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Flaviviruses are emerging and re-emerging arthropod-borne pathogens responsible

for significant mortality and morbidity worldwide. The genus comprises more than

seventy small, positive-sense, single-stranded RNA viruses, which are responsible for

a spectrum of human and animal diseases ranging in symptoms from mild, influenza-like

infection to fatal encephalitis and haemorrhagic fever. Despite genomic and structural

similarities across the genus, infections by different flaviviruses result in disparate clinical

presentations. This review focusses on two haemorrhagic flaviviruses, dengue virus and

yellow fever virus, and two neurotropic flaviviruses, Japanese encephalitis virus and Zika

virus. We review current knowledge on host-pathogen interactions, virus entry strategies

and tropism.
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INTRODUCTION

The Flavivirus genus consists of more than 70 small, positive-sense, single-stranded RNA viruses
transmitted by arthropods, in particular mosquitos and ticks. These include globally important
human pathogens such as West Nile virus (WNV), Japanese encephalitis virus (JEV), dengue virus
(DENV), Murray Valley encephalitis virus (MVE), tick-borne encephalitis virus (TBEV), Yellow
Fever virus (YFV), and Zika virus (ZIKV). These viruses are responsible for some of themost severe
arbovirus infections affecting humans, pose a serious threat to global health and have the potential
to cause severe outbreaks. These are exemplified by the global distribution of DENV (1), the recent
ZIKV outbreak in South America (2), YFV outbreaks in Africa (3), and Brazil (4) and the spread
of WNV across North America (5). Flavivirus infections range from asymptomatic, through mild
fever and arthralgia to life threatening haemorrhagic or encephalitic diseases (6). Flaviviruses are
also able to persist in patients and can be responsible for long-term morbidities (7). There are no
antiviral treatments for flavivirus infection currently in clinical use, and despite licensed vaccines
against several of the viruses including YFV, JEV, TBEV, or DENV, outbreaks still occur highlighting
challenges in implementing effective vaccination programs (8).

The flaviviral genome of ∼11 kb contains a single open reading frame flanked by untranslated
regions, and encodes 3 structural proteins (C, M, and E) and 7 non-structural proteins
(NS). The mature virion features a surface densely covered with E glycoproteins and M
proteins and a core consisting of capsid (C) protein and the RNA genome (9, 10). The
entry into the target cell is dependent on E protein contact with its cognate receptor.
E protein initially binds to attachment factors such as glycosaminoglycans. This effectively
increases viral density on the cell surface, leading to high affinity receptor binding (11).
The E protein ectodomain consists of three domains (E-DI, E-DII, E-DIII) of which E-DIII
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is thought to interact with attachment factors and receptors (12).
E-DIII domain’s importance is highlighted by the fact that a vast
majority of potent, neutralizing antibodies has been mapped to
this region. Nevertheless, anti-DI and DII antibodies, although
less potent, show broader cross-reactivity and form a major
pool of anti-E protein specific immonoglobulins (13). Receptor
binding is followed by clathrin-mediated endocytosis (14), which
is considered to be a major mechanism of flavivirus cell entry,
although there are exceptions described below. This leads to
formation of endosomes and low pH dependent changes in the
E glycoprotein with subsequent membrane fusion and release
of nucleocapsid into the cytosol (15). In vitro, flaviviruses are
able to infect a plethora of cell lines originating from rodents,
non-human primates, humans and mosquitos. However in vivo,
fewer cell types seem able to support flavivirus replication (16).
A wide range of cell surface receptors has been implicated in
flavivirus entry into different cells types (11). Amongst the entry
receptors postulated to be involved in flavivirus entry, the best
characterized to date include αvβ3 integrins (17, 18), C-type lectin
receptors (CLR) (19–23), phosphatidylserine receptors TIM (T-
cell immunoglobulin and mucin domain) and TYRO3, AXL and
MER (TAM) (24). Recent studies indicate that flaviviruses can
produce a range of structurally different virions. This structural
heterogeneity may expand tissue tropism and ability to infect
different cell types both in invertebrate and vertebrate hosts (25).

Flaviviruses are deposited into the skin epidermis by a
mosquito bite where they encounter cells permissive to infection
such as keratinocytes and skin dendritic cells (Langerhans cells)
(26). Dendritic cells in particular appear to be a common initial
target for flaviviruses. When infected, dendritic cells migrate to
lymphoid organs where viral replication takes place allowing for
flavivirus dissemination into circulation and internal organs (12).
Viruses such DENV (27), JEV (28), ZIKV (29) have been shown
to infect skin dendritic cells, and although there are no reports on
YFV infecting Langerhans cells, it can nevertheless infect other
types of dendritic cells (30). This interaction is mediated by DC-
SIGN for JEV (28) and ZIKV (29), but appears to be DC-SIGN
independent in case of DENV (31) and YFV (30).

Many flaviviruses are neuroinvasive and neurovirulent and
cause central nervous system (CNS) damage (32). Neuroinvasive
infections are observed with JEV, TBEV, and WNV (33, 34), and
occasionally with haemorrhagic viruses including DENV (35).
There is a paucity of knowledge regarding factors involved in
CNS cell entry. While CLRs and TIMs are expressed by cells of
the CNS (36–38), they are not expressed by neurons (39–41).
However, members of the TAM family of receptors are expressed
by different neuronal subtypes (42), though they are dispensable
for ZIKV infection as ZIKV was able to infect and replicate in
TAM receptor knockout mice (43).

As natural vectors, mosquitos and ticks are highly permissive
to flavivirus infection. The virus can replicate in a range of
arthropod tissues and cells (44, 45). Given that flaviviruses have
only one glycoprotein, it seems likely that themechanism of entry
into vertebrate and invertebrate cells is evolutionarily conserved.
A number of the cellular receptors implicated in flavivirus
entry into mosquito cell lines overlaps with those identified
for mammalian cells (46). Some flaviviruses are more selective

regarding their arthropod host than others. For example, DENV
is spread mainly by Aedes spp. mosquitos (6), WNV by Culex
spp. (47), whereas JEV is transmitted by Aedes, Anopheles and
Culex spp. (48). There appears to be a more restricted receptor
repertoire used by flaviviruses for insect cell entry compared to
mammalian cell entry. The range of clinical manifestations of
flaviviral infection in the mammalian host suggests that these
viruses may use a wide range of receptors. Mammalian tissues
in general offer much greater range of receptors compared to
invertebrates.

Identification of flavivirus entry receptors, particularly those
involved in CNS infection, could lead to identification of novel
therapeutic targets. For this review we will focus on four major
flaviviruses of humans—DENV, JEV, ZIKV, and YFV, and discuss
the differences and similarities in their mechanisms of entry into
arthropod and mammalian cells.

DENGUE VIRUS

DENV is one of the most common mosquito-borne viruses,
mainly transmitted by Aedes aegypti mosquitoes, and
occasionally by Ae. albopictus. Symptoms of DENV infection
range from fever and muscle and joint pain (Dengue fever)
to potentially life threatening haemorrhagic fever or shock
syndrome. While DENV was endemic in <10 countries in
the 1970’s, it is presently a threat in over 128 countries and is
responsible for almost 400 million human infections every year.
About 24% of infections manifest in severe clinical symptoms.
There is currently no treatment for DENV serotypes. There are
four virus serotypes, and recovery from one serotype provides
lifelong homologous immunity (49).

DENV is an icosahedral particle of 50 nm with a positive,
single-stranded RNA genome of 10–11 kb (50). As in other
flaviviruses, E protein is involved in receptor binding and fusion
(51) and has the ability to bind to a wide range of cellular
receptors to initiate DENV entry. The E-DIII domain has a role
in cellular recognition (52) and has been suggested as a target for
the development of a DENV vaccine (53).

Over the years, several cell membrane receptors involved in
DENV entry have been identified. These include carbohydrate
molecules (54–56), lectins (57, 58), and claudin-1 cell receptors
(59). Carbohydrate molecules such as glycosaminoglycans
(GAGs), sulphated polysaccharides, and glycosphingolipids
(GSL) are widely expressed cell surface co-receptors for DENV
entry and are believed to enhance viral entry efficiency. The
highly sulphated form of GAGs, the heparan sulfates (HS) and
heparan sulfates proteoglycans (HSPG), are essential for cellular
adhesion to extracellular matrix and binding of polypeptide
growth factors involved in intracellular signaling (56). It has
been suggested that DENV first contacts HSPG, and that this
weak interaction facilitates binding of virus to other receptors,
which then results in virus internalization (55). Several studies
have shown that pre-treatment with heparin can reduce or block
DENV-2 infection (60, 61). However, the efficiency of inhibition
of viral entry was dependent on numerous factors, such as the
virus strains and the target cell (61). GSLs, a member of the
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same family of carbohydrate molecules as HS, are ubiquitous
cellular components of eukaryotic plasma membranes that can
also facilitate entry and binding of virus (54). However, GSLs
are not required for DENV entry as the virus was able to enter
GSL-deficient cells (62).

Cellular C-type lectin receptors (CLRs) are part of the host
immune response to fungal, bacterial and viral infections (57).
CLRs in mammalian cells include DC-SIGN/L-SIGN, mannose
receptors (MR), and CLEC5A. DC-SIGN receptors are widely
known because of their association with HIV. These receptors are
also involved in DENV binding and internalization into dendritic
cells (63). MR has been found to be the primary DENV cell
receptor in macrophages. The CLEC5A receptor cooperates with
DC-SIGN or MR to increase DENV binding and stability (58).

Other studies have suggested claudin-1 as a putative cell
receptor for DENV entry through a direct interaction with
the viral prM protein. Claudins are vital components of tight
junction complexes and are essential for normal permeability of
the epithelia (59, 64). DENV-2 entry was significantly reduced in
claudin-1 deficient cells (59). Also, it has been demonstrated that
caudin-1 is upregulated early in infection in order to facilitate
entry and downregulated in late stage of infection (64).

Protein binding assays and mass spectrometry analysis have
identified several additional potential flavivirus cellular receptors
(65–67). Among them, the tubulin and tubulin-like proteins in
C6/36 Ae. albopictus cell line (65). Heat shock proteins (HSPs) of
∼70 kDa and 80 kDa were also identified as cellular receptors
for all four DENV serotypes in C6/36 cell line (66, 68). HSPs
are chaperone proteins involved in the regulation of folding and
unfolding of cellular, and upon infection, viral proteins (69).
The 70 kDa protein, also known as heat shock cognate protein
(HSC70) or HSPA8, acts as a chaperone protein during DENV
entry (70, 71). Modulation of HSC70 expression was observed
during DENV-2 infection, with an increase on the cell membrane
during infection, suggesting that DENV-2 utilizes HSC70 for
entry intomosquito cells (67). In addition to its role in viral entry,
HSP70 is involved in virion biogenesis and RNA replication
(71). It appears that all four DENV serotypes are dependent on
this chaperone protein family, which makes HSP70 proteins an

interesting target for the design of a tetravalent DENV therapy or
vaccine (71).

HSP90, another heat shock protein, can also act as chaperone.
This protein interacts with six DENV proteins (69). While the
involvement of HSP70 and HSP90 in DENV binding to host cells
has been reported (70–72), these proteins are not involved in
internalization of virus into the host cell (73).

As mentioned before, TIM/TAM family receptors have been
implicated in flavivirus entry. DENV express on its surface
phosphatidylserine (PS) and phosphatidylethanolamine (PE)
molecules. Both PS and PE are known to directly interact with
TIM/TAM receptors and DENV is able to enhance its entry by
exploiting these interactions (74).

After binding to cellular receptors, internalization of viral
particles occurs. For DENV, internalization occurs via pH-
dependent endocytosis. Several endocytosis pathways are
currently known, but clathrin-mediated endocytosis is the main
pathway for DENV (75). The DENV use of clathrin-mediated
endocytosis was demonstrated in C6/36 mosquito cells by
biochemical inhibition of cell receptors (76), and in several
human cell lines through siRNA silencing of genes associated
with clathrin-mediated receptors (75, 77, 78). While this
inhibition and specific gene silencing resulted in a decrease in
viral load, a complete inhibition was not achieved, suggesting
the existence of alternative entry pathways in mosquito and
mammalian cells.

In addition to the exploitation of clathrin-mediated
endocytosis, the host immune system can also promote viral
entry (79). This phenomenon, known as antibody-dependent
enhancement (ADE), was first described in 1964 by Hawkes
(80) for WNV and JEV, and observed for DENV more than a
decade later (81). Antibody-virus complexes are internalized by
phagocytosis via Fc gamma receptors (FcγR) into macrophages,
monocytes and dendritic cells (82) (Figure 1), thus facilitating
virus entry (83). It has recently been shown that ADE increases
membrane fusion activity, promoting DENV entry (79).
Moreover, prM antibodies have the capacity to convert non-
infectious, immature DENV particles into infectious particles
and enhance their infectivity to levels comparable to wild-type

FIGURE 1 | Schematic representation of antibody dependent enhancement (ADE) entry into monocytes, macrophages and dendritic cells as employed by

dengue virus.
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virus (50). ADE has been linked to the observation that one
flavivirus infection can enhance another (84). However, a recent
study showed that ADE is dependent on the level of neutralizing
antibodies, particularly IgG and IgM (85); only patients with
a low level of neutralizing antibodies showed enhancement of
DENV infection (85). Antibodies, even at low concentration,
against the EDIII domain were able to block viral entry of the
four DENV serotypes without inducing antibody-dependent
enhancement (86). However, high IgG titres were observed in
patients with ADE following DENV infection, in particular IgG1
levels were the highest in patients with dengue fever or shock
syndrome (87). ADE has been recently identified as consequence
of sensitisation with Dengvaxia quadrivalent vaccine, leading to
severe vaccine-enhanced disease resulting in hospitalization (88).

JAPANESE ENCEPHALITIS VIRUS

Globally, Japanese encephalitis is the most clinically important
arboviral encephalitis, with an estimated annual prevalence of
up to 50,000 cases (89). As is the case with most arboviral
encephalitic infections, humans are dead-end hosts unable to
develop a sufficiently high viremia to transmit to feeding
mosquitos. The majority of JEV infections are asymptomatic.
Approximately a third of clinical cases are fatal and half
of survivors have neurological or neuropsychiatric sequelae
with symptoms resembling Parkinsonian movement disorders,
poliomyelitis-like paralysis or impaired cognition (90). Disease
is most common in children up to 14 years of age. JEV has
been expanding its endemic areas in Asia (91) and poses an
unpredictable and emerging global threat.

In humans, JEV has been found in different anatomical
compartments and a variety of cell types is able to support
its replication. These include endothelial cells, granulocytes,
dendritic cells, macrophages and cells of the CNS including
astrocytes, neurons and microglia (92). The virus spreads from
dermal tissues (93) to lymphoid organs (94) and during the
acute stage of infection can be found in blood (95). Although
highly neuroinvasive, the mechanism of JEV entry into the CNS
is unclear. Transport along the olfactory nerve and across the
blood brain barrier have been implicated in JEV invasion of
the CNS (96, 97). Studies in rodent models indicate that the
blood brain barrier is disrupted following neuroinvasion (98),
and might be a consequence of invasion rather than an entry
route. Once in the brain, JEV can infect pericytes (99), astrocytes
(100) and microglia (101), and has a predilection for developing
neurons and neuronal progenitors (102, 103). As described
below, a number of receptors mediate entry into different cells
types. The distinctive neuronal tropism suggests the existence
of JEV-specific receptors in the CNS, but their nature remains
elusive (104).

In vitro studies on mouse neuroblastoma cells indicate heat
shock protein (HSP) 70 as a putative entry receptor present
on neuronal cells (105). This has not been corroborated by in
vivo experiments, but in human hepatoma Huh7 cells, HSP70
is required for entry (106). Recently, a member of the HSP70
family, glucose-regulated protein (GRP) 78, has been implicated

in JEV entry into Neuro2a and BHK-21 cells (107, 108). In
addition to HSP70 and GRP78, HSP90β also interacts with E
protein and may be used by JEV to enter mammalian cells
(109). Another member of the HSP70 family is heat shock
cognate (HSC) protein 70. HSC70 has been suggested to be a
receptor for entry into mosquito cells (110). HSC70 isoform
D is essential for clathrin-dependent endocytosis of JEV into
C6/36 cells (111). Clathrin dependence seems to be critical for
JEV entry into mammalian cells with the exception of neuronal
cells (112), where JEV internalization into rodent neuroblastoma
cell lines has been shown to be clathrin-independent (113, 114)
and independent of HSP70 family proteins. JEV can enter
human neuronal cells by caveolin-mediated endocytosis (115),
a process that is receptor-independent (116). Interestingly, JEV
has been shown to utilize the dopaminergic signal transduction
pathway to increase neuronal susceptibility to infection (117).
Infection of human dopaminergic neuroblastoma cells in vitro
leads to increased levels of secreted dopamine and activation
of the phospholipase C cascade. The latter enhances formation
of structures known as focal adhesions on the cell surface and
increases JEV binding and entry. One of the main components
of focal adhesions is αvβ3 integrin that recruits vimentin to the
cell surface (118), and is involved in JEV binding and infection
of BHK-21 cells (18). Vimentin is a putative JEV receptor (119,
120). Thus, by signaling through dopamine D2 receptors and
activating the phospholipase C cascade, JEV induces recruitment
of surface molecules that enhance and propagate infection in
adjacent cells. Enhanced infection of dopaminergic neurons
also explains why JEV is predominantly found in brain areas
rich in these cells including the thalamus and the midbrain
(121, 122). Whereas JEV infection of neurons may be most
directly relevant for disease, other cells types are also likely to
have an important role in the disease process. Microglial cells
may be a viral reservoir due to long-term, high level of virus
production in these cells (123). CD4 has been identified as a
major receptor for JEV entry into microglia (124). Presumably,
CD4 can be used by JEV to enter other CD4 positive cells such as
T cells, macrophages or dendritic cells. Published data are scarce,
however, JEV productive infection of splenic macrophages and
T cells has been reported in a mouse model of infection (125).
T lymphocytes have also been reported as a reservoir of latent
JEV in asymptomatic children following recovery from acute
infection (126). The involvement of CD4 in microglial cell entry
has not been reported for any other flavivirus, however CD4 is
the main receptor for retroviral entry and is primarily localized
in lipid rafts (127). As mentioned above, HSP70 in lipid rafts is
involved in JEV entry into human cells and in general lipid rafts
play a critical role in JEV entry (128, 129). Moreover, lipid rafts,
as well as clathrin-coated pits and caveolae, contain sphingolipids
such as sphingomyelin (SM) that is involved in JEV attachment
and entry (130). Studies in SM synthase 1 deficient mice infected
with JEV showed a reduction in disease, indicating a role for SM
in JEV infection models (130).

Despite advances in identification of new receptors associated
with JEV entry and its clear tropism for neuronal cells in
the CNS, the identity of a specific neuronal receptor remains
elusive. Notably, JEV has the ability to infect cells in the absence
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of above mentioned putative receptors although at a reduced
rate (104). This suggests that the entry process involves multi
protein interactions with high degree of redundancy and a
single, specific entry receptor might not exist. Alternatively, the
inability to identify such a receptor highlights the limitations
of in vitro systems commonly used to investigate virus-cell
interactions.

ZIKA VIRUS

ZIKV is a mosquito-borne emerging pathogen that poses
significant public health concerns due to recent rapidly
expanding outbreaks. ZIKV was relatively unknown until 2007,
when an outbreak occurred in Yap Island (Micronesia) (131).
The virus was first isolated in the Zika Forest in Uganda from
a rhesus monkey in 1947. In 1948 a second isolate from Ae.
africanus mosquitoes was obtained from the same forest (132).
Prior to the recent serious outbreak in French Polynesia, New
Caledonia, the Cook Islands and Easter Island in 2013 and
2014 (133), Zika has not been reported to cause significant
disease. Data from French Polynesia during the ZIKV epidemic
documented the occurrence of Guillain-Barre syndrome and
other neurological complications (134). The pathogenesis of
ZIKV infection is poorly understood and involves a multifaceted
interaction between viral and host factors. ZIKV has shown a
significant tropism to the CNS and causes neurodegeneration,
particularly of neural progenitor cells (135–137). ZIKV is
also the only flavivirus known to have teratogenic effects in
humans, including microcephaly, intracranial calcification and
fetal death (138). As a result, the World Health Organization
announced in 2016 that the ZIKV outbreak was a health
emergency of international concern (139). Like other flaviviruses,
ZIKV likely enters host cells through endocytosis instigated by
an interaction of E glycoprotein with cell surface receptors.
Identification of the entry receptor(s) for ZIKV is essential
to understanding viral tropism and pathogenesis, and could
lead to the development of novel therapeutics to treat the
infection.

The first barrier for the virus to enter the host cell is the
skin epidermis. ZIKV is transmitted by Aedes spp. mosquitoes,
which deposit virus in the epidermis and dermis during the
blood meal. Both dermal fibroblast and epidermal keratinocytes
are permissive to ZIKV infection as are skin dendritic cells.
Several entry receptors including the innate immune receptor
DC-SIGN, transmembrane protein TIM-1 and TAM receptors
(TYRO3, AXL, MER), have been shown to facilitate entry and
enhance ZIKV infection (29). RNA silencing of TIM-1 and AXL
in subsets of human skin cells showed a significant reduction
in ZIKV titre in AXL knockdown, and in double AXL and
TIM-1 knockdown, indicating that AXL is a major receptor for
ZIKV entry at least in human skin cells. However, a recent study
(43) investigating different infection routes of ZIKV, including
subcutaneous, transplacental, vaginal, and intracranial infections
in wild-type and TAM receptor null mice, showed no difference
in viral titres. TAM receptors, at least in mice, are therefore not
essential for ZIKV infection. Interestingly, WNV infection of

neurons can be enhanced in mice lacking AXL and MER. This
increase in infectivity was associated with changes in blood brain
barrier permeability (140), suggesting that AXL and MER do not
serve exclusively as receptors andmight have other roles inWNV
infection of the brain.

To reach the fetal brain, ZIKV must first be transported to the
fetal circulation, and cross the placental barrier. The placental
barrier is composed of placental barrier cells, trophoblasts and
fetal endothelial cells, which separate the fetal blood in capillaries
from maternal blood. ZIKV has been reported in the amniotic
fluid of fetuses in Brazil (141). This observation strengthened the
association of ZIKV with microcephaly in neonates. Moreover,
it has been shown that microcephaly caused by maternal viral
infection in mice could result from direct viral infection of the
fetus via the trans-placental route as well as from a placental
inflammatory response that affects fetal development (142).
ZIKV can efficiently infect fetal endothelial cells, whereas WNV
and DENV do not, highlighting ZIKV unique tropism among
flaviviruses (143). These differences between flaviviruses are due
to ZIKV ability to efficiently use AXL receptor to enter fetal
endothelial cells (143).

TIM-1 was also observed to have an important role in
placental entry of ZIKV (144). ZIKV was able to infect different
human primary placental cell types and explants from chorionic
villi. AXL, TYRO3, and TIM-1 were present in the primary
placental cells and are found at the uterine-placental interface.
Particularly high expression of TIM-1 has been observed in
cells where maternal blood perfused placenta including basal
decidua and neighboring chorionic villi. Expression of AXL
and TYRO3 varied with explant donor, gestational age and cell
type. Specific pharmacological inhibition of TIM-1 by duramycin
(145) could inhibit ZIKV infection at the uterine-placental
interface, indicating that TIM-1 is a putative receptor for ZIKV
placental cell entry. However, the role of AXL, variation in the
expression of AXL and TYRO3 in pregnant women and whether
TIM-1 is the sole receptor for ZIKV infection of the placenta need
further study.

Numerous studies on ZIKV infection in mice having defective
interferon signaling, including IFNα/β knockout mice (146, 147),
double knockout of IFNα/β and IFNγ (148), and triple knockout
of IRF-3,-5,-7 (136, 149) showed viremia, microcephaly and
death in young mice and viremia with recovery in adult mice.
However, cell death and reduced proliferation was observed
for adult neural stem cells (136) suggesting possible long term
effects in adult brain followin ZIKV infection. ZIKV also infects
other cell types, especially in the eye. ZIKV-inoculated mice
develop ocular defects including conjunctivitis, pan uveitis, and
infection of the optic nerve, cornea, iris, and ganglion and
bipolar cells in the retina (150). AXL is expressed at high
levels in retinal progenitor cells (151) suggesting a possible
role in ZIKV infection of ocular cells. However, the ocular
abnormalities were shown to be independent of AXL or MER,
given that AXL−/−, MER−/−, and AXL−/− MER−/− double
knockout mice sustained levels of infection similar to those of
control animals. Nevertheless, AXL might have a role in ZIKV
infection of glial cells via Gas6 mediated activation of AXL
kinase (152).
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In vitro and in vivo systems to study ZIKV infection of neural
cells have been developed. ZIKV neuro-infection models using
cultured neural precursor cells (NPCs), cortical organoids, mouse
brains, and human fetal brain materials have been studied (153).
Microcephaly in these models is associated with inflammation,
reduced proliferation of NPCs and neuronal cell death. ZIKV-
BR can infect mouse fetuses and infection of pregnant mice
also causes disease in embryos with intrauterine growth
restriction, including signs of microcephaly (154). This study also
demonstrated that ZIKV-BR infects human cortical progenitor
cells, increasing the rate of cell death. ZIKV was found to directly
infect human NPCs with high efficiency providing a plausible
explanation for the observed developmental phenotypes and
associated teratogenicity in the neonatal brains (137). Based
on previous studies (29, 151, 152), AXL is a strong candidate
receptor for the entry of ZIKV into cells of the developing
brain. The potential role of AXL to facilitate ZIKV infection
of the neonatal brain was explored by determining, at a single
cell level, RNA expression profiles in the developing human
cerebral cortex (151). The study revealed a higher expression of
AXL in the radial cells and neural stem cells of the developing
brain throughout neurogenesis and in capillaries and astrocytes.
However, loss of AXL expression following CRISPR/Cas9 gene
editing, did not affect ZIKV infectivity into hNPCs or cerebral
organoids (155).

As is the case with JEV, the identity of the receptors involved
in ZIKV receptor mediated endocytosis remains to be elucidated.
There might be tissue specificity in receptor mediated viral
entry, with variation in receptor repertoire in the skin, placenta,
neurons, and other cell types. Alternatively, given ZIKV unique
ability to cross the placenta and infect developing neurons in
the fetal brain, there might be some as yet unidentified receptors
facilitating this process.

YELLOW FEVER VIRUS

YFV is the prototype and namesake virus of the Flavivirus
genus; flavimeans yellow in Latin. When infecting humans YFV
replicates in liver, heart, kidneys, and lungs causing a broad
spectrum of clinical symptoms. These vary from asymptomatic
infection to renal and hepatic failures with severe haemorrhagic
disease (156). A live attenuated YFV vaccine 17D was created
over 70 years ago and has been used safely in over 500 million
people. The parent strain of 17D is the virulent Asibi strain (157)
isolated in Africa in 1927. 17D was passaged more than 230
times in mouse and chicken embryonic tissue. The adaptation of
17D to grow in tissue culture resulted in loss of viscerotropism,
neurotropism, and mosquito tropism (156), making it an ideal
candidate for a vaccine. The genome of both strains has been
sequenced (158). The extensive passage history gave rise to 68
nucleotide mutations and 32 amino acid substitutions. Most of
the genetic differences occur in the envelope (E) protein gene
(157). Interestingly, themolecular determinants andmechanisms
of this attenuation remain largely unknown. It has been suggested
that the differences in the E protein and its involvement in cell
entry are determinants of the difference in pathogenicity between
the 17D andAsibi strains (159, 160).Mutations in the E gene have

been suggested to allow the 17D strain to bind and enter hosts
cells more efficiently.

YFV shares genome organization and entry by clarithin-
mediated endocytosis (CME) with most of the other flaviviruses.
During YFV infection, the E protein binds to an unknown
entry receptor that traffics the virion to endosomes. Similarly
to other flaviviruses, increase in acidification of the endosome
results in conformational changes in the E protein, membrane
fusion and nucleocapsid release into the cytoplasm (156). The
vaccine strain uses a clathrin- and caveolin-independent, but
dynamin-2-dependent, pathway for infection (160). Dynamin-2
is a GTPase involved in cleaving off endocytic vesicles from the
plasmamembrane (161). The entry pathway of the 17D strain was
further characterized as Rac1, Pak1, and cortactin independent
(160). Clarithin-independent entry has been reported to mediate
the internalization of a variety of viruses, such as rotavirus,
human rhinovirus, influenza, and interestingly, JEV vaccine
strain in neuronal cells (114, 162–164). Cells infected with 17D
have been found to produce more viral RNA and INF-β, IL-
29, ISG56, CCL5, and CXCL10 mRNA than those infected with
the parental Asibi strain. In addition, 17D infected cells secrete
INF-β, whereas cells infected with the Asibi strain do not.
Virus entry through a clathrin-independent pathway allows for
more efficient virion delivery into endosomes or protection from
degradation, relative to entry via the classical clathrin-mediated
route. This former entry route has been suggested to allow
for a higher amount of viral RNA released into the cytoplasm
(160). Viral RNA in the cytoplasm is detected by RIG-I, MDA5
and TLR7 (165), triggering strong innate immune responses.
The Asibi strain on other hand, replicates at lower levels and
inhibits the innate immune system. This difference in entry
mechanism has been suggested to account for the differences
in cytokine response between the two YFV strains, though
further mutations in other proteins, such as NS2A could also be
involved.

CONCLUSIONS

Glycoprotein E is responsible for receptor-mediated attachment
of flaviviruses to the host cell and membrane fusion. Although
E protein of different flaviviruses share approximately 40%
sequence identity (e.g., DENV and TBEV), their overall structural
features are almost identical and this is assumed to apply to
all flaviviruses (166). Cell entry is facilitated by a conserved
peptide of 16 amino acids, located in E-DII region of the
envelope glycoprotein (167). This conservation, coupled with
highly organized conformational changes upon exposure to low
pH (168), suggests evolutionary constraints allowing flaviviruses
to enter both mammalian and arthropod cells. Yet, flavivirus
receptors show diversity and significant cell type specificity.
It is not unusual that a single molecule can bind to variety
of targets as exemplified by immunoglobulins. However, their
diversity and specificity are governed by V(D)J recombination,
while the flaviviral glycoprotein E is conserved. The flavivirus
infection is a consequence of multiple complex interactions
between the virus and the target cell. It is clear that the
flavivirus can exploit different endocytic routes that can be
either clathrin or caveolae dependent or independent. The
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neurotropism of specific flaviviruses raises the question, is
there a single specific neuronal receptor? What is the identity
of this receptor and is the same receptor being used by all
encephalitic flaviviruses? Another unresolved question is whether
all flaviviruses share the same features of infection in the
developing brain, or whether viruses such as microcephaly-
causing ZIKV, exhibit a different infection pattern. It is also
relevant to note that the expression of entry receptors (e.g.,
CLRs or TAM) does not account for flavivirus tropism and
cellular models lacking those receptors are still permissive to

infection. Identifying the relevant entry receptors is essential to
deciphering the mechanisms of pathogenesis, tropism and viral
biology. A better understanding of those processes will uncover
new strategies for designing therapeutics and vaccines against
flaviviruses.
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