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Milestones of brain development in mammals are completed before birth, which

provide the prerequisite for cognitive and intellectual performances of the offspring.

Prenatal challenges, such as maternal stress experience or infections, have been

linked to impaired cognitive development, poor intellectual performances as well as

neurodevelopmental and psychiatric disorders in the offspring later in life. Fetal microglial

cells may be the target of such challenges and could be functionally modified by maternal

markers. Maternal markers can cross the placenta and reach the fetus, a phenomenon

commonly referred to as “vertical transfer.” These maternal markers include hormones,

such as glucocorticoids, and also maternal immune cells and cytokines, all of which

can be altered in response to prenatal challenges. Whilst it is difficult to discriminate

between the maternal or fetal origin of glucocorticoids and cytokines in the offspring,

immune cells of maternal origin—although low in frequency—can be clearly set apart

from offspring’s cells in the fetal and adult brain. To date, insights into the functional role of

these cells are limited, but it is emergingly recognized that these maternal microchimeric

cells may affect fetal brain development, as well as post-natal cognitive performances

and behavior. Moreover, the inheritance of vertically transferred cells across generations

has been proposed, yielding to the presence of a microchiome in individuals. Hence,

it will be one of the scientific challenges in the field of neuroimmunology to identify the

functional role of maternal microchimeric cells as well as the brain microchiome. Maternal

microchimeric cells, along with hormones and cytokines, may induce epigenetic changes

in the fetal brain. Recent data underpin that brain development in response to prenatal

stress challenges can be altered across several generations, independent of a genetic

predisposition, supporting an epigenetic inheritance. We here discuss how fetal brain

development and offspring’s cognitive functions later in life is modulated in the turnstile

of prenatal challenges by introducing novel and recently emerging pathway, involving

maternal hormones and immune markers.

Keywords: pregnancy, fetal brain development, prenatal infection, maternal distress, maternal microchimeric

cells, cytokines, glucocorticoids (GC), epigenetic aberrations
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INTRODUCTION

The vertical transmission of maternal immune and endocrine
markers is increasingly recognized to modulate fetal
neurodevelopment and future mental health of the offspring.
Emerging evidence arising from observational studies in
humans reveals that prenatal environmental challenges such
as maternal distress perception and infections are associated
with an impaired fetal neurodevelopment and increased risk for
neurological or psychiatric disorders later in life (1–6). Insights
into the underlying mechanisms and pathogenesis of prenatally
programmed poor mental health are increasingly emerging. It is
well known that neurodevelopment results from the interaction
of genetic, epigenetic and environmental factors, through
which proliferation, migration of neural progenitor cells and
establishment of neuronal circuits are modulated. Disruptions
of these neurodevelopmental pathways may subsequently affect
future brain function, as reflected by cognitive and intellectual
impairment and increased the risk for neurodevelopmental and
psychiatric disorders later in life (7).

Here, we compile the currently available evidence arising from
observational studies supporting the concept of a developmental
origin of brain disorders. We further outline cornerstones of
brain development in mice and humans and discuss the effect
of prenatal challenges, primarily maternal distress and infections,
on maternal immune-endocrine adaptation to pregnancy. Lastly,
we introduce novel concepts on how an altered maternal
immune-endocrine adaptation to pregnancy can impact on
offspring’s brain development and subsequent mental health.

Developmental Origin of Neurological
Dysfunctions and Psychiatric Disorders
Pregnancy is characterized by significant adaptational processes
of the maternal immune and endocrine system in order to
ensure its progression until term, which is required for adequate
fetal development. These adaptational processes are highly
responsive and vulnerable to challenges, such as high maternal
stress perception or maternal infections. In this context, chronic
stress states (e.g., depression or anxiety) affect approx. 10–
15% of pregnant women worldwide (8). Moreover, negative
life events may pose a significant threat to maternal wellbeing
during pregnancy. Table 1 provides a comprehensive overview
of published evidence largely arising from observational studies
that reveal a significant association between various types of
maternal distress perception to which the mother was exposed
to at specific gestational periods and the risk for psychiatric
disorders in the offspring later in life, i.e., during childhood or
adolescence. Disorders observed in the offspring include autism
spectrum disorder (ASD) (9), depressive symptoms (10–12),
anxiety, borderline personality disorder, eating disorders (23)
and attention-deficit/hyperactivity disorder (ADHD) (3, 14–20,
22, 45). Interestingly, whilst a sex-specific risk is well known
for psychiatric disorders, only very few studies paid attention
whether prenatal stress perception skews the risk for such
disorders in a sex-specific way. One study describes a sex-bias
for ADHD upon prenatal stress, mirrored by a higher risk in
daughters (20). Moreover, the timing of the prenatal challenge

may be pivotal, as the risk for neurodevelopmental diseases
appears to be differentially affected by the trimester of exposure
(Table 1). In fact, surges of maternal IL-6 levels during the
third trimester—which may result from distress or infections—
showed a strongest impact on working memory performance
in children. These behavioral changes were associated with
alterations of brain regions tightly associated with working
memory, as identified by functional MRI (46).

Besides high stress perception, maternal infection during
pregnancy can interfere with fetal neurodevelopment and
increase the risk for neurological dysfunctions and psychiatric
disorders in the offspring (Table 2). Here, most of the studies
focus on the distinct pathogens that have led to maternal
infection during pregnancy (1, 35, 37, 42, 43). For example,
maternal infection with influenza A or B virus has been associated
with an increased risk for developing schizophrenia, although
findings between studies are highly ambiguous and hence, hotly
debated. Some studies report that influenza infection during
the first trimester may trigger the risk for schizophrenia, whilst
such effect could not be confirmed in studies focusing on
infection at mid to late pregnancy (29–31, 47). The latter includes
observations arising from Scandinavian registry analyses, where
the query for prenatal influenza infection was solidly based on
International Classification of Diseases (ICD)-coded diagnoses
(48, 49). A recent meta-analysis confirms that evidence is
insufficient to support gestational influenza as a risk factor for
schizophrenia and bipolar disorder in the offspring (50). Besides
these viral infections, also bacterial infections during pregnancy
have been linked to an increased risk for schizophrenia in the
offspring in adulthood (36, 44). For instance, 13% of all children
surviving the maternal listeria monocytogenes infection were
suffering from meningitis in early childhood (38) and this in
return is significantly associated with developing schizophrenia
and psychotic episodes later in life (39).

Milestones of Brain Development in Mice
and Humans
Given that some of the observational studies summarized above
highlight that the time point at which challenges occur prenatally
may be crucial to trigger changes in fetal neurodevelopment,
we here provide a brief summary of key aspects of fetal brain
development that commence or are completed at distinct periods
of gestation. We also include the brain development of mice,
as mouse models have become pivotal in understanding how
prenatal challenges affect neurodevelopment and brain functions
later in life, as outlined in the subsequent paragraphs.

In humans and mice, brain development shows similar
developmental processes (Figure 1). Noteworthy, sex-specific
differences occur as a result of a faster cerebral maturation
in girls (55), which leaves boys at higher risk for challenges-
induced disruptions due to the greater window of vulnerability.
Some developmental steps continue after birth in mice, which
are already completed at birth in humans. This reduces the
time window in mice during which vertically transferred
maternal biological mediators can impact on offspring’s brain
development, a confounder which should be considered when
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TABLE 1 | Summary of human studies examining the effect of prenatal maternal distress on offspring’s mental health.

Proxy for prenatal maternal distress Offspring’s age at outcome evaluation Offspring’s outcome Reference

INCIDENCE DURING THE FIRST TRIMESTER

Exposure to a natural disaster Childhood-preadolescence ASD symptoms (9)

Questionnaires-based evaluation of stress perception Adolescence-adulthood Internalizing and externalizing problems

Depressive symptoms

(10–12)

Self-reported stressful events Birth-adulthood No risk for psychosis (13)

INCIDENCE DURING THE SECOND TRIMESTER

Exposure to a natural disaster Childhood-preadolescence ASD symptoms (9)

Questionnaires-based evaluation of depression Childhood-adolescence Internalizing and externalizing problems

Anxiety symptoms

Depressive symptoms

Hyperactivity

Borderline personality disorder

(3, 14–18)

Self-reported stressful events Childhood-adolescence Internalizing problems

Depressive symptoms

ADHD symptoms

No association to total psychiatric problems

No risk for psychosis

(13, 19–21)

Questionnaires-based assessment of anxiety Child-preadolescence Total psychiatric problems

Internalizing and externalizing problems

Anxiety symptoms

Depressive symptoms

Hyperactivity

(14, 22)

Saliva cortisol Preadolescence ADHD symptoms especially in boys (21)

INCIDENCE DURING THE THIRD TRIMESTER

Exposure to a natural disaster Childhood-preadolescence ASD symptoms

Eating disorder symptoms

(9, 23)

Questionnaires-based evaluation of depression Preadolescence-adolescence Externalizing problems

Hyperactivity

(18, 24)

Self-reported stressful events Birth–adulthood ADHD symptoms

No association to total psychiatric problems

No risk for psychosis

(13, 20, 21)

Questionnaires-based assessment of anxiety Childhood-adolescence Internalizing problems

Depressive symptoms

Hyperactivity

(3, 14, 15)

Saliva cortisol Preadolescence ADHD symptoms especially in girls (21)

Physician-based diagnoses of depression Childhood-adulthood Depressive symptoms

ADHD symptoms

(6, 25)

ICD-based diagnoses of anxiety Childhood ADHD symptoms (6)

INCIDENCE DURING PREGNANCY WITHOUT FURTHER TRIMESTER SPECIFICATION

Self-reported stressful events Childhood-adulthood Eating disorders

ASD symptoms

Schizophrenia in male offspring

(26–28)

discussing the biological relevance of findings on prenatal
challenges in mice. Hence, when evaluating the impact of
maternal markers on fetal development in mice, research
endeavor should focus on milestones that are completed prior
to birth, such as neurulation, neuronal migration and microglia
invasion, as well as synaptogenesis and neurogenesis, the latter
being largely completed at birth.

Effect of Prenatal Challenges on Maternal
Immune-Endocrine Adaptation to
Pregnancy
In mice and humans, healthy brain development is crucially
dependent on an endocrine and immunological homeostasis of

the mother-fetus dyad. Here, the balance between pro- and anti-
inflammatory cytokines is crucial, as neurogenesis, migration,
differentiation and apoptosis are well known to be responsive to
cytokine challenges (Table 3). Besides cytokines, chemokines are

also important in modulating neurodevelopment and the risk for
psychiatric diseases. Since these interactions have been addressed
in recent reviews (80–82), we refrain from including them here.

Similarly, glucocorticoids, which are initially largely maternally
derived during gestation in the fetus, can interfere with fetal brain

development in mice and humans. Moreover, additional factors
such asmaternal immune cells can affect fetal brain development.
Prenatal stimuli and challenges, including maternal stress
perception and infection, have been show to interfere with the
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TABLE 2 | Overview of studies examining the effects prenatal infection and related maternal immune activation on offspring’s mental health in human.

Gestational time point of infection Proxy used to identify prenatal infection Offspring’s age at

evaluation

Offspring’s outcome Reference

VIRAL INFECTIONS DURING PREGNANCY

Each trimester Maternal antibodies against Influenza virus A

and B

Adulthood Increased risk for schizophrenia (29–31)

End of pregnancy Maternal antibodies against cytomegalovirus,

rubella virus, human parvovirus B19, herpes

simplex virus 1 and 2

Lifetime Increased risk for schizophrenia

Increased risk for psychosis

(32, 33)

Newborn’s blood (5–7 days old) Maternal antibodies against herpes simplex

virus 2

Lifetime Increased risk for schizophrenia (34)

Pregnancy Retrospective estimation infection 2–5 years Maternal fever, but not influenza,

increases the risk for schizophrenia

(35)

BACTERIAL INFECTIONS DURING PREGNANCY

End of pregnancy Maternal antibodies against chlamydia

trachomatis

Lifetime Increase risk for schizophrenia (32)

Pregnancy Retrospective estimation 32–34 and 45–47 years Increased risk for schizophrenia (36)

Pregnancy Maternal C-reactive protein ASD diagnosis Increased risk for ASD (37)

Pregnancy ICD-based registry queries – Increased risk for schizophrenia and

psychotic episodes via meningitis in

childhood

(38, 39)

PARASITIC INFECTIONS DURING PREGNANCY

Each trimester Maternal antibodies against toxoplasma gondii 24–30 years Increased risk for schizophrenia (30, 40)

End of pregnancy Maternal antibodies against toxoplasma gondii Lifetime Increased risk for schizophrenia (41)

NON-CLASSIFIED PRENATAL INFECTIONS

Pregnancy ICD-based registry queries Lifetime Increased risk for ASD

Increased severity of ASD symptoms

compared to non-infected ASD

offspring

(1, 42, 43)

Pregnancy ICD-based registry queries Lifetime Maternal infection before and after

pregnancy increased the risk for

schizophrenia

(44)

endocrine and immunological hemostasis in the mother. This
includes the activation of the sympathetic nervous system and
the hypothalamus-pituitary-adrenal (HPA) axis, subsequently
leading to an excess secretion and availability of free, biologically
active glucocorticoids (83, 84). Pregnancy itself is considered to
be a state of “hypercortisolism,” which is an essential requirement
to meet the maternal demand for increased metabolism and
energy generation. The fetus is also critically dependent on the
transfer of maternal glucocorticoids, which is controlled for by
placental enzymes such as 11ß-Hydroxysteroid-Dehydrogenase
(11ß-HSD)-1 and -2 (83, 84). Maternal glucocorticoids ensure
structural and functional development of fetal organs, as the
fetus is not capable of producing glucocorticoids until late in
development. However, elevated glucocorticoid concentrations
in the context of maternal stress may negatively impact on fetal
brain development (83).

Besides the effect of prenatal challenges on maternal
glucocorticoid levels, the maternal immune response may also
be skewed toward inflammation in the context of stress in
human pregnancy or infection (85, 86). Similarly in mice,
maternal stress challenges have been shown to increase levels
of pro-inflammatory cytokines in dams (87) and decrease
tolerogenic markers such as CD4+ regulatory T cells (88).
Similarly, prenatal infection e.g., with influenza A virus in mice

leads to an increased type 1 response, along with an increased
production of pro-inflammatory cytokines, compared to non-
infected pregnant mice (89). Equally, the use of “danger signals”
such as lipopolysaccharide to induce an inflammatory response
in pregnant mice resulted in a collapse of immune tolerance
toward the fetus (90).

Maternal cytokines, glucocorticoids as well as maternal
immune cells can cross the placenta. Whilst it is difficult to
determine if cytokines are maternally derived or produced by
the fetus, maternal immune cells can be clearly identified in the
offspring. These maternal microchimeric cells can persist in the
offspring long after birth (91). Hence, opposed to the vertical
transfer of maternal cytokines and glucocorticoids, maternal
microchimeric cells may be capable to continuously modulate
brain function in the offspring even after birth.

Impact of Altered Maternal
Immune-Endocrine Adaptation to
Pregnancy and Offspring’s Brain
Development and Mental Health
The vertical transfer of maternal immune and endocrine markers
is increasingly recognized to modulate fetal neurodevelopment
and future mental health of the offspring. As mentioned above,
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FIGURE 1 | Milestones of brain development in mice and humans. In both species, brain development commences with neurulation, a process creating the neural

tube. This provides the prerequisite for the subsequent production of neuron from neural stem cells, a process defined as neurogenesis. Early during human

development, at gestation week 4, the anterior part of the neural tube begins to form into distinct regions. The forebrain, midbrain and hindbrain are defined as the

anterior part; the spinal cord is located at the posterior part. Two weeks later, the neural tube can be clearly divided into the brain regions that are present at birth.

Some of the previously produced neurons now start to migrate to distinct brain regions, a process that continues until approx. week 26. Earlier by week 11, the

cerebrum has developed—more rapidly than other structures—and largely covers the entire brain, except cerebellum and medulla oblongata. Due to its progressive

development within the cranium, the cerebrum is forced to convolve itself resulting in gyri and sulci (51). During the second trimester of pregnancy, several processes

start to define brain connectivity. These include synaptogenesis, gliogenesis, and apoptosis. Simultaneously, microglial cells invasion begins. By mid-third trimester,

the fine-tuning of neuronal connectivity starts with proliferation of myelin sheaths throughout the neurons of the central nervous system (52). Shortly after birth, the

previously established neuronal connections are reduced based on neuronal activity, meaning a reduction of neuronal connections to the ones often used. Since

murine gestation is much shorter compared to human pregnancy, some developmental steps continue to proceed after birth. In mice, neural development begins

during mid-pregnancy, followed by neurulation and formation of the neural tube (53). Subsequently, production of neurons, their migration and the formation of

synapses occur almost simultaneously. Also, yolk sac-derived microglial cells invade the fetus starting on day 9 of pregnancy (54). The developmental milestones

underlying brain development in mice and humans are highly susceptible to challenges and can be modulated by maternal markers vertically transferred during

pregnancy. Hereby, the time point and intensity of the challenges clearly determine the impact and damage they may cause.

the impact of cytokines on fetal brain development has been well
studied and it is widely accepted that milestones of physiological
fetal brain development are modulated by cytokines (Table 3).
Hence, exposure to an imbalanced cytokine response during fetal
life may disturb fetal brain development, thereby increasing the
risk for neurodevelopmental disorders (92).

In mice, fetal exposure to an altered, pro-inflammatory
maternal cytokine response can affect brain morphology,
mirrored by e.g., an increased pyramidal cell density or reduced
neurogenesis (93–96). Similarly, prenatal maternal treatment

with the immunostimulant polyinosinic:polycytidylic acid (poly
I:C) to mirror some effects of a viral infection has been
shown to result in reduced axonal size, myelin thickness and
cortical volume of the hippocampus and amygdala in rodent
offspring (97, 98). A general maternal immune activation during
pregnancy has also been shown to cause presynaptic deficits in
hippocampus (99), pro-inflammatory activation in hippocampal
microglia (100) or an increase of microglial cell frequencies in
the fetal brain (101). Hence, a wealth of studies has shown that
maternal immune activation during pregnancy adversely affects
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TABLE 3 | Key cytokines influencing neural cell development.

Cytokine Functional outcome Reference

IL-1α Supports astrocyte lineage commitment (56)

Increases neurogenesis (57)

Increases microglia activity (58)

IL-1β Inhibition of neurogenesis (59–61)

Supports astrocyte lineage commitment (58, 59)

IL-6 Supports establishment synaptic connectivity (62, 63)

Suppresses astrocyte development (64)

TNF-α Inhibition of neural progenitor cell proliferation

and differentiation (via TNF receptor 1)

(65)

Supports cell survival (via TNF receptor 2) (65)

Neuroprotective functions (66)

IL-2 Increases differentiation of neural progenitor

cells

(67)

Increases neurogenesis (68)

IFN-γ Supports differentiation, migration and neuronal

outgrowth (via microglia activation)

(69)

IL-10 Increases neural progenitor cell survival,

differentiation and neuronal myelination

(70)

Supports oligodendroglia progenitor cell

survival Increases neural progenitor cell

migration

(71) (72)

IL-4 Neuroprotection (via microglia activation) (69)

TGF-β Excessive concentration leads to declined

neurogenesis

(73)

LIF Promotion of cell growth (via inhibition of

differentiation)

(74)

Supports neural stem cell self-renewal (75, 76)

IL-17 Inhibition of adult neurogenesis and synaptic

function, decreases neural stem cell numbers,

proliferation and differentiation

(77–79)

fetal brain development on multiple levels. Yet, it is difficult
to comprehensively pinpoint distinct pathways, as the studies
performed to date have been rather diverse with regard to the
species, the gestational time point or the cause of maternal
immune activation (102). In humans, a great deal of research
focused on the role of maternal levels of interleukin-6 as a
proxy for a prenatal inflammatory challenge. Key observations
include that maternal IL-6 levels affects offspring’s structural
and functional connectivity already at the time of birth (103),
delaying the development of sensory and cognitive processing
(46, 104).

Similar to cytokines, fetal exposure to elevated concentrations
of maternal glucocorticoids has been proposed to exert long-
lasting, partly sex-specific effects on offspring’s brain morphology
and function in rodents but also in humans. This includes
decreased dendritic morphology and neuronal volume in
hippocampi of both sexes in mice, whereas an increased dendritic
branching has been detected only in females (105). Another study
using mouse models reports an increased spine density, dendritic
length and other morphological features in pyramidal neurons of
prenatally stressed males, which was decreased in females (106).

In humans, elevated maternal cortisol concentrations in early
pregnancy have been associated with larger amygdala volumes,
an altered neural connectivity, along with affective symptoms and
internalizing problems in girls (107). Interestingly, moderately
elevated maternal cortisol levels in late pregnancy could be
associated with greater cortical thickness primarily in frontal
regions and enhanced cognitive performance in children (108).
These findings point to the importance of considering the
moderating role of sex and timing of exposure to glucocorticoids
during pregnancy.

Since the experimental or study designs differ with regard
to stress paradigms/glucocorticoids applications, time point of
prenatal interventions or postnatal analyses, species and read-out
parameter (109–111), it is not yet possible to comprehensively
summarize the outcome of these studies beyond the statement
that prenatal stress and related glucocorticoid surges induce sex-
and brain area-specific differences in neuronal complexity and
neurogenesis. This may subsequently lead to altered cognitive
functions later in life.

Microglial cells, which are the resident macrophages of
the CNS, have also been extensively studied in response to
prenatal stress or prenatal glucocorticoid application. Due
to their phagocytic phenotype, microglia have a functional
role in remodeling, shaping and pruning of synapses (112).
And indeed, prenatal corticosterone application increased the
microglial density in the embryonic brain overall and promoted
their amoeboid phenotype (113). Interestingly, this result was
supported by isolating and culturing P1-2 microglial cells,
showing that they are more likely to acquire an amoeboid
phenotype (114). At postnatal age, stress increased the total
glia cell number in the hippocampus of female but not male
offspring (115). One study showed an increased number of
microglia cells in the dentate gyrus, suggesting an adverse
effect on neurogenesis and simultaneously no changes in the
CA1 of the hippocampus (116, 117). The early stress exposure
seems to support phagocytic microglia function in the early
brain and potentially stimulate their activity throughout early
murine lifetime. Their role as a potential mediator between
prenatal stress and early neurobiological changes remains
vague, especially in other important brain areas such like
the PFC.

The barrier between periphery and the brain is an essential
interface for communication between both compartments. Even
though the blood brain barrier is supposed to be well established
during early development, its function in stress and cytokine-
related diseases is poorly investigated. However, its permeability
is a key component in how maternal markers may influence the
offspring’s brain development. This topic is excellently described
in an comprehensive review elsewhere [see review, (118)] and
thus not explained here.

In Figure 2, we depict key effects of cytokines/inflammation
and glucocorticoids on microglia cells and neurons in the
prefrontal cortex, hippocampus and amygdala of the fetal brain.
We deliberately focused on these specific brain regions due
to their specific relevance for the mental health problems that
have been described in the context of maternal stress and
infection (122).
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FIGURE 2 | Consequences of cytokine and glucocorticoid surges on distinct areas of the offspring’s brain. Maternal cytokines and glucocorticoids can

transplacentally cross into the fetus and differentially affect offspring’s brain development by interfering with e.g., cell differentiation, axonal growth, and synaptic

connectivity. The brain regions depicted here are of pivotal relevance for mental health due to their involvement in cognitive functions. Compared to physiological

conditions, prenatal surges of maternal cytokines increase the number of neuronal connections in a subdivision of the prefrontal cortex, whereas glucocorticoids

decreases them (105, 119). Additionally, prenatal glucocorticoid exposure decreases prefrontal cortical volume. In the hippocampus, an increase of cytokines is

known to increase the number of microglial cells in the corn ammonis area 1 (CA1), whilst simultaneously reducing dendritic arborizations and neuronal complexity

(111). Similarly, in the CA3 and dentate gyrus (DG) of the hippocampus, the microglia density increases after cytokine exposure. Also glucocorticoid surges deteriorate

the neuronal complexity in CA1 and CA3 (109, 110) and have been shown to increases the number of microglia in DG. Both, cytokines and glucocorticoids can

decrease total hippocampal volume, neurogenesis and synaptic connections. Prenatal cytokine surges can also decrease the amygdala volume, whereas

glucocorticoids have been shown to increase the number of neurons and microglia. There is no evidence that the central nucleus (CN) of the amygdala is affected, but

an increased microglia density after prenatal cytokine and glucocorticoid exposure has been detected in the lateral nucleus (LN) (120, 121). Contrarily, an increased

number of neuronal connections and microglia was detectable upon glucocorticoid challenge in the basolateral nucleus (BLN).

Besides the effect of glucocorticoids and cytokines on
neurogenesis, synaptogenesis, axon growth etc., these mediators
can also exert indirect effects on these fundamental processes
of fetal brain development, i.e., by altering the concentration
or availability of neurotransmitters. The primary excitatory
neurochemical in the central nervous system, glutamate, which
acts through different types of metabotropic glutamate receptors
(mGluR) has been investigated in a number of studies (123–
125). Indeed, a variant of the Kozak sequence of exon 1 of the
mGluR 3 could be associated with e.g., bipolar affective disorder
(126). Moreover, a reduced expression of mGluR receptors in

the hippocampus has been observed in response to prenatal

stress (127–129). Brain functions such as mood, satiety, sleep,

body temperature and nociception are also critically dependent

on the serotonergic system, and prenatal challenges have been

shown to interfere with the rate of serotonin synthesis (130), the
number of serotonin positive cells (131) and its receptor density

(132) in the offspring’s brain. Further, the cholinergic system is
important in regulating brain function (e.g., learning and short-
term memory) (133) that has been shown to be impacted in the
offspring in the context of maternal stress and infection during
pregnancy. Some evidence from rodent models support the
notion that prenatal stress challenges interfere with the release of
cholinergic factors in the offspring, such as acetylcholine (134),
whereby changes of behavior have not been evaluated in this
study.

Introducing a Novel Pathway in the
Developmental Origin of Neurocognitive
Functions and Psychiatric Disorders: the
Impact of Maternal Microchimeric Cells
Maternal microchimeric cells, which are vertically transferred
from mother to fetus during pregnancy and—at least in
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part—during lactation (135–137), can be detected in the
offspring’s brain during fetal and adult life. Hence, maternal
microchimeric cells have the potential to modulate brain
development and the risk for neurodevelopmental disorders.
To date, no insights are available on the role of maternal
microchimeric cells in brain development and their potential
ability to tailor the nervous system individually. Moreover,
brain structures where maternal microchimeric cells may
abundantly populate have not yet been identified. However, since
maternal microchimeric cells have been identified as maternal

immune cells of the innate and adaptive immune response,
they hold the strong potential to shape neurons by acquiring
a phagocytic phenotype, akin to offspring’s microglial cells.
Future studies should aim at elucidating the functional role of
maternal microchimeric cells on the developing brain and to
understand whether they may modulate the risk for brain-related
disorders.

Given the plethora of mediators that may be functionally
involved in shaping brain development and subsequent function,
whilst being altered upon maternal stress, infection and other

FIGURE 3 | Prenatal challenges and related alterations of immune and endocrine markers can prime postnatal neurodevelopmental disorders. Maternal well-being

and health can be challenged during pregnancy, e.g., by distress or infection. This subsequently leads to increased cytokines and glucocorticoids levels and

potentially to altered frequencies or phenotypes of maternal microchimeric cells in the offspring. Upon entering the fetal brain, such vertically transferred maternal

modulators can significantly interfere with physiologically occurring brain development. A combination of genetic susceptibility and disturbed brain development can

subsequently increase the risk for neurodevelopmental disorders in childhood. Subsequent postnatal environmental challenges —drug abuse, trauma, infection,

others—may perpetuate such prenatally triggered risk for neurodevelopmental disorders, psychiatric and neurological diseases during adolescence and adulthood,

which can also be passed on to the next generation.
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prenatal conditions (138), it is not surprising that we are
far from fully understanding the developmental origin of
neurocognitive functions and brain disorders. Also, it seems
unlikely that single mediators determine a clear-cut “good
or bad” outcome. It is more likely that the mediators
we here proposed act synergistically in modulating brain
development and subsequent function with an advantageous
or disadvantageous outcome. Hypothetically, this synergistic
cross talk could involve the expression of glucocorticoid
receptor on maternal microchimeric cells or the release
of cytokines from maternal microchimeric cells entering
the fetal brain. The longevity of such cells would surpass
the short-term effect that could result from the potential
transplacental transfer of cytokines itself, as cytokines are rapidly
metabolized.

Functional Impact of Vertically Transferred
Maternal Markers on the Developing Brain
In response the environmental challenges, altered levels of
maternal markers that cross the placental barrier may affect the
developing brain by inducing epigenetic alterations of somatic
cells (139–142) Persistent epigenetic differences triggered by
the prenatal exposure to stress challenges in humans include
increased and decreased methylation of insulin-like growth
factor 2 or the glucocorticoid receptor gene (NR3C1) in
brain cells, depending on the timing of exposure (143, 144).
Prenatal distress has been associated with hyper- as well as
demethylation of specific regulatory sites in key genes involved
in stress processing, such as the glucocorticoid receptor (144–
146). Similarly, findings arising from mouse models on maternal
immune activation during pregnancy include the observations
of a hypoacetlyation of e.g., genes modulating neuronal
development, synaptic transmission and immune signaling in
the cortex region in exposed offspring (147), as well as sex-
specific DNA hypomethylation in the hypothalamus of females
(148), specifically affecting the promoter region of methyl CpG-
binding protein 2, which is associated with neurodevelopmental
disorders (149). Interestingly, prenatal immune activation in
mice could be linked to hypermethylation of glutamic acid
decarboxylase 1 and 2 in the brain (150), associated with altered
behavior.

Strikingly, mouse models have revealed that alterations of
brain function can be passed on to the next generations
(151), suggesting that underlying epigenetic alterations triggered
by prenatal challenges may be intergenerationally inherited.
This notion could provide an explanation for the increasing
incidence of behavioral disorders (152). Moreover, it implies
that exposure of the mother to environmental challenges
during pregnancy may not only directly interfere with fetal
brain development, but also affects fetal primordial germ
cells (153), which may subsequently interfere with brain
development in the generation of grandchildren. Primordial
germ cells undergo sequential epigenetic events, which are
distinct from fetal somatic cells, hereby preserving the plasticity
required for the generation of gametes (154–157). Once the
offspring reaches adulthood and such oocytes are fertilized,

the resulting zygote again undergoes significant epigenetic
reprogramming, which includes the demethylation of the
maternal and paternal genome, followed by a genome-wide de
novomethylation (158).

Animal data indicate the possibility of transmission of
behavioral traits mediated by epigenetic modifications through
the maternal, as well as paternal germ line (159–162),
implying the generation of oocytes and sperm may be
equally affected. Intriguingly, how epigenetic changes induced
by environmental challenges can be maintained throughout
the multiple epigenetic reprogramming events physiologically
occurring during reprogramming of primordial germ cells
and the zygote is still largely elusive. Insights from mouse
studies provide a first glimpse, as they reveal that certain
regions of the genome, i.e., differentially methylated regions,
are resistant to zygotic reprogramming (158). However, future
research is required to identify pathways of intergeneration
epigenetic inheritance of altered brain function in the offspring,
aiming also to differentiate between de novo acquired epigenetic
alterations from those inherited through the germ line. Besides
such intergenerational inheritance of epigenetic marks, the
possibility of transgenerational inheritance of epigenetic changes
to one further generation of descent, the great-grand generation,
has been considered. The primordial germ cells of the forth
generation would not have been directly exposed to the
environmental challenges or mediators released by the great-
grandmother during pregnancy. However, to date, convincing
evidence of transgenerational inheritance of epigenetic marks
is only available from botany research using plants, whilst
confirmation in mammals is somewhat elusive (163).

Besides such epigenetic pathways, the brain as target tissue for
prenatal challenges may be affected in its electrical synchrony,
which is defined as the coordinated oscillatory activity and
neural firing rate between connected brain areas. These links
are a prerequisite to execute cognitive tasks (164, 165).
Interestingly, prenatal exposure to maternal inflammation or
stress impairs oscillatory synchronicity (166), which commenced
already during developmental stages in a mouse model
of neuropsychiatric disorders (167–169) and affected spatial
memory tasks (170, 171).

Outlook
Higher cognitive functions such as planning, self-regulation,
memory, learning, and emotional processes result from
a complex, tailored, and precisely shaped large-scale
communication of neuronal networks (172). These neuronal
networks begins to develop prenatally and disturbances of such
developing neural systems during pregnancy can disrupt brain
development via the vertical transfer of maternal markers,
such as cytokines, glucocorticoids or microchimeric cells of the
maternal immune system. Subsequently, the risk for mental
disorders and diseases can increase in the offspring (Figure 3).
As most of the studies are correlative, future research should
aim to investigate causalities between maternal factors and
children’s health outcome. Clearly, adverse postnatal childhood
experiences can further aggravate such cognitive and behavioral
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dysfunctions (173–178) and thus, should be considered in
experimental designs and observational studies.
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