

Netherlands

*Correspondence:

Isabella Screpanti

isabella.screpanti@uniroma1.it

Maria Pia Felli

mariapia.felli@uniroma1.it

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 18 June 2018

Accepted: 03 September 2018

Published: 11 October 2018

Citation:

Ferrandino F, Grazioli P, Bellavia D,

Campese AF, Screpanti I and Felli MP

(2018) Notch and NF-κB: Coach and

Players of Regulatory T-Cell Response

in Cancer. Front. Immunol. 9:2165.

doi: 10.3389/fimmu.2018.02165

Notch and NF-κB: Coach and Players
of Regulatory T-Cell Response in
Cancer
Francesca Ferrandino 1, Paola Grazioli 2, Diana Bellavia 1, Antonio Francesco Campese 1,

Isabella Screpanti 1* and Maria Pia Felli 2*

1Department of Molecular Medicine, La Sapienza University, Rome, Italy, 2Department of Experimental Medicine, La

Sapienza University, Rome, Italy

The Notch signaling pathway plays multiple roles in driving T-cell fate decisions,

proliferation, and aberrant growth. NF-κB is a cell-context key player interconnected

with Notch signaling either in physiological or in pathological conditions. This review

focuses on how themultilayered crosstalk between different Notches andNF-κB subunits

may converge on Foxp3 gene regulation and orchestrate CD4+ regulatory T (Treg)

cell function, particularly in a tumor microenvironment. Notably, Treg cells may play a

pivotal role in the inhibition of antitumor immune responses, possibly promoting tumor

growth. A future challenge is represented by further dissection of both Notch and NF-κB

pathways and consequences of their intersection in tumor-associated Treg biology. This

may shed light on themolecular mechanisms regulating Treg cell expansion andmigration

to peripheral lymphoid organs thought to facilitate tumor development and still to be

explored. In so doing, new opportunities for combined and/or more selective therapeutic

approaches to improve anticancer immunity may be found.
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INTRODUCTION

Regulatory T (Treg) cells are a heterogeneous population of T lymphocytes. Human and mouse
Tregs act as gate-keepers of multiple immune reactions, suppressing unwanted immune responses
such as autoimmunity, allergy, or transplant rejection (1–3). Treg cells (Tregs) are a first line
of host-defense against infection, and prevent activation and expansion of autoreactive T cells.
Infiltration of Tregs is associated with a decreased ratio of cytotoxic CD8+ T cells to Tregs (4),
tumor progression (5), and poor prognosis in a number of cancers (6–8).

NF-κB transcription factors critically integrate the etiological mechanisms establishing
inflammation as underlying malignancy (9), mainly orchestrating immune responses (10). NF-
κB, triggered by multiple signaling pathways, in turn serves as a cell-intrinsic player in Treg
development and function (Table 1). It also contributes as a multifaceted regulator being triggered
and targeting gene expression regulation (17).

Natural Treg (nTreg) arising in the thymus very early after birth and induced Treg (iTreg) in
the periphery are both influenced by Notch signaling, notably in a cell context-dependent pathway
(23). Notch signaling promotes the generation and function of nTreg, but its inhibition enhances
Treg functions and protects mice from graft-vs.-host disease (24, 25). In intact thymic medulla,
Tregs during their development require RelB-dependent functions of medullary thymic epithelial
cells, which also provide co-stimulatory molecules and MHC class I/II (18).
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TABLE 1 | Function of distinct NF-κB subunits in physiological T-reg activity and in cancer.

NFκB

Subunits

Physiological functions in Tregs Pathological functions in Tregs References

RelA/p65 • Development (nTregs).

• Acquisition/maintenance of mature Tregs identity and function.

• Ablation results in autoimmune syndrome.

• Cooperatively with CSL up-regulates Foxp3 expression (nTregs).

(11–16)

RelB • Not-intrinsically required for development or suppressive

function.

• Development in intact thymic medulla (nTregs) by a

Treg-extrinsic mechanism.

• Peripheral Treg homeostasis under p100 control.

• Loss induces systemic autoimmunity and expansion of Foxp3+

Tregs (Treg-extrinsic mechanism).

• Mediates SDF1/CXCR4 axis at the tumor site (Treg-extrinsic

mechanism).

(11, 17–19)

c-Rel • Development (nTregs).

• Maintenance of numbers and identity (nTregs).

• Homeostatic expansion (iTregs).

• Inhibition of antitumor responses.

• Migration to inflamed tissues and tumors (aTreg).

• Maintenance of numbers and identity at the tumor site (aTreg).

• Loss induces mild autoimmunity.

(11, 13, 20–22)

Treg identity is (Gitr+CD25+Foxp3+ ); nTregs, natural Tregs; iTregs, induced Tregs; aTregs, activated Tregs; CSL-the transcriptional repressor CBF1/suppressor of hairless/Lag-1 (or the

human homolog RBPJk-recombining binding protein suppressor of hairless); Stromal cell-derived growth factor 1 (SDF1)/CXCR4; p100 subunit encoded by the NF-kB2 gene.

Many authors have contributed to unveiling the key features
of both Notch and NF-κB pathways in Treg biology, also in the
context of a tumor. Here we will focus on some important clues
related to the functional plasticity of the two signaling pathways,
and to their interplay still unexplored in the regulation of Treg
expansion and function in cancer.

THE NF-κB TEAM IN Treg BIOLOGY

The mammalian NF-κB family is composed of five members, p65
(RelA), RelB, c-Rel, p105/p50, and p100/p52, which originate a
collection of homodimers and heterodimers (26), that are tightly
controlled and sequestered into the cytoplasm by IκB, NF-κB
inhibitory proteins.

NF-κB activation occurs through two pathways depending on
the components of the IκB kinase (IKK) complex: the canonical
heterotrimer IKKα/IKKβ/IKKγ and the alternative IKKα/IKKα

homodimer (17), which is required for the homeostasis of Tregs
and for the expansion of both regulatory and effector CD4+

T cells (27). Next, IKKβ-dependent serine-phosphorylation and
ubiquitin-dependent degradation of IκBα initiate canonical NF-
κB dimer (p50/p65) activation and nuclear entry (17). Notably,
p65 and c-Rel (encoded by Rela and Rel, respectively) drive the
acquisition/maintenance of Treg identity (Gitr+CD25+Foxp3+)
and function (11). In contrast, the conditional deletion of RelB
in Foxp3+ Tregs does not alter the number and function of
this subset, even though the germline deletion of RelB induces
autoimmunity and an expansion of Foxp3+ Tregs (Table 1),
mainly due to T cell-extrinsic mechanisms (19).

In the context of T cells, multiple extracellular signaling
cascades including Notch (28, 29) can converge on the canonical
NF-κB pathway. This may also be triggered by the pre-T-cell
receptor (pre-TCR) (30) whose functional cooperation with
constitutive Notch3 expression is involved in the pathogenesis
of a Notch3-induced T-cell acute lymphoblastic leukemia (T-
ALL) (31) characterized by a wide CD4+CD25+Treg expansion
(32, 33).

Regarding the alternative signaling pathway, NF-κB-induced
kinase (NIK) phosphorylates to activate IKKα, which promotes

p100 (encoded by NF-κB2) precursor protein processing.
This then generates the main “alternative” complex p52/RelB
that crucially controls lymphoid organogenesis and cell

migration (34).
Interestingly, Murray et al. genetically manipulated the NIK

expression in mice and demonstrated that the NIK deletion

in T cells specifically impairs the maintenance of peripheral

Foxp3+ Tregs, thus suggesting a Tregs intrinsic function for

the noncanonical pathway (35). Alternatively, the lineage-specific

constitutive activation of NIK in Treg cells induces an alteration
of their functions and gene signature (Gitr+CD25+Foxp3+),
leading to the development of an autoimmune syndrome (36).

In mature T cells, upon the engagement of the TCR/CD28
complex, PKCθ and the CARMA1/BCL10/MALT1 (CBM)
protein complex are recruited to finally induce NF-κB activation
(37) (Figure 1). Mutations of TCR signalosome (CBM-PKCθ-
IKKβ) components selectively impact nTreg biology, whereas
conventional T-cell development seems to be less affected (38–
41). Notably, Notch1 can also initiate NF-κB activation via
cytosolic interactions with T-cell signalosome components (42).
PKCθ-selective transport to lipid rafts within the immunological
synapse (43) will recruit IKK to the CBM and trigger
IKK activation; this pathway is negatively regulated by the
deubiquitinase CYLD. CYLD-deficient mice display constitutive
NF-κB activation in thymocytes and peripheral T cells. The Treg
frequency is enhanced although Tregs are less functional than
the wild-type counterparts (44). Recently, it was demonstrated
that another negative regulator of NF-κB—ubiquitin-editing
enzyme A20—restricts nTreg development; however, A20-/-
Tregs are completely functional in vivo (45). Interestingly, while
A20 terminates NF-κB signaling, CYLD prevents spontaneous
NF-κB activation. Notch3 overexpression in combination with
the pTα/preTCR function increases Lck-dependent PKCθ

translocation to the cell membrane, triggering PKCθ/IKKβ-
axis hyperactivation (46). Intriguingly, PKCθ and CYLD are
antagonistic partners in the NF-κB activation in T cells (47).
However, PKCθ is involved in Treg cell differentiation in vivo, but
it is dispensable for Treg-mediated suppression (48); therefore,
the balance between the positive (PKCθ) and/or negative (CYLD,
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FIGURE 1 | Canonical NF-κB pathway is central to intrinsic Notch1- and Notch3-modulated Treg cell function within tumor microenvironment. Two NF-κB negative

regulators, A20 and CYLD, on removal of nonproteolytic K63-linked polyubiquitin chains from signaling molecules, interfere with the preTCR/TCR pathway, leading to

NF-κB activation. For a pharmacological approach, pentoxifylline (PTXF) that selectively degrades c-Rel is indicated, as well as inhibitors of Treg-mediated suppression

activity by CXCR4 antagonists, such as plerixafor (AMD3100) or peptide R-29. The dotted line refers to hypothetical Notch1- and/or Notch3-induced CXCR4

modulation in Treg cells, whereas the black curved-line indicates the Notch3-enhanced CTLA4 expression in N3-ICtg Tregs (36). Cancer-associated cells once

activated in a tumor microenvironment can express many proinflammatory genes, including stromal cell-derived factor 1 (SDF1), the cognate ligand of CXCR4, partly

in an NF-κB-dependent manner (23). pTα-chain (preTCR) and T-cell receptor (TCR); IκBα, inhibitor of NF-κBα.

A20) regulators of NF-κB may govern the generation and
function of Tregs (Figure 1).

Post-translational modifications can also fine-tune the
transcriptional activity of nuclear NF-κB to modulate its
interaction with coactivators, corepressor, IκB proteins, and the
binding to heterologous transcription factors (enhanceosomes),
thus shaping NF-κB-dependent gene programs (10).

In particular, the phosphorylation of serine 276 and
additional residues are critical for CBM recruitment and the
transcriptional activity of p65 (10). Notably, IKKβ-mediated
phosphorylation of p65/serine 536 has been shown to require
PI(3)K-Akt activity, an emerging node for crosstalk between
NF-κB and PI(3)K-Akt pathways, whose balance is important
in promoting selection into the Treg-cell lineage (49) (and
references therein). Interestingly, the phosphorylation of the
p65/serine 536 residue is strongly promoted in Notch3-induced
T-ALL (50).

NF-κB: A FORWARD PLAYER OF Tregs
ACTIVITY IN CANCER

The infiltration of Tregs into various tumor tissues promotes
tumor progression by limiting the antitumor immune response
and the supporting tumor immune evasion (4, 6, 51). Tregs exert

these functions, as a combined result of efficient migration into
the tumor site, local expansion of specialized subsets, and de
novo generation within the tumor, all of which are still poorly
unveiled. A highly immunosuppressive Treg subtype, expressing
tumor-necrosis-factor-receptor 2 with activated NF-κB/p65 has
been abundantly recognized in human ovarian cancers (52). In
human hepatocellular carcinoma, the decreased survival rate
was associated to a higher level of peripheral blood Tregs;
similar observations have been reported in chronic lymphocytic
leukemia (CLL) patients (53). However, controversial is the role
of high Treg infiltration as a prognostic parameter in colorectal
cancer (54, 55).

In mice, the resting Tregs (rTregs) resident in lymphoid

tissues prevent lymphoproliferative disease and autoimmunity,

and aremaintained by the Foxo1-activated transcription function
(5, 56). On the contrary, the “effector-memory like” activated

Treg subset (aTreg) migrates to the inflamed tissues and tumors
and potently inhibits antitumor responses (20–22), essentially
associated to the c-Rel function (Table 1) (57).

Tregs typically suppress T-cell proliferation and cytokine
production in target CD4+ T cells. This inhibition is achieved by
reducing nuclear NF-κB/p65 accumulation (58).

Reversibly, in mice, the inhibition of the canonical NF-κB
pathway by the “super repressor” IkBSR-enforced expression

Frontiers in Immunology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 2165

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ferrandino et al. Notch/NF-κB Crosstalk in Treg Activities

or the IKKβ loss impairs Tregs development (39), whereas the
genetic ablation of canonical NF-κB proteins (c-Rel) profoundly
reduces the numbers of CD4+Foxp3+ Tregs in the neonatal and
adult thymus and in peripheral lymphoid organs (59, 60).

During the development of nTregs inside the thymus, both
the nuclear localization and activity of c-Rel and RelA have
been described in the transition from CD4+CD8+ (DP) to
Treg precursors generation (CD25hiGitrhiFoxp3−CD4+) (12).
Elegant studies by Gosh et al. demonstrated that canonical NF-
κB members have unique but partially redundant roles in Treg
biology, with c-Rel being critical for thymic Treg development
and p65 essential for mature Treg identity and maintenance
of immune tolerance (11, 13). Indeed, c-Rel loss decreases
the number of nTregs and the expression of Treg signature
genes (Gitr, CD25, Foxp3) involved in the maintenance of
Treg identity (11), whereas mice harboring the p65 ablation in
Tregs develop a lethal autoimmune syndrome. However, in the
tumor context, the same group demonstrated that melanoma
growth is drastically reduced in mice lacking c-Rel, but not
p65, in Tregs. Strikingly, the selective degradation of c-Rel, by
pentoxifylline, delays tumor growth by altering Treg function
and identity (Figure 1) and potentiates anti-PD-1/PD-L1 therapy
(57). Therefore, c-Rel modulates activated Treg functions.

As for the alternative pathway of NF-κB activation,
conditional NIK overexpression in T cells expands both the
Treg and the activated conventional T-cell subsets; however,
Tregs are largely nonfunctional allowing conventional T
cells (Tconvs) to escape suppression, thus inducing a lethal
inflammation in mice (61). Recently, it was demonstrated that
the conditional deletion of the p100 gene in Tregs causes a
massive inflammation due to the impaired suppressive function
of NF-κB2/p100-deficient Tregs, revealing an increased nuclear
translocation of RelB responsible for the accumulation of Tregs
in vivo (Table 1) (62). To date, it remains to be elucidated if the
modulation of the alternative pathway of NF-κB leads to similar
effects in cancer.

Notch AND Notch/NF-κB SIGNALING
CROSSTALK AS A PLAYMAKER OF Tregs
IN CANCER

The Notch signaling pathway has been repeatedly associated with
different aspects of Treg biology (63), but the potential effect
of Notch and its privileged crosstalk with the canonical NF-κB
pathway on Treg behavior in cancer is still poorly understood.

Recent evidence has demonstrated that elevated Notch
signaling positively modulates peripheral Treg numbers and
function in different tumormicroenvironments, as demonstrated
in the head and neck squamous-cell carcinoma (HNSCC) (64)
and even associated to the pathological aggressiveness in human
pancreatic (intraductal papillary mucinous) tumors (65).

The study reported in (65) demonstrated that the
enhancement of Tregs in the peripheral blood samples of
patients affected by a pancreatic tumor fairly correlated
to the higher expression of Notch1 and Notch2, while the
elevated expression of the Notch/ligand, Jagged1, was related

to recurrence (65). Accordingly, in HNSCC, Notch inhibition
reduced Tregs, myeloid-derived suppressor cells, tumor-
associated macrophages, and the expression of immune
checkpoint molecules in the circulation and in the tumor (64).
More selectively, Notch1 has been associated to Tregs infiltration
in a subset of human breast luminal tumors (66).

Life-and-death decisions in Tregs are influenced by Notch
subcellular localization. In fact, when in cytosol, Notch1 protects
Tregs from apoptosis induced by cytokine withdrawal (67). The
microenvironment can even modulate Notch localization in
Treg. In a nutrient-limiting condition, sirtuin 1 stabilizes the
Notch intracellular domain (N-ICD) proximal to the plasma
membrane and promotes the survival and function of Tregs
(68). Therefore, tumor microenvironmental changes may tune
noncanonical Notch1 signaling in Treg activities.

Canonical and noncanonical Notch signaling play key roles,
often in conjunction with NF-κB, in the Treg-dependent
immunological response to the cancer (69, 70). Upon ligand
binding, the Notch extracellular subunit is released and trans-
endocytosed by the ligand-expressing cell, and this probably
activates the genetic programs in stromal cells apt to modulate
either thymocyte development (i.e., oxp3+ nTregs) or the
tumor microenvironment. In the receptor-bearing cell, three
subsequent proteolytic cuts release N-ICD. Subsequently, N-
ICD translocates to the nucleus and interacts with the DNA-
binding CSL/RBP-Jk factor (71). This drives N-ICD to the target
gene promoter, where it recruits mastermind-like (MAML) and
additional coactivators, finally driving target gene expression
in a wide spectrum of tissues or in a tissue-restricted way. In
fact, Notch1-IC can directly bind on RelB and p52 promoters
potentially recruiting the MAML1/CSL complex (72).

The crosstalk of Notch with NF-κB in T-cell development
(73) as well as in Notch-induced T-cell leukemogenesis has
been extensively reported by our group that generated a Notch3
transgenic mice (N3-ICtg) (28, 31, 46, 50). Intriguingly,
this murine model is also characterized by enhanced
CD4+CD25+CTLA4+ Tregs generation (32), suggesting
that Notch/NF-κB crosstalk may modulate Treg behavior in
cancer.

Notch and NF-κB, both activated in several cancer scenarios,
display a multilayered crosstalk. Directly, Notch1 modulates
the expression of NF-κB subunits in T-cell leukemia (74)
or, indirectly it binds to NF-κB subunits to modulate the
transcriptional outcomes in a specific context and cell type
(75). Upstream, Notch1 may associate with IKKα, activating
NF-κB in cervical cancer cells (76). Unlike Notch1, neither
the upregulation of NF-κB subunit expression by Notch3
hyperactivation nor a direct binding between these two partners
has been reported so far.

In a different context, the noncanonical Notch1 signaling,
independently from RBP-jk, but likely through NF-κB, regulates
the activation and proliferation of CD4+ T cells and the
differentiation of iTreg lineage (77).

Conversely, NF-κB can trigger Notch ligands, Jagged1
(78) and Jagged2 (79), both increasing Tregs generation (80)
and recently found upregulated in hair-follicle-resident
Tregs that form an immune-privileged niche for stem
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cell biology. Few papers correlated the two ligands to
CD4+CD25+Foxp3+ expansion in inflammation (81) and in
pancreatic tumors (65), thus suggesting Jagged as an important
area of investigation in cancer-associated Tregs. Already in
clinical trials, therapeutic antibodies inhibiting ligand/receptor
interactions would be informative and a valuable drug in cross-
signaling between Tregs, stroma, and Notch-expressing cancer
cells.

To exploit their effects on tumor progression, Tregs need
to migrate into tumor sites. In this context, it has been
recently demonstrated that Tregs homing to the bone marrow
is CXCR4-mediated (29, 30, 82) (and references therein). In
fact, CXCR4 is critical for Notch3-enhanced T-cell leukemia
propagation (83) and in the maintenance in the bone marrow of
Notch1-induced T-ALL cells (84) that are characterized by the
constitutive activation of NF-κB (28, 50, 85). In the neoplastic
context, CXCR4 expression has been linked to NF-κB signaling
activation (86). Additionally, CXCR4 antagonism (AMD3100)
(Figure 1) reverts the suppressive activity of activated Tregs
(CTLA4+/CXCR4+/PD-1+/ICOS+) in renal cancer (87) or
reprograms Tregs in human mesothelioma (88). Therefore,
we can suggest a Notch/CXCR4 connection in potentiating
Treg activities, resulting in a protective immunosuppressive
environment for T-ALL cells.

FACTORS PLAYING ON Foxp3 PROMOTER

In the primary CD4+ environment, Foxp3 expression marks
the commitment to CD4+CD25+Foxp3+ Tregs (89) and is
required for suppressive activity and transcriptional repression
(90). Foxp3 regulates gene expression either by associating
with other nuclear factors (91, 92) or antagonizing the
NF-AT function by directly competing for DNA binding
to consensus forkhead binding sites adjacent to NF-AT
(93). Furthermore, Foxp3 over-expression may indirectly
impair the translocation of NF-κB into the nucleus by
increasing IκB-α stability, thus preventing p65 nuclear
entry (94).

On the other side, multiple signaling pathways converge
on Foxp3 modulation (93, 95, 96). Three different
groups highlighted the central role of the canonical c-Rel
transcription factor in Foxp3 gene expression (59, 97, 98).
Indeed, c-Rel cooperatively with NF-AT binds to the
Foxp3 promoter to form a Foxp3-specific enhanceosome
(c-Rel/p65/Smad3/NFATc2/CREB) and recruits chromatin-
modifying complexes to the regulatory sequences shortly before
the appearance of Foxp3+ thymocytes in the CD4+ T-cell
compartment (98).

Dispensable for nTregs development, TGFβ signaling
critically regulates peripheral Treg (iTreg) number and
functionality and induces Foxp3 expression (99, 100), whereas
c-Rel is required only for the optimal homeostatic expansion of
iTregs. Indeed, CD28 co-stimulus preferentially triggers RelA to
activate Foxp3, at least in human iTregs (101).

Finally, the Foxp3 promoter behaves as an integration site
between canonical NF-κB and different signaling pathways (102)

that could cooperatively or antagonistically influence Tregs
behavior in tumor microenvironments.

Notch3 AND NF-κB KICK-STARTERS IN
Foxp3 PROMOTER ACTIVATION

Several papers have highlighted the multiple roles served
by Notch and/or NF-κB pathways in regulating Foxp3 gene
expression (63, 102).

Our group revealed the importance of Notch signaling
activation in driving Tregs generation and functions by
demonstrating the higher levels of Notch3 in CD4+CD25+

with respect to CD4+CD25− T cells (32). Moreover, we also
showed that Notch3/preTCR cooperation increases both Foxp3-
expressing Treg population numbers and Foxp3 expression, as
well as enhances in vivo activity of nTregs (33).

Other groups demonstrated that Notch1, together with TGFβ,
regulates Foxp3 expression and the maintenance of peripheral
iTregs (103).

Notch and NF-κB can regulate multiple steps in different T-
cell subsets, but neither the mere absence of NF-κB (104) nor the
Notch deregulation alone (14) impair numbers and frequencies
of the total CD4+ T-cell compartment.

However, we demonstrated that the Notch3 hyperactivation
in the N3-ICtg murine model of T-ALL requires PKCθ signals
to upregulate Foxp3 core-promoter and to regulate Foxp3+ T-
cell generation and suppressive function (14). Therefore, Notch3
and PKCθ converge on the hyperactivation of the canonical
NF-κB pathway that rules over the developmental aspects and
the activity of Tregs in the tumor microenvironment (11).
Interestingly, constitutive NF-κB activation in two different
CYLD-deficient murine models enhances Foxp3 expression and
increases the total amount of Foxp3+ Tregs in the thymus and
lymph nodes (44, 105).

Standing the PKCθ/CYLD antagonism, we can hypothesize
that the PKCθ hyperactivation observed in N3-ICtg thymocytes
may suppress the CYLD function, thus further sustaining NF-
κB activation, in agreement with Notch/Hes1-induced CYLD
repression and reduced expression of this IKK negative regulator
in primary T-cell leukemia (85).

The enhanced generation of Tregs in the thymus is
strictly linked to Foxp3 induced by NF-κB family partners
sequentially activated. This picture can be further complicated
by the arrival of Notch3 signals that can recruit on the
Foxp3 promoter a new complex binding the p65/CSL-
nested site close to the transcription start site of the
Foxp3 promoter (Table 1) (14). More importantly, we
can suggest that this Notch/p65 cooperation can be active
also in the regulation of Foxp3 signaling in cancer cells
(106), as recently described in thyroid cancer and T-ALL
(15, 16).

Compendiously, the crosstalk between hyperactive
Notch3 and canonical NF-κB pathways upregulates Foxp3
expression, thus enhancing the suppressive function of Tregs
against protective antitumor immune responses in tumor
microenvironments.
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CONCLUSION AND PERSPECTIVES

The increased number of Tregs within peripheral blood,
lymphoid tissue, and the tumor microenvironment is frequently
associated with poor prognosis in several cancers (i.e., ovarian,
gastric, breast, and renal cancer). Specifically targeting the Treg
compartment while sparing other T-cell populations, which
may be useful in tumor immune response, is difficult. Many
chemotherapeutic agents (cytostatic drugs) impinge on the
increased proliferative rate of Tregs in cancer patients but still
with a limited selectivity (107). Further research is required
to develop Treg-specific depletion strategies to favor immune
response against malignant cells.

In this mini-review, we discussed the intricate network that
governs Foxp3 transcription and Treg generation and function,
particularly emphasizing the role played either by Notch or
by NF-κB signaling, or newly, by their convergence in T-cell
leukemia. The multilayered Notch/NF-κB interplay may suggest
new issues to be targeted in “cell-intrinsic” mechanisms driving
Foxp3-mediated activities of Tregs. In the future, we need to
explore the relative role of crosstalk between specific Notch
receptors and NF-κB subunits within the subsets of tumor-
associated Tregs and importantly their interplay with cancer
and microenviromental cells. Therefore, selective γ-secretase-
inhibitors or therapeutic antibodies with Notch-specific affinity
may suppress the selected Tregs, thus contributing to combined
chemotherapy. Innovative cancer immunotherapies target Treg
surface receptor and effector T cells, possibly impinging on
the abnormal NF-κB-mediated Tregs activity (52). Therapeutic
Notch modulation could enhance the efficacy of immunotherapy
firstly acting as the immune modulator by reinforcing the T
cells’ antitumor effector function and secondly behaving as
NF-κB partner by impinging on the intrinsic mechanisms of
Tregs and cancer-associated cells. Therefore, elucidating the role
of both pathways could be a valuable tool to design specific
treatment plans aimed to decrease drug dosage and toxicity.
Notch and NF-κB profiles may contribute to identify patients
and tumors likely to respond to immunotherapy and to provide a
new alternative approach to nonresponders. Promising therapies

implied that Notch modulation (anti-Jagged1/2) combined with
novel immune checkpoint blockade therapies (108).

Still unresolved is the wide partnership of ubiquitous
Notch and NF-κB subunits in regulating Foxp3 and Tregs
transcriptional programs, and even more the reason why the
hyperactivation of either Notch or NF-κB signaling pathway
is insufficient to generate fully mature Tregs. The knowledge
of specific NF-κB subunits that are upregulated in cancer-
associated Tregs will have a clear impact in the development of
selective immunomodulatory therapeutics that target NF-κB, by
performing a subunit-specific inhibition in Tregs, as suggested by
Pentoxyphylline, an FDA-approved drug.

Treg targeting approaches may also include a strategy
to interfere with microenvironmental signals, mostly
represented by the chemokine receptor/ligand system, as
CXCR4-mediated Treg homes to the tumor. It will be
insightful also to decipher the cross-signaling in regulating
the Foxp3 expression in different Notch-governed cell contexts
such as in T-ALL cells (16, 109). The final aim of all these
studies would be to define innovative anticancer therapeutic
approaches with genetically modified Tregs (110) to treat
cancer.
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