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The precise impact of the somatotrope axis upon the immune system is still highly

debated. We have previously shown that mice with generalized ablation of growth

hormone (GH) releasing hormone (GHRH) gene (Ghrh−/−) have normal thymus and

T-cell development, but present a marked spleen atrophy and B-cell lymphopenia.

Therefore, in this paper we have investigated vaccinal and anti-infectious responses

of Ghrh−/− mice against S. pneumoniae, a pathogen carrying T-independent antigens.

Ghrh−/− mice were unable to trigger production of specific IgM after vaccination with

either native pneumococcal polysaccharides (PPS, PPV23) or protein-PPS conjugate

(PCV13). GH supplementation of Ghrh−/− mice restored IgM response to PPV23

vaccine but not to PCV13 suggesting that GH could exert a specific impact on the

spleen marginal zone that is strongly implicated in T-independent response against

pneumococcal polysaccharides. As expected, after administration of low dose of S.

pneumoniae, wild type (WT) completely cleared bacteria after 24 h. In marked contrast,

Ghrh−/− mice exhibited a dramatic susceptibility to S. pneumoniae infection with

a time-dependent increase in lung bacterial load and a lethal bacteraemia already

after 24 h. Lungs of infected Ghrh−/− mice were massively infiltrated by inflammatory

macrophages and neutrophils, while lung B cells were markedly decreased. The

inflammatory transcripts signature was significantly elevated in Ghrh−/− mice. In this

animal model, the somatotrope GHRH/GH/IGF1 axis plays a vital and unsuspected role

in vaccine and immunological defense against S. pneumoniae.
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INTRODUCTION

In the framework of intimate interactions between immune
and neuroendocrine systems, growth hormone (GH) has been
proposed to exert regulatory effects on the immune system, by
binding to and activating GH receptor (GHR). This receptor
belongs to type I cytokine receptors, and is present on cell
surface of many immune cells, such as natural killer (NK)
cells, B cells, T cells, monocytes and thymic epithelial cells
(TEC) both in humans and mice (1–4). GH regulates adhesion
and migration of neutrophils, monocytes and macrophages
at the site of inflammation (5–7), enhances production of
IgM and IgG antibodies by human tonsillar B cells (8), and
increases T cell proliferation in cultured mouse splenocytes
(9). GH is also involved in regulation of human T and B cell
apoptosis, protecting them from irradiation-induced cell death
by enhancing expression of the anti-apoptotic protein, B-cell
lymphoma 2 (Bcl-2) (10). Dorshkind and Horseman suggested
that GH could play an immunoprotective role by counteracting
negative immunoregulatory signals, such as glucocorticoid levels
that increase during stressful conditions (11, 12).

In order to further define the physiological impact of
somatotrope axis upon the immune system, we used a knockout
(KO) mouse model resulting from a targeted generalized
disruption of growth hormone-releasing hormone (GHRH)
gene, which results in a dwarf phenotype due to severe GH
deficiency (13). We have previously reported that Ghrh−/− mice
exhibit normal thymic function and T cell development, but
have a severe spleen atrophy and a decrease in B cell percentage
when compared to their wild-type (WT) littermates (14). These
observations prompted us to investigate the immune response of
Ghrh−/− mice against T-cell independent type 2 antigens (TI-
2), such as Streptococcus pneumoniae (S. pneumoniae) against
which immune response is mainly based on B cells and
antibody secretion. S. pneumoniae is an encapsulated gram-
positive bacterium responsible of pneumonia and meningitis,
particularly in neonates and adults above 50 year old (15).
Anti-capsular polysaccharide antibodies play an important
role in the protection against these pathogens and current
pneumococcal vaccines are composed of pneumococcal capsular
polysaccharides from serotypes mostly involved in invasive
diseases. Two pneumococcal vaccines are currently used: one is a
polysaccharide vaccine (PPV23), which covers 23 pneumococcal
serotypes, and primarily induces a B cell dependent response
in the absence of major histocompatibility complex II-restricted
T cell help (16, 17), and hence referred to as TI-2 antigens
(18). PPV23 stimulates B-1 cells and splenic marginal zone
(MZ) to produce anti-capsular antibodies (19). The other

Abbreviations: BSA, Bovine serum albumin, C3, complement component

C3; CFU, colony forming unit; DPBS, Dulbecco’s phosphate-buffered saline;

ELISA, Enzyme-linked immunosorbent assay; Ghrh, Growth hormone-releasing

hormone; i.p, Intraperitoneal; KO, Knockout mice; OD, Optical density; Pnc,

Pneumococcal; PnPS1, Pneumococcal polysaccharide serotype 1; PCV13, Prevnar

13; PPV23, Pneumovax 23; P/S, Penicillin and streptomycin; RT, Room

temperature; RPMI, Roswell Park Memorial Institute medium; s.c, Subcutaneous;

S. pneumoniae, Streptococcus pneumonia; THYB, Todd Hewitt Yeast Broth

medium; V/V, Volume/volume; WT, Wild type mice; MZ, Marginal zone; FO,

Follicular zone.

commonly used vaccine is 13-valent pneumococcal conjugate
vaccine (PCV13), composed of 13 pneumococcal serotypes most
frequently involved in invasive infection, which elicit antibody
isotype switching, stimulation of follicular B cell region and
conversion of the capsular polysaccharide into a T cell dependent
antigen (20, 21). In addition to anti-capsular antibodies, innate
immunity plays an important role in the protection against
S. pneumoniae respiratory infection by early recruitment of
inflammatory cells, in particular neutrophils (22, 23). Activation
and recruitment of alveolar macrophages constitutes another
key element of innate immunity by playing a crucial role
in phagocytosis, inflammatory cytokine secretion, and antigen
presentation (24). Finally, the activation of classical complement
pathway by IgM has been shown to play an important role in
protection against bacteraemia during pneumococcal respiratory
infection (25).

Consequently in this study, we investigated the responses of
Ghrh−/− mice to anti-S. pneumoniae vaccines, and we set up an
animal protocol which consist to test a non-lethal S. pneumoniae
dose, defined by full clearance by WT mice 24 h post-infection
(26). For this purpose, mice were inoculated by S. pneumoniae
via intra-nasal (i.n.) route, and immune response was evaluated
by quantifying bacterial load in lung homogenates and blood,
measuring the percentage of immune cells recruited to the site
of infection, by histological and RT-PCR analysis.

ANIMALS AND METHODS

Animals
Ghrh−/− (mouse strain C57BL6/j background) was previously
described (13). Wild-type (WT) C57BL/6j mice were purchased
from Charles River Laboratories. All animals were bred in
ventilated cages at the Central Animal Facility of Liege University
(GLP certified, LA.2610359) with a 12 h light/12 h dark cycle and
controlled conditions of humidity and temperature with food
and water ad libitum. We performed backcross between those
two strains, in order to obtain animals with completely identical
genetic background. Briefly, Ghrh−/− and C57Bl/6 mice were
bred together to obtain a F1 generation of heterozygous (HZ)
animals. F1 animals were mated together and gave rise to F2
mice with Ghrh+/+ (called WT in the text), Ghrh+/− (HZ) and
Ghrh−/− (referred as KO in the text) animals (respectively 25–
50–25% proportion expected). Mouse genotype was identified
phenotypically: because the agouti color (a dominant trait) is
located near the Ghrh gene (and the ES cells used to generate
these mice were from agouti color 129SV mice) the presence of
the ablated Ghrh allele can be followed looking at fur color: WT
backcrossed F2mice are black and normal-sized; HZ backcrossed
animals are agouti and normal-sized, and KO backcrossed
mice are agouti and dwarf. Normal-sized and dwarf mice were
separated at least 4 weeks before any experiment.Male and female
mice of 3 months were used for characterization experiments,
and for GH supplementation experiments. All experiments were
conducted with approval of the Institutional Animal Care and
Use Committee of the University of Liège (permit n◦1805) in
strict accordance with guidelines for the care and use animals set
out by the European Union.
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Vaccination
WT and KO mice were immunized by subcutaneous (s.c)
administration of PPV23 vaccine (Pneumovax 23 R©, serotypes 1,
2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C,
19F, 19A, 20, 22F, 23F, 33F) or PCV13 conjugate vaccine (Prevnar
13 R©, serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and
23F) at days 0 and 21. Blood samples were collected prior to
administration of the primary immunization dose at day 0.

For dose response study, mice were immunized with two
equal doses (at days 0 and 21) consisting of either 0.1, 1.1,
or 2.2 µg/vaccine serotype (except for serotype 6B, which was
doubled in concentration) diluted in sterile Dulbecco’s Phosphate
Buffered Saline (DPBS) and injected in a final volume of 200 µl.
The 2.2 µg/serotype dose exhibited best immune response and
was chosen for following vaccine experiments (data not shown).

Every week, 8 mice/group were bled using a tail bleeding assay
under infrared light, and samples were individually examined for
IgM antibody levels by Enzyme-Linked Immunosorbent Assay
(ELISA).

For supplementation study, Ghrh−/− groups were
supplemented by intraperitoneal (i.p.) injection of recombinant
human GH (hGH, 1 mg/kg in 100µl DPBS, Genotonorm, Pfizer)
or DPBS (vehicle control) for 5 weeks:2 weeks before and 3
weeks after first vaccination at day 0. Glycemia and weight were
measured in order to follow the effect of hGH treatment after
each sampling.

IgM ELISA
In order to detect specific IgM antibodies against pneumococcal
polysaccharide type 1 (PnPS1), ELISA was performed as
described previously (27) by using both cell wall polysaccharide
(CWPS) and 22F polysaccharide absorption with a slight
modification regarding incubation time. Briefly, 96-well plates
(Thermofisher ref 469949) were coated with 1 µg/well of
PnPS1 (Statens Serum Institut, Copenhagen, Denmark) at 4◦C
overnight, in a humidified chamber. Plates were then washed
with a washing buffer (0.01M PBS, 0.1% tween), and blocked
with 300 µl/well of blocking solution [PBS 1X, 1% bovine serum
albumin (BSA, RIA grade, VWR A0850), 5µg/ml 22F capsular
polysaccharide and CWPS (Statens Serum Institut, Copenhagen,
Denmark), for 2 h at 37◦C with gentle agitation. Test sera were
diluted to 1:400 in incubation buffer (PBS 1X, 0.5% BSA, 0.1%
tween, 5µg/ml 22F capsular polysaccharide and CWPS) and
incubated for 20min at room temperature (RT). Each sample
(100 µl/well) was transferred to coated microtiter plate and
incubated for 2 h at 37◦C with gentle agitation. After washing
step, 100 µl of diluted horseradish peroxidase-coupled goat
anti-mouse IgM (Gentaur, Star86P) were added in each well
and plates were incubated for 1 h at 37◦C with gentle agitation.
Finally, 100 µl/well of 3,3′,5,5′-tetramethyl-benzidine (TMB,
Invitrogen), were added and incubated in dark at RT with gentle
agitation. The reaction was stopped after 20min by addition
of 25 µl/well of sulphuric acid. Optical density (OD) was read
at 450 nm with a Victor Multilabel Plate Reader (Victor X3,
PerkinElmer, USA). In order to normalize ELISA results, we
chose from dose response study of PCV13 a reference serum
that was considered as a positive control by presenting the best

IgM immune response and was assigned at 100% arbitrary unit
(a.u). The relative percentage of each sample was calculated in
comparison to this running positive control.

Bacterial Strains and Cultures
S. pneumoniae serotype 1 (clinical isolate E1586) sequence type
ST304 (28) was kindly provided by Dr Jean-Claude Sirard
(Pasteur Institute, Lille, France) and was used for all experiments.
Working stocks (23, 26) were prepared by inoculating fresh
S. pneumoniae colonies (cultured overnight at 37◦C in 5% CO2

on blood-agar plates) in Todd Hewitt Yeast Broth medium
(THYB, Sigma-Aldrich) further incubated at 37◦C to reach an
OD of 0.5 at 600 nm. Cultures were then stored at −80◦C
in THYB + glycerol 10% (v/v), as single-use aliquots up to
3 months. Before and after thawing, bacterial viability and
enumeration in stock aliquots were performed by plating serial
dilutions of bacterial suspension onto blood agar incubated
overnight at 37◦C and 5% CO2 onto blood agar. S. pneumoniae
colonies were discriminated by typical green halo caused by its
alpha-hemolytic activity. After stock, presence of other microbial
contamination was checked by thawing last aliquot and inoculate
∼10 microliters onto a blood agar plate. After overnight growth
at 37◦C, only alpha-hemolytic pneumococcal colonies were
visible. The sensibility of the stock to optochin antibiotics at 0.5X
assay concentrations was confirmed after stock preparation.

S. pneumoniae Infection
Mice were anesthetized by i.p. injection of Ketamine (80 mg/kg)
and Xylazine (10 mg/kg). Frozen bacterial aliquots were thawed,
centrifuged for 5min at 2,500 × g, washed and suspended in
sterile DPBS to reach appropriate concentration. The sublethal
dose was defined as 4 × 104 colony forming units (CFU) per
mouse (26). For infection, this dose of S. pneumoniae or DPBS
(control solvent) were inoculated in 30 µl via i.n. route. Mice
survival was daily recorded, and euthanized upon showing signs
of severe morbidity (>3, Supplementary Table 1). Mice were
sacrificed at 0, 6, 24, and 48 h post-infection, by i.p. injection
of Ketamine (80mg/kg) and Xylazine (10 mg/kg followed by
cardiac puncture. Lungs, spleen and blood were collected for
further analysis.

Determination of Lung Bacterial Load
Infected whole lungs were collected from sacrified mice,
transported in sterile DPBS and homogenized by pestles and
cordless motor for pellet mix (VWR 431-0100). Serial dilutions
of each homogenate were plated onto blood-agar plates (VWR,
100253ZFMP) to enumerate CFU of S. pneumoniae and to
determine the level of infection. S. pneumoniae colonies were
discriminated by typical green halo caused by its alpha-hemolytic
activity. As a surrogate marker of bacteremia, detection of
bacteria was also assayed in the spleen, by plating spleen
homogenate onto blood-agar.

Histology
Infected and non-infected lungs and spleens were fixed with
4% paraformaldehyde (PFA) at 4◦C overnight, and were
embedded in paraffin. Tissues were sectioned at 6µm, mounted
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on Superfrost glass slides (Fischer Scientific) and stained
with Hematoxylin-Eosin (HE, Merck millipore, 1.05174.1000,
1.09844.1000). Slides were imaged with FSX100 Inverted
Microscope (Olympus).

Flow Cytometry
For immune cell subtype analysis, lungs and spleens from
infected and non-infected mice were collected in RPMI (VWR,
LONZ17-512F) supplemented with 10% Fetal Bovine Serum
(FBS, Thermofisher, 10500056) and 1% of penicillin and
streptomycin (P/S, Lonza, 2219), and homogenized by using
cell dissociation sieve-tissue grinder kit (Sigma–Aldrich, CD1-
1KT). Lung and spleen cells were isolated after collagenase Ia
(2 mg/mL, Roche, 10103586001) and DNase I (1/250 dilution,
Roche, 11284932001) treatment, separated with 20% percoll (GE
healthcare Percoll, 17-0891-01), filtered through a 70µm Nylon
cell strainer (Miltenyibiotec, 130-110-916) and incubated on ice
for 5min, in 1ml of RBC lysis Buffer Hybri-Max (ebioscience,
00-4300-54) to lyse red blood cells.

Cells were then counted in a Neubauer Chamber and 1 ×

106 cells were used for flow cytometry analysis. Briefly, cells
were washed with FACS buffer (DPBS, 2%FBS, 2mM EDTA),
blocked with Fc block (1µg/ml, ebioscience, 14.0161.81) for
20min and stained with a cocktail of cell surface monoclonal
antibodies (mAbs) diluted in FACS buffer: Anti-mouse CD45.2-
FITC (clone 104, 561.874), CD3e-PE (clone 145-2C11, 553.063),
Ly6G-PE/Cy7 (clone IA8, 560.601), CD11b-BV421 (cloneM1/70,
562.605) and CD19-BV510 (clone 1D3, 562.956), were purchased
from BD Biosciences. Anti-mouse F4/80-APC (clone BM8, 17-
4801-80) were purchased from eBioscience. After 20min of
incubation at 4◦C in dark, labeled cells were washed in FACS
buffer and resuspended in DPBS prior to FACS analysis (FACS
Verse, BD Biosciences).

For B cell subtype analysis, spleen from non-infected mice
were collected in RPMI (supplemented with 10% FBS) and
homogenized in cell dissociation sieve-tissue grinder kit (Sigma–
Aldrich, CD1-1KT). Splenocytes were filtered through a 70µm
Nylon cell strainer (Miltenyibiotec, 130-110-916) and incubated
on ice for 5min, in 1ml of RBC lysis Buffer Hybri-Max
(ebioscience, 00-4300-54), to lyse red blood cells. Cells (5 × 105)
were then stained for 20min at 4◦C in dark, with the following
mAbs diluted in FACS buffer: anti-mouse CD11b-BV421 (clone
M1/70, 562.605) and CD5-BV510 (clone 53-7.3, 563.069) were
purchased from BD Biosciences, anti-mouse IgM-PE (clone
II/41, 12-5790-81) were purchased from eBioscience, anti-mouse
CD21/CD35-PE/Cy7 (clone 7E9, 123420) were purchased from
Biolegend, anti-mouse B220-APC (clone RA3-6B2, 561.880) and
CD23-FITC (clone B3B4, 561.772) were purchased from BD
pharmingen. Labeled cells were then washed in FACS buffer and
suspended in DPBS prior to FACS analysis (FACS Verse, BD
Biosciences).

RT-qPCR
Lungs were collected and directly stored at −80◦C in RNAlater
(Qiagen, 76104) until RNA extraction. RNAlater solution was
discarded and whole lungs were homogenized in lysis reagent
(Qiagen, 79306) by using an Ultra-Turrax. RNA extraction
was performed using NucleoSpin R© RNA kit (Macherey-Nagel,

740955.10) according to manufacturer instructions. After
extraction, RNA concentration was measured by NanoDrop
ND-1000 (Thermo Scientific) and 250 ng were used for reverse-
transcription using Transcriptor first strand cDNA synthesis
Kit (Roche, 4896866001). To measure mRNA levels specific
for mouse genes: Il10, Ifng, Cxcl9 and Cd40, a quantitative
PCR was performed in an iCycler (Biorad) using mix (Roche,
10814270001) and SYBR R© Green probes (Eurogentec) in the
following conditions: 5min of initial denaturation at 95◦C;
40 cycles of amplification at 95◦C for 10 s; 60◦C for 15 s;
72◦C for 10 s; cooling at 40◦C. Mouse Hprt was used as a
house-keeping gene for the following genes Il10, Ifng, Cxcl9
and Cd40. For mouse transcripts Il17a, Il22, Il6, Il1b, Cxcl2,
Ccl20, and Csf3, a quantitative PCR was performed using
QuantiTect R© SYBR R© Green PCR Kit (Qiagen) according to
supplier information in a 7900HT System (Applied Biosystems).
Mouse Actb was used as a house-keeping gene for the remaining
genes. The forward and reverse primer sequences are presented
in Supplementary Table 2. The relative mRNA amount in each
sample was calculated using the 2−11Ct method where 1Ct
= Ctgene of interest – Cthouse keeping gene, and expressed as relative
mRNA expression in infected group compared to their respective
mock mice (29).

Sera Protein Detection
Sera from sacrified mice were collected at specific post-
infection time points (0, 6, 24, and 48 h) in EDTA-coated
tubes treated, centrifuged and stored at −80◦C until analysis.
The concentration of different sera proteins was measured
according to manufacturer’s instructions: Albumin (OSR6102),
α-antitrypsin (OSR6163), complement component C3 (C3,
OSR6159), C-reactive protein (OSR6199), ferritin (OSR61203),
IgA (OSR61171), IgM (OSR61173), and transferrin (OSR6152)
were purchased from Beckman Coulter, USA. Samples were
analyzed by using multi-assay AU480 Chemistry analyzer
(Beckman Coulter, United States).

H1N1 Infection
The porcine influenza virus (H1N1) (A/swine/Iowa/4/76) was
kindly provided by Daniel Desmecht. Viruses were adapted to
mice by lung-to-lung passaging (30). Mice were anesthetized by
i.p. injection of Ketamine (80 mg/kg) and Xylazine (10 mg/kg).
Frozen virus aliquots were thawed, centrifuged for 5min at
2,500 g, washed and diluted to a non-lethal dose in C57BL6
strain [9 plaque forming unit (pfu)] in sterile DPBS (31). For
infection, 30 µl of H1N1 virus or DPBS were inoculated via i.n.
route. Mice survival was daily recorded for body weights and
temperature and euthanized when showing signs of morbidity
(>3, Supplementary Table 1).

Immunohistochemistry
The spleen of infected and non-infected mice was collected
and frozen in tissue-Tek O.C.T freezing medium at −80◦C
until analysis. Tissues were sectioned at 6µm, mounted on
Superfrost+ glass slides (Fischer Scientific). Splenic sections were
fixed in cold solution (−20◦C) of 50% acetone (VWR, 20065.293)
and 50% methanol (Millipore, 1.06009.5000) for 5min, then
incubated with protein serum free (DAKO, X0909) for 30min at
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RT. The sections were then incubated overnight in dark wet room
with 100µl of an anti-macrophage scavenger receptor (MARCO)
mAb (ED31, T-2026, BMA Biomedicals, Switzerland) solution (2
µl/mL), followed by a 30min incubation at RT with 100 µl of
a polyclonal rabbit anti-rat Immunoglobulins (ab 6703, abcam,
UK) solution (4µg/mL). Positive staining were revealed using
goat anti-rabbit IgG (H+L) Alexa fluor 488 conjugate (A11034,
Invitrogen, Belgium), incubated for 2 h at RT. All antibodies were
diluted by DAKO real antibody diluent (S2022, DAKO). Slides
were washed 3 times for 5min after each step by distilled water,
mounted with ProLong R© Gold Antifade Mountant (P10144,
Thermofisher, Belgium), viewed and photographed with an
Olympus FSX100 inverted microscope.

Statistical Analyses
Statistical analyses were performed on Prism 4.0 software
(GraphPad). Kolmogorov-Smirnov and Shapiro-Wilk normality
tests were performed to evaluate Gaussian distribution of results.
Unpaired t-test was applied when Gaussian distribution was
verified, and Mann-Whitney test for non-Gaussian distributions.
For multi-parametric analysis of GH supplementation, two-way
ANOVA with Bonferroni post-test was used. Testing infection
susceptibility of strains was performedwith the Fisher-Yates exact
test.

RESULTS

Ghrh−/− Mice Are Unable to Trigger a
Specific Vaccine Response Against
S. pneumoniae
We first investigated humoral response in WT and KO mice
vaccinated with PPV23 or PCV13 by blood sampling and IgM
measurements at time points shown in Figure 1A. We used
three serial concentrations of vaccines without adaptation tomice
weight as others have done (32). In preliminary experiments, the
highest dose of both vaccine (2.2 µg/serotypes) was necessary
to elicit a significant antibody level in WT mice. The lower
doses (1.1 and 0.1 µg/serotypes) only induced a poor antibody
level, revealing that improved vaccine response was reached
with the highest dose tested, which is identical concentration of
µg/serotypes used in other studies with BALB/C mice (33). Both
single dose and two doses of pneumococcal vaccine were checked
for antibody levels. Because response was higher with the two
dose strategy (data not shown), this vaccine strategy was used
for the following vaccine studies. Results were normalized with
an internal standard as described in Animals and Methods. Our
results showed that in WT mice, IgM antibody level increased
with time following vaccination with PPV23 (2-way ANOVA
for time: p < 0.001 and strains: p < 0.05) and PCV13 (2-way
ANOVA for time: p < 0.001 and strains: p < 0.01) and was
significantly above the initial concentration at day 21 for PPV23
(Bonferroni following two-way ANOVA; d21 vs. d0: p < 0.05)
and day 28 (Bonferroni following two-way ANOVA; d28 vs. d0:
p < 0.001) for PCV13. Conversely, Ghrh−/− mice were unable
to trigger a specific IgM response even after a second vaccination
(Figures 1B,C).

GH Restores the IgM Response of Ghrh−/−

Mice to PPV23 but Not to PCV13
To assess whether GH treatment may restore vaccine immune
response, we repeated the previous experimental protocol with
supplementation by hGH (0µg/g or 2µg/g) to Ghrh−/− mice
(Figure 1A). Five-week hGH treatment partially restored IgM
immune response to PPV23 (Bonferroni following two-way
ANOVA; d35 vs. d0: p < 0.001) but only marginally to PCV13
(Bonferroni following two-way ANOVA; d28: 7.4 vs. 0%; GH 2
vs. 0 µg/g: p < 0.001; Figures 1B,C).

Ghrh−/− Mice Exhibit a Dramatic
Susceptibility to S. pneumoniae Infection
The infection protocol consisted in administration of a non-
lethal dose of S. pneumoniae (28). Mice were inoculated i.n.
with 30 µl of 4 × 104 CFU of S. pneumoniae serotype 1 strain
E1586; enumeration of S. pneumoniae CFU in lung and spleen
homogenates were compared between WT and KO at 6, 24, and
48 h post-infection. Absence of pre-existing oropharyngeal flora
was demonstrated by i.n. inoculation with excipient alone. At
6 h following infection, there was no difference in lung bacterial
CFU between the two strains. At 24 h post-infection, WT mice
completely eliminated the infection, while KO mice failed to
clear it and reached a high bacterial load level at 48 h post-
infection (Figure 2A). Histological sections of lungs 24 h post-
infection showed a massive infiltration of inflammatory cells
and significant alterations of bronchoalveolar epithelium in KO
lungs compared to WT (Figure 2B). Bacteria were not detected
at any time in spleen homogenates from both WT and HZ mice,
whereas KO mice developed a bacteremia 24 h post-infection
and all reached death limit point 72 h post-infection (Table 1

and Supplementary Table 2). These data evidence that Ghrh−/−

mice have a dramatic susceptibility to S. pneumoniae infection,
being unable to control a non-lethal infection dose.

Ghrh−/− Mice Exhibit an Increase in Lung
Neutrophils, Eosinophils, and a Decrease
in B Lymphocyte Percentage
We decided to investigate effects of this S. pneumoniae infection
on immune responses in lungs. To this end, we designed a
flow cytometry panel with a gating strategy that allowed us
to determine the percentage of immune cells (macrophages,
monocytes, neutrophils, eosinophils, B and T cells) that
are known as major key cellular players in S. pneumoniae
pulmonary infection (Supplementary Figure 1). FACS revealed
that Ghrh−/− monocytes 24 h post-infection were lower than
in WT, while monocytes observed at 48 h post-infection in
KO mice increased compared to 24 h (unpaired t-test; KO 48
vs. 24 h: p < 0.01) to reach a similar level as in WT. The
percentage of neutrophils was larger during all infection period
in KO compared to WT mice. In KO mice, macrophages and
eosinophils percentage increased with time (unpaired t-test; KO
48 h vs. 24 h: p < 0.05 for macrophages and eosinophils). KO
macrophages therefore showed a significant increase compared
to WT but only after 48 h, as eosinophils. On the contrary, a
striking lower percentage of B cells was observed in KO mice at
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FIGURE 1 | Vaccinal response to S. pneumoniae vaccines. (A) Experimental protocol for S. pneumoniae vaccination and hGH supplementation. KO and WT mice

were immunized with PPV23 or PCV13 vaccine at days 0 and 21. HGH was supplemented to the Ghrh−/− mice for 5 weeks (2 weeks before and 3 weeks after the

first vaccination). The animals were bled prior to administration of the immunization dose and each week at day 0, 7, 14, 21, 28 and 35. s.c., subcutaneous. (B,C)

Percentage of IgM antibodies from WT (◦), unsupplemented KO ( ) and supplemented KO mice ( ) related to internal control. All results are presented as individual

response and mean. N = 6 mice per group. *p < 0.05; **p < 0.001 (Mann-Whitney U-test).

all time, while a decrease in the percentage of KO T lymphocytes
was observed only after 48 h (Figure 2C).

Ghrh−/− Mice Exhibit an Increase in CsF3,
Cxcl2, Cxcl9, and a Decrease in Il17a, Cd40
Lung Expression
Expression of an array of cytokines (CSF3 [G-CSF], IFNγ, IL-
1β, IL-6, IL-22, IL-17A, and IL-10), chemokines (CCL20, CXCL2
and CXCL9) and receptors (CD40) known to be involved in
the regulation of S. pneumoniae inflammatory response (26)
was measured at 0, 6, 24, and 48 h post-infection. Our results
show a statistically significant increase in the expression of
CSF3 and CXCL2 in KO compared to WT mice at 6 h post-
infection (Figure 3). The transcripts specific for CXCL9 were also
significantly higher in lung of KOmice 48 h post-infection. There
was a non-significant elevation in the expression of mRNA for
IFNγ, IL-6, IL-22, IL-10, CCL20, and IL-1β in KO compared
to WT mice. Interestingly, expression of genes encoding IL-17A
and CD40 were downregulated in KO compared to WT mice.
These results are consistent with FACS experiments (Figure 2C)
and concord with the action of G-CSF and CXCL2 in neutrophil
recruitment (34, 35) as well as CXCL9 in macrophage and
eosinophil infiltration (36).

Ghrh−/− Mice Exhibit a Specific Profile of
Sera Inflammatory Proteins
Basal serum level of α-antitrypsin and IgA were higher in
KO than in WT mice, while basal transferrin level was lower.

During infection, α-antitrypsin and IgA remained higher and
transferrin lower in Ghrh−/− animals. Only at 6 h post-infection,
the expression level of albumin increased significantly in WT
mice (unpaired t-test; WT 0 vs. 6 h: p < 0.05), while expression
level of albumin increased significantly 24 h post-infection in
KO mice (unpaired t-test; KO 0 vs. 24 h: p < 0.05); at 48 h
post-infection, both mice returned to basal level before infection.
Regarding complement component C3 (C3), while there was no
difference at basal level, the expression level of C3 increased
significantlymore in KOmice 6 h post-infection than inWTmice
(Supplementary Figure 2). The expression level of C3 increased
over time in Ghrh−/− mice, and reached a significantly higher
level at 48 h post-infection (unpaired t-test; KO 0 vs. 48 h: p
< 0.05). An increase of the expression level of C3 was also
seen in WT animals, but this elevation did not reach statistical
significance. No differences were observed in total CRP and IgM,
either in basal or infected conditions.

Ghrh−/− B Cell Lymphopoiesis Is Not
Impaired Compared to WT Mice
In order to analyze if peripheral B cell defect observed in
Ghrh−/− mice resulted from a problem in B cell development
in bone marrow, B lymphopoiesis was investigated by
flow cytometry. B lineage committed cells expressed
B220. Four developmental stages were distinguishable
(Supplementary Figure 3): PreProB (CD43+ CD19− IgM−),
ProB (CD43+ CD19+ IgM−), PreB (CD43− CD19+ IgM−) and
immature B cells (CD19+IgM+). As shown in Figure 4,KOmice
had an almost 2-fold higher proportion of B-committed B220+
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FIGURE 2 | Ghrh−/− mice fail to clear S. pneumoniae infection from lung (A) WT (◦) and KO mice ( ) were inoculated by S. pneumoniae via i.n.. At 3, 6, 12, 24, and

48 h post-infection, animals were sacrified and lung were sampled to measure colony-forming unit (CFU). All results are presented as individual response and mean. N

= 3–6 mice per group. (B) Lung sections of S. pneumoniae-infected WT and KO mice HE-stained. Result shown are representative of two independent experiments.

n = 6 mice per group. (C) Percentage of lung leucocytes: monocytes, neutrophils, macrophages, eosinophils, B lymphocytes and T lymphocytes of CD45.2 positive

cells recruited to the lung of WT (◦) and KO ( ) mice 24, 48 and 72 h post-infection. All results are presented as individual and mean response. N = 2–7 mice per

group. *p < 0.05; **p < 0.001; ***p < 0.0001 (unpaired Student t-test).

cells compared to WT animals. In addition, the percentage of
PreProB and ProB was significantly reduced in KO compared to
WTwhile the percentage of PreB tended to increase (p= 0.0611).
However, immature B proportion was similar between the three
groups. Therefore, B lymphopoiesis seemed to be not deficient,
and a defective lymphopoiesis could not explain decreased
proportion observed in peripheral B cells. We can therefore
conclude that Ghrh−/− mice exhibit functional B lymphopoiesis
and their bone marrow contains more B committed B220+ cells
than normal mice.

Ghrh−/− Mice Exhibit a Low Percentage of
Macrophages, Monocytes, B Lymphocytes
but a High Percentage of T Lymphocytes
In basal conditions, FACS data indicated a lower percentage of
lung macrophages, monocytes and B lymphocytes in KO mice,
while the percentage of T lymphocytes was higher compared to
WT mice. There were no difference in the percentage of lung
neutrophils, macrophages and eosinophils (Figure 5 left). These
data indicated a similar distribution of granulocytes in lung of

TABLE 1 | Bacteremia of WT, KO, and HZ mice in 6, 24, and 48 h post-infection.

WT KO HZ

6 h 0/7

(n = 3M 4F)

0/7

(n = 2M 5F)

0/3

(n = 1M 2F)

24 h 0/13

(n = 5M 8F)

8/12**

(n = 4M 8F)

0/6

(n = 3M 3F)

48 h 0/13

(n = 7M 6F)

12/13***

(n = 7M 6F)

0/6

(n = 4M 2F)

72 h 0/3

(n = 1M 2F)

3/3

(n = 2M 1F)

0/3

(n = 3M 0F)

The results are represented as ratio of bacteremic mice/total number of infected mice.

Fisher’s exact test. ***p < 0.001, **p < 0.005. M, male; F, female.

both mice strains, while monocytes and B lymphocytes exhibited
a lower percentage and T lymphocytes a higher percentage in KO
compared to WT mice.

The spleen also revealed a significant decrease in B
lymphocyte and increase in T lymphocyte percentage
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FIGURE 3 | Cytokine mRNA signature in the lung of WT and KO mice after 6, 24 and 48 h infection by S. pneumonia. Messenger RNA expression of an array of

cytokines, chemokines and receptors: (A) Csf3, (B) Cxcl2, (C) Cxcl9, (D) Ifng, (E) Il6, (F) Il22, (G) Il10, (H), Il17a (I) Il1b, (J) Cd40 and (K) Ccl20 in the lung of WT (◦)

and KO ( ) mice. Hprt was used as a house-keeping gene for analysis of Cxcl9, Ifnγ , Il10 and Cd40. βactin was used as a house-keeping gene for analysis of CsF3,

Cxcl2, Il6, Il22, Ccl20, Il1β and Il17a. Results are expressed as fold-change compared to their respective mock mice and are presented as individual and mean

response. N = 3-9 mice per group. *p < 0.05, **p < 0.01 (Mann-Whitney U-test).

(Figure 5 right). However and contrary to the situation in
lungs, splenic granulocytes and macrophages were in higher
proportion in KO than in WT while splenic monocytes were in
similar proportion in both strains.

Ghrh−/− Mice Exhibit a Low Percentage of
Splenic Marginal and Follicular B Cells
The spleen, in particular its MZ, plays a crucial role in screening
and clearance of blood-borne antigens, such as S. pneumoniae
(37, 38). To examine if splenic B cells might be responsible
for differential responses to vaccination and infection, we

checked the proportion of immune and B cell subtypes that
are present in spleen in basal conditions. We designed a flow
cytometry panel with a gating strategy that allowed us to
identify different B cell subtypes in spleen of KO and WT
mice (Supplementary Figure 4). By FACS analysis, B220 labeling
confirmed the lower percentage of CD19 B lymphocytes in
KO mice compared to WT mice (Figure 6). Noteworthy, this
result was similarly seen in lung (Figure 5) as observed in blood
and lymph nodes (14). Among different types of B cells, the
percentage of MZ and FO B cells was decreased in KO in
comparison with WT mice (Figure 6). Despite elevation in the
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FIGURE 4 | B lymphopoiesis. The percentage of B-committed cells amongst

living cells (A) and the proportion amongst B220+ population of the four

developmental stages of B cell development (B) were analyzed by flow

cytometry in bone marrow of WT (◦), KO ( ) mice. Data (mean) are

representative of 3 independent experiments. Unpaired t-test was used for

statistical analysis. N = 7–8 per group. *p < 0.05.

percentage of B1-a and B1-b in KO mice in comparison to WT,
the difference observed in these B cell subsets was not significant,
maybe due to extensive proportion of mouse-to-mouse variation,
B1-a (Mean ± SEM of WT 1.90 ± 0.464 N = 6, Mean ± SEM of
KO 9.00 ± 3.827 N = 6) and B1-b (Mean ± SEM of WT 4.58 ±
2.541 N = 6, Mean± SEM of KO 8.05± 2.015 N = 6).

Ghrh−/− Mice Show a Smaller,
Discontinuous and Diffuse Distribution of
MARCO During S. pneumoniae Infection
We checked the distribution of a special subset of macrophage,
which is a dominant population in MZ, and marked by
Macrophage Receptor with Collagenous Structure (MARCO).
This receptor is known to be expressed on macrophage subsets
involved in clearance of S. pneumoniae infection (39). These
macrophages are localized at the limit of MZ and FO. Both
B cells and MZ macrophages are necessary for the integrity
and normal activity of the MZ as demonstrated by the absence
of MZ macrophages and Mucosal Addressin Cellular Adhesion
Molecule-1 (MAdCAM-1) positive lining cells in the MZ sinus
when B cells are missing during ontogeny (40). Importantly, it

was shown that MARCO exhibit activity for endogenous ligands
beared by MZ B cells and was related to retention of B cells
in the MZ (41). MARCO staining demonstrated a continuous
and organized distribution in splenic MZ in both WT and KO
mice (in basal conditions). When WT mice were infected with S.
pneumoniae, they conserved the same organized and continuous
architecture of the spleen. However, infected Ghrh−/− mice
exhibited a dispersedMARCO distribution in the MZ (Figure 7),
which can be related to the failure of bacterial clearance and
bacteremia development inGhrh−/− mice when they are infected
by a sublethal dose with S. pneumoniae (Table 1).

Ghrh−/− Mice Are Resistant to H1N1
Infection
In order to verify whether KO mice have a general susceptibility
to pathogens, we infected these mice with a thymus-dependent
antigen: the H1N1 murine influenza virus. Infection follow-up
was based on measurement of body weight percentage related
to day 0. Body weight and behavior represent global health and
state of the mouse during infection. These parameters are used to
follow up susceptibility/resistance profile of animal model after
infection (42). Mice were monitored daily for sign of illness and
morbidity. Infected animal exhibit a restrainedmobility from day
4 to day 10, associated with a rapid respiration and temperature
diminish that reach the lowest level at day 10. No difference in
body weight was observed between WT and KO mice by using
a non-lethal dose [9 plaque-forming unit (PFU)] till day 10 and
KO even gained more weight after that (2-way ANOVA for time
and strains: p < 0.001 for time, p < 0.05 for strains; Bonferronni
post-test p < 0.05 for KO vs. WT at day 10, 11, 12, 13, and 14)
(Figure 8). This infectious dose did not affect differently body
growth of WT and KO mice. In the context of a supra-lethal
H1N1 infection (35 PFU), both strains reached death limit point
(>3, Supplementary Table 1) at day 6 for Ghrh−/− mice or day
8 for WT mice (data not shown).

Overall, these results suggest that Ghrh−/− mice have
a susceptibility to specific pathogens such as the thymus-
independent antigen S. pneumoniae, rather than influenza virus
(a thymus-dependent antigen).

DISCUSSION

The Ghrh−/− mouse model presents a dwarf phenotype due to
a severe deficiency of somatotrope GHRH/GH/IGF-1 axis. Lack
of GHRH does not directly affect metabolism or reproduction,
prolactin production is normal, and GH treatment is able
to restore all somatic growth parameters (13, 43). These
mice are less prone to develop experimental autoimmune
encephalomyelitis (EAE) and GH supplementation (but not
GHRH) restores original susceptibility of EAE (44). Parameters
and T cell responses of Ghrh−/− mice are not altered, but
a relative B-cell lymphopenia and a severe splenic atrophy
are constantly observed (14). Therefore, this study investigated
vaccinal and anti-infectious responses of Ghrh−/− mice to S.
pneumoniae.
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FIGURE 5 | Basal percentage of immune cell in the lungs and spleen of KO and WT mice. Percentage of immune cells: monocytes, neutrophils, macrophages,

eosinophils, B lymphocytes, and T lymphocytes in CD45.2 positive cells was measured in the lung (left) and spleen (right) of WT (◦) and KO ( ) mice. All results are

presented as individual and mean response and repeated as 3 independent experiments. N = 5–12 mice per group. *p < 0.05, **p < 0.01 and ***p < 0.01 (unpaired

Student t-test).
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FIGURE 6 | Splenic percentage of marginal and follicular zone B cells in WT

and KO mice. Percentage of total B cells (A) and their subtypes (B): B1-a,

B1-b, marginal zone B cells and follicular zone B cells in the spleen of WT (◦)

and KO ( ) mice in basal conditions. All results are presented as individual and

mean response. N = 6 mice per group. ***p < 0.0001 (unpaired Student

t-test).

Our results show a significant increase in antibody levels
over time especially after the second vaccination for WT mice,
while KO mice were unable to trigger a specific IgM vaccine
response (Figure 1). Remarkably, hGH supplementation for
5 weeks could partially restore pneumococcal IgM immune
response to PPV23, but only marginally to PCV13 of Ghrh−/−

animals. This result suggests that hGH could exert an impact
upon the splenic MZ rather than the FO, since PPV23 (and
not PCV13) is involved in the stimulation of the MZ region
(45). HGH was used to supplement Ghrh−/− animals before
vaccination. An action through the prolactin receptor could
be involved since hGH has the ability to bind the prolactin
receptor in humans, but also in mice (46). Nevertheless, as
the prolactin production is not impaired in our Ghrh−/−

mice (13) and mouse GH do not bind the mouse prolactin
receptor, the lack of response to vaccine appears to be related
to GH through GH receptor and a binding of hGH to mouse
prolactin receptor could only have a surrogate effect on response
restoration.

In marked contrast to WT and HZ animals, KO mice were
highly susceptible to a sublethal S. pneumoniae infection with 4
× 104 CFU, as they failed to clear infection from lung, developed
a bacteremia at 24 h, and had a survival limit of 72 h post-
infection. Ghrh−/− lungs 24 h post infection showed a massive
infiltration of inflammatory cells when compared to WT lungs.

FIGURE 7 | Spleen of KO and WT mice in mock and infected conditions.

Immunofluorescence of the spleen sections of WT (A,C) and KO (B,D) mice

48 h after inoculation with DPBS (A,B) or S. pneumoniae (C,D) stained with

anti-MARCO (green). Result shown is representative of 2 independent

experiments.

FIGURE 8 | H1N1 infection of KO and WT mice. Body weight of WT (◦) and

KO ( ) mice was measured after H1N1 infection, for 14 days by using sublethal

dose (9pfu). Results are presented as mean ± SEM. N = 7 mice per group.

FACS analyses showed that i.n. non-lethal dose of pneumococcus
promoted a stronger innate immune response in KO compared
to WT mice, as characterized by an early influx of inflammatory
cells in lungs, predominantly neutrophils over all the times of
infection, and macrophages and monocytes 48 h post-infection.
These data suggest that the histological damages observed in
lungs of infectedGhrh−/− mice are related to neutrophil invasion
as indicated by others (47, 48). Interestingly, the percentage of B
lymphocytes decreased at all the times of infection and reached
its lowest percentage 48 h post-infection in KO mice, while the
percentage of T lymphocyte only decreased at 48 h post-infection,
and there was a large percentage of mouse-to-mouse variability
compared to WT mice.

As supported by RT-qPCR assays, infected Ghrh−/− mice
developped a strong and sustained innate immune response. In
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contrast, sublethal infection was not triggering any substantial
proinflammtory responses in WT mice. We observed a clear
signature of up regulated CSF3, as well as CXCL2 6 h post-
infection genes in Ghrh−/−. We also observed a significant
increase in the expression of CXCL9 48 h post-infection
compared to WT mice. However, we observed an increased
expression of IL-17A and CD40 in lung homogenates of WT in
comparison with Ghrh−/− mice 48 h post-infection. These data
are in agreement with FACS experiments since CSF3 and CXCL2
are involved in neutrophil recruitment (34, 35) and CXCL9,
a ligand of CXCR3 expressed by macrophages, neutrophils,
epithelial and endothelial cells in lungs (36), exhibits the ability
to kill pneumococcus in vitro (49). Moreover, the decrease in
IL-17A and CD40 is consistent with the decrease observed in
percentage of T and B lymphocytes at the same time point, as
IL-17A is a pro-inflammatory cytokine produced by activated
T cells (50) and CD40 is a co-stimulatory protein found on
antigen-presenting cells firstly characterized on B cells, that
could be associated with induced humoral response against
pneumococcus (51). Interestingly, it has been reported that IL-
17A plays a crucial role against development of S. pneumoniae
colonization, while it can also be deleterious in face of some
invasive pneumococcal strains (52, 53). The absence of an
increase in IL-17A expression in infected Ghrh−/− mice could
therefore be a key to explain their dramatic susceptibility to the
pathogen.

Based on strong inflammatory response observed in Ghrh−/−

mice, we decided to study the serum level for an array of acute
phase proteins that are regulated in response to inflammation
(C-reactive protein, Complement component C3, IgM and
IgA). Serum CRP and C3 were measured because of their
close interaction and their important role in regulating S.
pneumoniae infection. The activation of classical complement
pathways, such as the C3 complement component, is driven
by CRP, resulting in opsonisation of pneumococcus (54) and
in limiting rapid bacteremia during pneumococcal infection
(25). Our results show a similar expression level of CRP
and C3 in both mice strains prior to infection, as well as
during the following time points post-infection, suggesting a
similar capacity to activate the classical complement pathway.
Additionally, levels of serum IgM and IgA were measured
because of their essential role in resistance against S. pneumoniae:
IgM protects against invasive pneumococcal infection and IgA is
necessary against pneumococcal colonization (55, 56). Our result
show a comparable basal level of IgM, as well as during each of
the infection time points, between WT and KO mice, suggesting
a normal capacity to induce an IgM response prior and during
infection. However, this result could suggest that Ghrh−/− mice
are not able to produce natural specific IgM to pneumococcal
serotype as supported by vaccine results against S. pneumoniae
serotype 1.

Overall, these data demonstrate that Ghrh−/− mice are more
susceptible to a sublethal S. pneumoniae dose, and develop
an inflammatory immune response stronger than WT, despite
similar expression profile of acute phase proteins. To gain further
insight into this difference, we investigated the proportion of
immune cells involved in immune response to S. pneumoniae

that are present in lung in basal conditions. By FACS analysis,
we observed a lower percentage of macrophages, monocytes and
B lymphocytes in Ghrh−/− mice, while the percentage of T
lymphocytes was higher. The innate immune response involved
in clearance of pneumococcal lung infection is driven by resident
cells, since alveolar macrophages prompt an inflammatory
response by releasing pro-inflammatory cytokines covering IL-
6, IL-1β and other chemokines that recruit additional immune
cells involved in microbial clearance, such as neutrophils (57).
The low percentage of macrophages in lung of Ghrh−/− mice
could cause inability to initiate a strong early inflammatory
response, as suggested by the lack of significant increase in IL-
6 and IL-1β expression. Remarkably, the lower percentage of B
lymphocytes and the higher percentage of T lymphocytes in KO
compared to WT mice was also observed in blood, lymph node
and spleen (14).

Based on the B/T lymphocyte imbalance, as well as
results obtained from vaccine and infectious response against
S. peumoniae, we decided to investigate the spleen of Ghrh−/−,
as it is widely accepted that this organ plays a pivotal role
in pneumococcus clearance as shown by the fact that asplenic
individuals and mice have an increase susceptibility and a limited
capacity to clear S. pneumoniae infection (58, 59). The spleen
filters blood and captures pathogens, especially encapsulated
bacteria (60). Protection is provided by antibodies against TI-
2 antigens provided by macrophages and B cells MZ (61). The
anatomy of the spleen is divided into 2 regions: the MZ that
directly interacts with the antigens of the blood stream and is
primarily involved in the T cell independent responses (62) and
the FO that is in close proximity to T cell zones and is implicated
in T cell dependent immune responses (63). Splenic B cells are
divided into B1 and B2 cells. B1 cells are sub-classified into B1-a
and B1-b (64), while B2 are sub-classified into MZ and FO (65).
B1 and MZ B cells generate early and rapid humoral response by
producing IgM or IgG3 (66). FO cells allow an isotype switching
to IgG by cooperation with T cell regions and this process
requires days to weeks to be established (63). We compared the
proportion of different immune cells as well as the proportion of
B cell subsets that are present in the spleen in basal conditions.
While B cell lymphopoiesis was not impaired in Ghrh−/− bone
marrow, we observed a lower percentage of B lymphocytes in the
spleen of Ghrh−/− mice, while the percentage of T lymphocytes
was higher compared to WT mice, similarly to FACS analysis
in lungs. In contrast, we observed a higher percentage in the
proportion of neutrophils, macrophages and eosinophils in KO
compared to WT mice. Regarding B cell subtypes, we observed
a decrease in the percentage in MZ and FO among the different
types of B cells in KO in comparison with WT mice. These data
can explain why Ghrh−/− mice are unable to trigger a specific
vaccine immune response to S. pneumoniae, and could be one of
the principal causes of susceptibility observed by using a sublethal
S. pneumoniae infection dose. These results led us to examine
expression of MARCO in the spleen, since Chen et al. previously
observed that ablation of MARCO results in an impaired vaccine
response against S. pneumoniae and modify the percentage and
the distribution of macrophages that are present on the spleen
MZ (67).
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By examining histological sections of spleen in basal
conditions, our results showed a continuous and organized
distribution of MARCO in the spleen MZ of WT and KO mice
in basal conditions, in contrast to what was reported in MARCO
KOmice. However, by examining histological sections of infected
mice spleen, we observed a dispersedMARCO distribution in the
MZ of Ghrh−/− mice 24 h post-infection, whereas WT mice still
show a continuous and organized distribution of MARCO. These
results can suggest that cooperation between B andMARCO cells
is similar in KO and WT mice before infection, but is altered by
the bacteremia development in Ghrh−/− mice as the cooperation
between B cells and macrophages is essential for appropriate
organization of the MZ, as well as for function and contact
between these immune cells (68).

It was important to assess if Ghrh−/− mice have a general
susceptibility to all pathogens. It was previously reported that
hypophysectomized rats were more sensible to Salmonella
thyphimurium infection, and that GH supplementation could
partially restore their resistance (69). For this purpose, we
decided to infect Ghrh−/− mice with a T cell dependent
antigen, murine influenza virus H1N1. The susceptibility
of Ghrh−/− mice to H1N1 was evaluated using a sublethal
dose in C57BL/6 mice (31). Our results showed no difference
in body weight changes between WT and KO mice. These
results suggest that Ghrh−/− mice have a specific susceptibility
to pathogens such as encapsulated thymus-independent
S. pneumoniae.

In conclusion, Ghrh−/− mice exhibit a severe splenic atrophy
and B-cell lymphopenia in lung and spleen. Moreover, these
mice do not elicit a response to pneumococcal vaccines,
possibly explained by a low level of B cells in the spleen
MZ and FO. GH treatment restores vaccine response to
PPV23. These mice are extremely susceptible to a sublethal
infection by S. pneumoniae and develop fatal bacteremia,
probably related to massive neutrophil recruitment in the
lung associated with the lack of IL-17A increase. Thus, these
observations evidence that the somatotrope GHRH/GH/IGF-
1 axis plays a crucial role in immunological defense against
S. pneumoniae.

Isolated GH deficiency in human is quite rare, but its
incidence is not trivial (70–73) and a higher incidence of
death in female subjects between age 4-20 has been reported
(74). Recently, low IgG has been evidenced in GH deficient
subjects and a modification of immune response is suspected
to be without clinical relevance in daily condition, but may
contribute to an unfavorable outcome in front of more severe

infections (75, 76). In future experiments, it will be interesting
to investigate the precise impact of isolated GH deficiency

on fetal development of the spleen, and to explore spleen
development and pneumococcal responses in children with GH
deficiency as it has been shown that GHRH receptor deficient
human has reduced spleen (77). These observations could suggest
pediatricians to monitor splenic development, vaccinal response,
and susceptibility to S. pneumoniae in children with congenital
(mainly) and acquired forms of GH deficiency.
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