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Despite major improvements in the treatment landscape, most multiple myeloma (MM)

patients eventually succumb to the underlying malignancy. Immunotherapy represents

an attractive strategy to achieve durable remissions due to its specificity and capacity

for long term memory. Activation of immune cells is controlled by a balance of agonistic

and inhibitory signals via surface and intracellular receptors. Blockade of such inhibitory

immune receptors (termed as “immune checkpoints”) including PD-1/PD-L1 has led to

impressive tumor regressions in several cancers. Preclinical studies suggest that these

immune checkpoints may also play a role in regulating tumor immunity in MM. Indeed,

myeloma was among the first tumors wherein therapeutic efficacy of blockade of PD-1

axis was demonstrated in preclinical models. Expression of PD-L1 on tumor and immune

cells also correlates with the risk of malignant transformation. However, early clinical

studies of single agent PD-1 blockade have not led to meaningful tumor regressions.

Immune modulatory drugs (IMiDs) are now the mainstay of most MM therapies.

Interestingly, the mechanism of immune activation by IMiDs also involves release of

inhibitory checkpoints, such as Ikaros-mediated suppression of IL-2. Combination of

PD-1 targeted agents with IMiDs led to promising clinical activity, including objective

responses in some patients refractory to IMiD therapy. However, some of these studies

were transiently halted in 2017 due to concern for a possible safety signal with IMiD-PD1

combination. The capacity of the immune system to control MM has been further

reinforced by recent success of adoptive cell therapies, such as T cells redirected by

chimeric-antigen receptors (CAR-Ts). There remains an unmet need to better understand

the immunologic effects of checkpoint blockade, delineate mechanisms of resistance

to these therapies and identify optimal combination of agonistic signaling, checkpoint

inhibitors as well as other therapies including CAR-Ts, to realize the potential of the

immune system to control and prevent MM.
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IMMUNE SYSTEM AS AN EFFECTIVE APPROACH TO TREAT
CANCER AND PRINCIPLES OF IMMUNE CHECKPOINT
BLOCKADE

The role of immune system in cancer progression has been studied for over a century (1). However,
only recently immunotherapy has emerged as an effective strategy to treat several types of cancers
with impressive results in terms of tumor regression and durable remissions (2). The concept of
immune surveillance and editing of tumors is now well-accepted (3).
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Several studies suggest a role for genetic and epigenetic
modifications in cancer development and progression (4–6)
and some of them correlate with the ability to escape this
immunosurveillance (5, 6). Tumor cells can indeed lower
their immunogenicity through the down regulation of MHC-
mediated neo-antigen presentation, accompanied by deletion
of cancer cells expressing T cell targets (immunoediting) (3).
The immunoediting process in cancer pathogenesis comprises
of three phases: elimination, equilibrium and escape. In the
first phase, the innate and adaptive immune systems recognize
and eradicate cancer cells through the cytolytic activity of
immune cells (i.e., NK cells, NKT cells, γ δ T cells, and CD8+

T cells), antibody-dependent cell-mediated cytotoxicity (ADCC),
or complement-dependent cytotoxicity (CDC) mechanisms
(7, 8). In the equilibrium phase, a balance between cancer
progression and cancer elimination is established through the
modulation of control checkpoints (3, 7). However, if cancer
persists, it overcomes the immunity response and escapes with
further progression and metastasis (3, 7).

Along with the suppression of tumor antigen expression,
different mechanisms that involve surface molecules and
soluble factors released in the tumor microenvironment, e.g.,
indoleamine 2,3-dioxygenase (IDO), type I interferons (IFNs)
and IFN-γ, galectin-1, have been described in the disruption of
immune homeostasis and in the altered balance from effector to
regulatory and suppressive cells induced by cancer (7, 9).

In principle, immunotherapy could either enhance the
immune response or inhibit tumor suppression (10). The most
commonly used approach is the modulation of inhibitory
immune receptors (termed as “immune checkpoints”) that
regulate the balance between immune response and immune
tolerance (11). Several studies showed that cancer cells increase
the expression of some checkpoint proteins (summarized in
Table 1), such as programmed cell death ligand-1 (PD-L1), with
inhibitory properties on T cell functions, as a mechanism of
immune resistance (20). These results lead to the development
of monoclonal antibodies (mAbs) directed against such immune
checkpoints, further approved for the treatment of several solid
tumors as melanoma, renal and lung cancer (21–23).

CTLA-4 is the first immune-checkpoint explored as a clinical
target (24). It is normally expressed at low levels on the surface
of effector T cells and regulatory T cells (Tregs) and it is involved
in the early stages of T cell activation (25). CTLA-4 shares the
same ligands of CD28 (CD80 and CD86) expressed on antigen
presenting cells (APCs). Once CD28 binds CD80 or CD86
to provide co-stimulation, the inhibitory CTLA-4 molecule is
shuttled to the T cell surface where it binds CD80 or CD86 with
higher affinity (26) thus counteracting the costimulatory activity
of CD28 through the binding of the phosphatases PP2A and SHP-
2 (25, 27). CTLA-4 expression also exerts its immunosuppressive
functions by other mechanisms, including Treg expansion and
induction of immunosuppressive cytokines, such as transforming
growth factor (TGF)-β and the enzyme IDO (13, 21). While
CTLA4 expression is mostly studied for its expression on
lymphoid cells, recent studies suggest that myeloid dendritic cells
can secrete CTLA4+ microvesicles that may mediate immune
suppression (28). CTLA-4 blockade with mAbs (i.e., ipilimumab)

can then enhance the immune response against tumor by
inactivating Treg, tumor-infiltrating lymphocytes (TILs) (29) and
increasing T helper (Th)1 cell functions (20).

PD-1 is a member of the CD28/CTLA-4 family, with
inhibitory properties, mainly expressed on exhausted T cells
(dysfunctional T cells classically associated with chronic
infection), NK and NKT cells following activation (14). APCs,
monocytes and malignant cells express its ligands, PD-L1 and
PD-L2, especially under inflammatory conditions (14).

Similarly to CTLA-4, the interaction between PD-1 and PD-
L1 interferes with TCR signal transduction, by recruiting the
tyrosine phosphatase SHP-2 and subsequent inactivating the
PI3 kinase-signaling cascade (30, 31), which leads to reduced
cytokine synthesis, cytotoxic functions and blockade of T cell
proliferation and survival (14).

In the physiologic setting, this pathway enables the
immunologic equilibrium after initial T cell response, preventing
over-activation and the possible expansion of auto-reactive
T cells (32). Studies on PD-L1−/− murine models reported
an accumulation of effector T cells along with an increased
IFN-γ production by CD8+ T cells, suggesting an impaired
apoptosis regulation in the absence of PD-L1 (33). Moreover,
spontaneous accumulation of CD8+ T cells occurred in the liver
even in the absence of “non-self ” antigen exposure leading to
the development of multiple autoimmune features (33). These
data highlighted the importance of PD-L1 in controlling the
responses of self-reactive T cells that have escaped into the
periphery. In addition, PD-1/PD-L1 axis regulates the dynamic
interplay between Tregs and T effector cells. In the presence of
inflammatory milieu, PD-L1 expressed on both APC and naïve
Tregs induces PD-1 expression on naïve T cells and promotes
their differentiation toward a regulatory phenotype and function
(induced Tregs) (34). On the other hand, a negative feedback
loop occurs to downregulate Treg development and function.
This effect is mediated by the increased PTEN expression via
PD-1 signaling which in turn reduces PD-L1 expression on
Tregs (35). Finally, PD-L1+ Tregs directly induce a tolerogenic
phenotype in APCs that reduces the priming of T effector cells
(34). All these results thus confirmed the critical role of the
PD-1/PD-L1 pathway in the balance between T cell activation
and tolerance.

According to the relevance of PD-1/PD-L1 axis in immune
control, tumors seem to highjack this pathway to suppress and
escape the activation of an immune response (36). High PD-L1
expression is associated with a poor prognosis in solid tumors,
including lung, ovarian or colon cancer, thus supporting the
impressive results that PD-1/PD-L1 blockade has led in several
cancers (36).

In addition to CTLA-4 and PD-1, other proteins with
inhibitory properties, as Lymphocyte-activation gene (LAG)-3,
T cell immunoglobulin (TIM)-3, T-cell immunoreceptor with
Ig and ITIM domains (TIGIT) are currently under active
investigations as potential targets for mAbs (37). LAG-3 is
expressed on activated conventional T cells, Tregs, B cells and
plasmacytoid dendritic cells (pDCs) (38) and the interaction
with its major ligand, Class II MHC, inhibits conventional
T cell activity while enhancing the suppressive function of
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TABLE 1 | Immune checkpoint distribution and functions.

Checkpoint Expression Function References

CTLA4

(CD80/CD86)

Activated T cells and Tregs Inhibition of CD28 co-stimulation and T cell activity;

Enhancement of Treg functions;

Induction of TGF-β and IDO

(12)

(13)

PD-1

(PD-L1/PD-L2)

Activated T cells, NK cells, NKT cells, B

cells, Monocytes, DCs, MDSCs

T cell exhaustion and apoptosis;

inhibition of cytokine production;

downregulation of NK and NKT cell activity

(14)

LAG3

(MHCII)

activated T cells, NK cells, B cells, pDCs Effector T cell inhibition;

Increased Treg activity

(15)

TIM3

(Galectin 9, HMGB1)

Exhausted T cells, NK cells, NKT cells, B

cells, DCs, Macrophages

Th1 cell apoptosis;

Reduced cytokine release;

Induction of tolerogenic M2 phenotype

(16)

(17)

TIGIT

(CD155)

Exhausted cytotoxic T cells, NK cells Effector T cell inhibition;

Reduced NK cell cytotoxicity;

Enhanced Treg activity

(18)

(19)

DCs, dendritic cells; MDSCs, myeloid derived suppressor cells; NK, natural killer; NKT, NK-like T cells; Th, T helper; Tregs, T regulatory cells.

Tregs (39). LAG-3 blockade in addition to anti-PD-1 strategy
showed an additive therapeutic activity in preclinical models
of chronic infection and cancer, according to their role as
markers of exhaustion (40, 41). TIM-3 is another exhaustion-
associated inhibitory receptor that blunts T-cell-effector function
and induce T cell apoptosis (17). Mouse models of colon
adenocarcinoma, melanoma, and sarcoma demonstrated anti-
tumor activity of TIM-3 blockade especially in combination
with PD-L1 blockade (42, 43). Moreover, anti-TIM-3 treatment
increases the proliferation and cytokine production of CD8+

T cells derived from patients with melanoma (44). Anti-TIM-
3 or anti-PD-L1 mAbs in combination with the blockade
of TIGIT, a marker of exhausted cytotoxic cells, showed
enhance anti-tumor activity in several animal models (45).
Recent studies suggest promise for TIGIT blockade in future
immunotherapy regimens without adding significant toxicity
(19, 46).

In addition to checkpoint blockade, mAbs targeting agonist
receptors, such as inducible co-stimulator (ICOS), OX40 and 4-
1BB (47), are currently under clinical development, especially in
solid tumors like melanoma (37).

The combined strategy to enhance T-cell activity with co-
stimulatory mAbs and concurrently restoring T cell cytotoxic
functions against cancer cells by blocking inhibitory proteins
could be a promising approach (48). Several clinical trials on both
solid and hematological malignancies are currently exploring this
strategy (49).

REGULATION OF TUMOR IMMUNITY IN
MULTIPLE MYELOMA AND MONOCLONAL
GAMMOPATHIES OF UNDETERMINED
SIGNIFICANCE

Multiple myeloma (MM) is a hematological malignancy
characterized by clonal expansion of terminally differentiated
B cells (plasma cells) in the bone marrow (BM). It is clinically
manifested with osteolytic bone disease, infections, renal

insufficiency, and BM failure (50). The cross talk between
malignant plasma cells (PCs) and the BM microenvironment,
including immune cells, bone cells, endothelial cells,
mesenchymal stromal cells (MSCs) and extracellular matrix,
plays a pivotal role in the proliferation and survival of tumor
cells (51).

Of note, “immunoparesis,” with a reduction in “uninvolved
Igs,” is a common feature of MM (52). PC interactions
with BM niche cells create a permissive microenvironment
that can promote tumor growth and immune escape,
through the production of several factors including TGF-β,
interleukin (IL)-10, IL-6, and prostaglandin E2, known to
have immunosuppressive properties (53). Among immune
cells, DCs display an impaired differentiation and maturation
in MM patients (54, 55) and their interaction with PCs
enhance MM clonogenicity and proliferation through B
cell activating factor (BAFF)/a proliferation inducing ligand
(APRIL) signals (56, 57). Malignant PCs can in turn prompt
DC fusion and trans-differentiation into osteoclasts (OCs)
through receptor activator of nuclear factor κB ligand and
CD47 pathways (58–60), thus promoting immunosuppression
and disease progression. Beside their role in bone remodeling,
OCs also show immunosuppressive properties specifically
inducing T-cell apoptosis through the up-regulation of
immune checkpoint proteins as TIM-3 and the production
of IDO and APRIL (61). These factors increase PD-L1
expression in MM cells thus supporting tumor escape from
the immune control (61). DCs can also indirectly enhance
osteoclastogenesis by promoting the expansion of T helper
17 (Th-17) clones in MM microenvironment (62) and the
consequent accumulation of IL-17, known to be a potent
pro-osteoclastogenic factor, in MM BM (60). Sponaas AM
et al. reported that myeloid DCs also express PD-L1 and
correlate with PD-L1+ PCs, suggesting that both cell types could
contribute to the suppression of the anti-tumor T cell response
in MM through PD-1/PD-L1 pathway (63). Furthermore,
MM DC differentiation and maturation is inhibited by MSC
production of immunosuppressive factors as IDO, IL-6, PTGS2
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(64, 65). MSCs also increase PD-L1 expression on MM cells
(66) which in turn suppress PD-1+ T cell and NK cell activity
(67).

Along with PD-1/PD-L1 axis, a role for other inhibitory
pathways, such as CD226 (68), and the induction of T-cell
senescence (69) has also been implicated in the suppression
of tumor immunity which characterized MM (68, 69). Several
studies also reported an accumulation of myeloid derived
suppressor cells (MDSCs) and Tregs, along with an unbalanced
ratio of Th1/Th2 cells and dysfunctional NK cell cytotoxic
activity in MM, compared to patients with monoclonal
gammopathy of undetermined significance (MGUS) (70–72). Of
note, this loss of function in several immune effector cells is
associated with progression to clinical MM (73) and is in part due
to the increased expression of suppressive factors, such as ligands
of the activating receptor NKG2D (i.e., MHC class I chain-related
protein A) fromMGUS to MM (74).

More than 10 years ago it was demonstrated that the
immune system can detect MGUS pre-neoplastic lesions and
potentially control tumor growth (75). Indeed, the presence
of CD4+ and CD8+ T cells, functionally active against pre-
neoplastic cells and able to recognize a pattern of specific
antigens for each patient tumor, was reported in the BM of
MGUS patients (73). A further study identified SOX2 embryonal
stem cell antigen as a distinct target of immunity in MGUS
compared to MM (76). Interestingly, the presence of SOX2-
specific T cells and PD-L1 expression on tumor cells and T
cells at baseline was then found to be correlated with the risk
of progression to MM (77). Of note, T cells against SOX2
were recently found to be implicated in durable response of a
MM patient following chimeric-antigen receptor T (CART) cells
(78).

Beside these mechanisms, the establishment of a chronic
inflammatory status has been described in the evolution of
asymptomatic diseases to MM (79), according to the tight
correlation between inflammation and cancer development
dating back to Virchow’s studies in 1863. It is known that BM
serum ofMMpatients is enriched of pro-inflammatory cytokines,
such as IL-1, IL-6, IL-12, IL-15, IL-17, IL-18, IL-22, IL-23,
TNF-α, and IFN-γ (80). Moreover, a recent study from Botta
C et al. interestingly defined an 8-genes signature (IL8, IL10,
IL17A, CCL3, CCL5, VEGFA, EBI3, and NOS2) able to identify
MGUS/smoldering/symptomatic-MM with 84% accuracy and
built a prognostic risk score based on six genes (IFNG, IL2, LTA,
CCL2, VEGFA, CCL3), validated in three additional independent
datasets (79).

In the context of MM inflammatory status, bioactive lipids,
typically increased during inflammation, may also play a
crucial role in tumor development (81). In the past decade,
obesity has indeed emerged as one of the risk factors for
MM (82) and recent studies have shown an enrichment of
lysophosphatidylcholine (LPC) species in MM patient serum
compared to healthy donors (HDs) along with an expansion
of CD1d-restricted type II NKT cell subsets, reactive against
these lipids (83). These cells secrete high amounts of the
immunosuppressive IL-13, thus supporting their role in the
progression of the disease (83). On the other hand, a decline

as well as dysfunctional activation of type I NKT cells was
also reported in MM patients, suggesting the balance between
these two cell subsets as a new important immune-regulatory
axis in the evolution of myeloma (83, 84). In support of this
evidence, another study described that CD1d is highly expressed
in premalignant and early MM and its expression decreases with
disease progression (85). Dysregulation of lipid-reactive immune
cells and a higher number of type II NKT cells, with enhanced
capacity to promote PC differentiation, may be involved in
the increased risk of gammopathy in Gaucher Disease, a lipid
disorder (86–88). The multiplicity of mechanisms behind MM
immunosuppression and enhancement of disease progression
thus suggests the need of combinatorial approaches in the
treatment of MM.

PRECLINICAL STUDIES TARGETING
IMMUNE CHECKPOINTS IN MM

The role of PD-1/PD-L1 pathway in mediating immune escape
of malignant PCs and the therapeutic efficacy of PD-1/PD-L1
blockade in other hematological malignancies led to an increased
interest in the use of anti-PD-1/PD-L1 therapeutic strategies
in MM (68). PD-L1 is highly expressed on PCs isolated from
patients with MM, but not on normal PCs (66, 89–91). High PD-
L1 expression on PCs was associated with disease progression
in patients with MGUS and asymptomatic MM (77) and it
could play a role in the development of clonal resistance as
demonstrated by PD-L1 high levels in relapsed or refractory
MM patients (66). Furthermore, PD-L1 upregulation emerged in
patients with minimal residual disease, suggesting that residual
PD-L1+ myeloma cells have an increased ability to survive and
escape immunosurveillance (90). Nevertheless, high variability
of PD-1/PD-L1 expression on PCs and BM niche cells was
highlighted among patients with the same stage of disease (63,
90).

In vitro studies showed that MM microenvironment could
induce PD-L1 expression on PCs; PD-L1 up-regulation indeed
occurs in the presence of stromal cells (66) and PD-L1 blockade
inhibits stromal cell-mediated PC growth (67). This effect is IL-6
dependent andmediated by STAT3,MEK1/2, and JAK2 pathways
(66).

IFN-γ produced by cytotoxic T lymphocytes (CTLs) and NK
cells strongly induces PD-L1 expression through the activation
of MEK/ERK pathway (89). In addition, myeloid DCs, pDCs and
MDSCs express PD-L1 in MM patients (63), with an increased
proportion of PD-L1+ MDSCs in MM patients at remission
compared to newly diagnosed and relapsed MM (92).

T cells fromMM patients also display higher PD-1 expression
levels, associated with loss of effector cell function (93) on both
circulating T cells and BM CD8+ T and NK cells compared to
HDs (67). Moreover, a study from Castella et al. (92) showed that
PD-1 expression is already present on the anergic BM Vγ9Vδ2 T
cell subset from MGUS patients and remained upregulated in
MM after clinical remission (92). In contrast, PD-1 expression
is reduced in T cells from patients who achieved minimal disease
state following high dose chemotherapy (94).
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In vitro studies further demonstrated that PD-1/PD-L1
blockade directly enhances NK and T cell mediated anti–MM
responses (67, 93) and restores the capacity of PD-L1+ pDCs to
induce cytotoxic activity of T cells and NK cells against MM PCs
(95).

The effects of anti-PD-L1 mAb were also tested in vivo,
on the 5T33 murine MM models, after autologous (syngeneic)
stem-cell transplantation plus administration of a cell-based
vaccine (96) or after irradiation (97). It was demonstrated that
mice with advanced MM expressed higher levels of PD-1 on
both CD8+ and CD4+ T cells compared to non-tumor bearing
mice and the percentages of PD-1+ T cells correlated with
the amount of tumor burden (97). Moreover, PD-1+ CD8+ T
cells isolated from these mice showed a defective production
of pro-inflammatory cytokines (IFN-γ and IL-2) after in vitro
stimulation and expressed increased levels of the exhausted T cell
marker TIM-3 (97). PD-1 blockade also prolonged the survival
in disseminated myeloma-bearing mice (90, 96, 97) and this
effect was abrogated by the depletion of CD4+ or CD8+ T cells,
thus indicating the main role of both T cell subsets behind
this strategy (96). Taken together, these studies supported the
potential contribution of PD-1/PD-L1 pathway in the immune
escape in MM and suggested that its blockade may be an effective
therapeutic strategy against this tumor.

However, current evidences indicate that PD-1 blockade
as single agent does not induce clinically meaningful anti-
myeloma responses (98). In this regard, it was recently reported
that the compromised functions of effector cells in MM may
be due to senescence rather than PD-1 mediated exhaustion
(69, 98). Exhausted T cells overexpress multiple inhibitory
molecules, such as PD-1, CTLA-4, CD160, TIM-3 and LAG-3
and lack of IFN-γ expression (99). However, a PD-1low T cell
clonal expansion was observed in 75% of myeloma patients,
in contrast to the non-clonal PD-1high T cells (69, 98). This
expanded population potentially represented tumor-reactive cells
with a senescent phenotype. They indeed showed low levels
of LAG-3, TIM-3, PD-1, and CTLA-4 and did not express
CD27 and CD28, suggesting a late differentiated phenotype.
Moreover, this clone expressed the typical senescent markers
CD57, CD160 and KLRG-1 and displayed a secretory profile
(69). In addition, it was described that the senescent phenotype
was telomere independent as demonstrated by the low levels
of p38-mitogen-activated protein kinase, p16 and p21 signaling
pathways and it could be potentially reversed by other agents,
as immunomodulatory drugs (IMiDs) or histone deacetylase
inhibitors (69).

IMMUNOLOGIC EFFECTS OF IMIDS-
RELEASING THE IKAROS CHECKPOINT

The development of the IMiDs, thalidomide (Thal) and its
analogs lenalidomide (Len) and pomalidomide (Pom), has led to
a paradigm shift in the treatment of MM (100). IMiDs exert their
immunological functions through several mechanisms, including
proliferation and functional enhancement of NK/NKT cells,
induction of T-cell co-stimulation and reduction of Treg activity,

increased Th1 cytokine production, such as IL-2 and IFN-γ,
anti-MM ADCC improvement and enhanced DC maturation
and functions (101–103). The main molecular mechanism
was recently elucidated showing that IMiDs bind Cereblon,
causing a subsequent degradation of the transcriptional factors,
Ikaros (IKZF1) and Aiolos (IKZF3) on both MM cells and
T cells (104). Aiolos is a known repressor of the IL-2 gene
promoter while Ikaros is also involved in the regulation
of transcriptional silencing during Th2 differentiation (104–
106).

Beside these effects, in vitro studies interestingly showed that
Len treatment downregulates PD-1 expression on both T cells
(93) and NK cells (67), restoring their cytotoxic activity, and
decreases PD-L1 expression on malignant PCs and MDSCs (93).
These data suggested that Len could enhance the effect of anti
PD-1/PD-L1 blockade as further reported by Görgün G et al.
In vitro studies (67).

Moreover, evaluation of immune function in MM patients
treated with Pom demonstrated a poly-functional T-cell
activation, with increased proportion of co-inhibitory receptor
BTLA+ T cells and TIM-3+ NK cells (107), thus giving a
rationale for the use of combination with immune checkpoint
inhibitors. Analysis of the molecular mechanism of action
revealed that Pom induces depletion of IKZF1 on both T and
NK cells; however this effect is dependent on drug exposure
and IKZF1 levels return back to baseline, prior to new cycle,
with intermittent dosing (107). Interestingly, Pom-mediated
immune activation correlated with clinical outcome even in
heavily pretreated MM patients; although the baseline expression
of Ikaros/Aiolos protein in tumor cells was not predictive of
outcome (107).

More recently, a study from Bailur et al. (108) reported that
Pom also reduces IKZF1 and IKZF3 levels on innate lymphoid
cells (ILCs) and enhances their function, as demonstrated by
the increased IFN-γ production both in vitro and in vivo
(108). ILCs are a new subset of innate immune cells known
to be involved in the regulation of immunity, inflammation
and tissue homeostasis (109). The study also reported that
ILCs are increased in BM of MGUS patients compared to
HDs and their functions are enhanced in MGUS but decline
in patients with asymptomatic MM (108). These results thus
provided evidence that ILCs are among the earliest cell subsets
enriched in the tumor microenvironment during the evolution
of monoclonal gammopathies and represent a possible target
to prevent disease progression by acting on their IKZF1
expression. In addition, PD-1 seems to be a negative regulator
for ILC function (110) thus supporting the potential for synergy
between IMiDs and anti-PD-1 mAbs in the treatment of
MM.

EARLY CLINICAL STUDIES OF
CHECKPOINT BLOCKADE AND
COMBINATIONS IN MM

The preclinical evidence that PD-1/PD-L1 blockade enhances
T cell and NK cell anti-MM cytotoxicity encouraged the use
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of mAbs against these checkpoints in clinical trials. However,
the use of anti PD-1/PD-L1 antibodies as monotherapy has
not provided satisfying results. Specifically, a phase Ib clinical
trial testing the anti-PD-1 Nivolumab (IgGk, fully human) in
monotherapy reported no objective responses in 27 patients
with relapsed or refractory MM (RRMM) (111). Similarly, a
phase Ib trial of pembrolizumab (IgGk, humanized anti-PD-
1) in monotherapy for RRMM (NCT01953692/KEYNOTE-013)
described a stable disease in 57% of patients (112). Preliminary
results of a phase II trial of pembrolizumab used in monotherapy
as consolidation in MM patients (NCT02636010) demonstrated
an increased depth of response in only 3 of 14 patients treated.
This lack of efficacy could be explained by the low level of
infiltrating effector cells that characterize MM, along with a
relatively modest mutational burden as compared to solid tumors
wherein therapeutic efficacy correlates with the mutational
burden (113).

Lack of single agent activity led to studies testing PD-1/PD-L1
blockade as a part of a combined therapeutic strategy, particularly
with IMiDs (Table 2). Pembrolizumab in combination with
Len and dexamethasone (Dex) was evaluated in a phase
I dose-escalation in 40 RRMM patients who experienced
disease progression after more than two prior therapies (114).
The objective response rate (ORR) in the whole population
was 50%, with an ORR of 38% in Len-refractory patients
(114). Preliminary results from the phase II clinical trial
conducted on 48 RRMM patients, previously treated with a
median of three regimens, showed an ORR of 60%, including
8% of stringent complete response/complete response, 19%
VGPR, and 33% PR, with a median duration of response
of 14.7 months (115, 116). Interestingly, a phase II study of
Pembrolizumab following ASCT reported a CR rate of 31%
at 6 months, including a 67% rate of BM MRD-negative state
(117).

These results lead to the development of the phase III
studies of pembrolizumab in combination with Len and Dex
(KEYNOTE-185, NCT02579863) or Pom and Dex (KEYNOTE-
183, NCT02576977) and one phase III study of Pom and Dex
vs. nivolumab, Pom, and Dex vs. nivolumab, elotuzumab, Pom,
and Dex (CheckMate 602, NCT02726581). However, in June
2017 the US Food and Drug Administration transiently halted
the clinical trials of anti-PD-1/PD-L1 mAbs in combination with
IMiDs, due to an imbalance of deaths in the Pembrolizumab
arms in KEYNOTE-183 and KEYNOTE-185 and no significant
differences in terms of objective response (https://www.fda.gov/
Drugs/DrugSafety/ucm574305.htm). As these studies have not
yet been published in a peer-reviewed format, more details
that might shed light on the possible explanations for these
observations are lacking. With further review of safety data
on ongoing trials, some of the studies of combinations of
PD-1/PD-L1 blockade in MM have now been reinitiated.
Combinations of PD-1 blockade with other MM therapies
are also currently under evaluation. Preliminary results on
a phase I trial of the anti PD-1 Nivolumab in combination
with other established anti-myeloma agents (Len/Pom, Dex,
anti-CD38 Daratumumab, proteasome inhibitors) revealed
acceptable safety profile in refractory, heavily pre-treated,

high-risk MM patients (118). In addition anti-PD-1 based
therapy, clinical trials of mAbs targeting PD-L1 (Atezolizumab
and Durvalumab), both alone and in combination with other
agents (i.e., Elotuzumab, and Daratumumab) have also been
developed.

Together, these studies point to the need for careful evaluation
of immune checkpoint strategies and their combinations in MM,
with cautious attention to toxicities as well as pharmacodynamics
endpoints.

MAJOR UNMET NEEDS AND FUTURE
DIRECTIONS

The concept that immune system can regulate the growth of
MM cells is now well-established and immune-based approaches
carry the promise of long term disease control and even
cure without the need for ongoing therapy. Current MM
therapies, such as IMiDs and anti-CD38 antibodies can have
immunologic effects; newer therapies particularly CAR-T cells
and T cell-engaging bi-specifics are in active clinical investigation
and showing promising results. However, there remains an
unmet need to address the mechanisms operative in the tumor
microenvironment that restrict or prevent long term control of
tumors.

Further studies are needed to better understand the
mechanisms behind the lack of clinical activity of single agent
PD-1 blockade in MM. Several mechanistic possibilities exist,
including dominance of other inhibitory checkpoints, immune
suppressive cells, lack of agonistic signaling, the low number
of tumor-specific T cells in the tumor microenvironment,
poor antigen presentation, low mutational burden of MM
tumors, as well as senescence of tumor-infiltrating T cells.
Moreover, MM is not a single disease and it consists of
several distinct genetic subtypes; thus, it is likely that immune
microenvironment in MM may also differ between patients.
This heterogeneity may even be spatial within the same patient,
as recently illustrated for solid tumors (120). As MM is a
malignancy involving an immune cell, it is also theoretically
possible that PD-1 blockade may lead to altered cross-talk with
other immune cells and paradoxically promote tumor growth.
It is also of interest to identify if there are specific subsets
of patients (such as those with high mutational burden on
MM cells), who might preferentially benefit from checkpoint
blockade.

Some of the possibilities discussed above suggest the chance
that the lack of efficacy of PD-1 blocking antibodies as
single agents can be reverted by the combination with other
agents. This strategy could lead to distinct pharmacodynamics
effects as well as toxicity profiles compared to monotherapies
(121).

It should be noted that many of the published data involve
PD-1 targeted therapies; however, the effects of PD-L1 blockade
may differ.

Preclinical studies also suggest a potential efficacy of agonistic
antibodies in preclinical models as well. As an example, anti-
CD137 Abs were shown to lead to strong tumor immunity in
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TABLE 2 | Selected clinical trials of checkpoint inhibitor-based therapies in Multiple Myeloma.

Study Phase Clinical trial

identifier

References

A study of pembrolizumab (mk-3475) in combination with standard

of care treatments in participants with multiple myeloma

(MK-3475-023/KEYNOTE-023)

I NCT02036502 (114)

An investigational immuno-therapy study to determine the safety

and effectiveness of nivolumab and daratumumab, with or without

pomalidomide and dexamethasone, in patients with multiple

myeloma

I NCT01592370 (118)

Study of lenalidomide/dexamethasone with nivolumab and

ipilimumab in patients with newly diagnosed multiple myeloma

I NCT03283046 –

A study to determine dose and regimen of durvalumab as

monotherapy or in combination with pomalidomide with or without

dexamethasone in subjects with relapsed and refractory multiple

myeloma

I NCT02616640 –

A study of PVX-410, a cancer vaccine, and durvalumab ±

lenalidomide for smoldering MM

I NCT02886065 –

A study of atezolizumab (anti-programmed death-ligand 1 [PD-L1]

antibody) alone or in combination with an immunomodulatory drug

and/or daratumumab in participants with multiple myeloma (MM)

Ib NCT02431208 –

A study of durvalumab in combination with lenalidomide with and

without dexamethasone in subjects with newly diagnosed multiple

myeloma

Ib NCT02685826 –

1454GCC: Anti-PD-1 (MK-3475) and IMiD (Pomalidomide)

combination immunotherapy in relapsed/refractory multiple myeloma

I/II NCT02289222 (115, 116)

Pembrolizumab cyclophosphamide and lenalidomide for patients

with relapsed multiple myeloma (MUKfourteen)

I/II NCT03191981 –

Pembrolizumab, lenalidomide, and dexamethasone in treating

patients with newly diagnosed multiple myeloma eligible for stem

cell transplant

II NCT02880228 –

Phase 2 multi-center study of anti-pd-1 during lymphopenic state

after HDT/ASCT for multiple myeloma

II NCT02331368 (117)

Pembrolizumab + Lenalidomide post-autologous stem cell

transplant (ASCT) in high-risk multiple myeloma (MM)

II NCT02906332 (119)

Efficacy and safety study of pembrolizumab (MK-3475) in

combination with daratumumab in participants with relapsed

refractory multiple myeloma (MK-3475-668/KEYNOTE-668)

II KEYNOTE-

668

NCT03221634

–

A study of elotuzumab in combination with pomalidomide and low

dose dexamethasone and elotuzumab in combination with

nivolumab in patients with multiple myeloma relapsed or refractory

to prior treatment with lenalidomide

II NCT02612779 –

An exploratory study to evaluate the combination of elotuzumab and

nivolumab with and without pomalidomide in relapsed refractory

multiple myeloma

II NCT03227432 –

A Phase II trial if nivolumab, lenalidomide and dexamethasone in

high risk smoldering myeloma

II NCT02903381 Based on ClinicalTrials.gov. U.S. National

Library of Medicine [https://clinicaltrials.gov/].

Accessed 2 Jan 2018.

A study to determine the safety and efficacy for the combination of

durvalumab and daratumumab in relapsed and refractory multiple

myeloma (FUSIONMM-003)

II NCT02807454 –

A study to determine the efficacy of the combination of

Daratumumab (DARA) plus Durvalumab (DURVA) (D2) in subjects

with Relapsed and Refractory Multiple Myeloma (RRMM)

(FUSION-MM-005)

II NCT03000452 –

Study of pomalidomide and low dose dexamethasone with or

without pembrolizumab (MK-3475) in Refractory or Relapsed and

Refractory Multiple Myeloma (rrMM) (MK3475-183/KEYNOTE-183)

III KEYNOTE-

183/

NCT02576977

https://www.fda.gov/Drugs/DrugSafety/

ucm574305.htm

Study of lenalidomide and dexamethasone with or without

pembrolizumab (MK-3475) in participants with newly diagnosed

treatment naive multiple myeloma (MK3475-185/KEYNOTE-185)

III KEYNOTE-

185/

NCT02579863

https://www.fda.gov/Drugs/DrugSafety/

ucm574305.htm
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VKappa-myc MM models (122, 123). Although a small study
with this agent in MM was not completed, further evaluation
of this pathway particularly in combination may be of interest.
T cells in MM lesions also express other inhibitory molecules,
such as TIM-3 and LAG-3. Antibodies targeting these molecules
are now entering the clinic and the effects of these agents
in human MM are awaited. In addition to their effects on T
cells, immune regulatory pathways are also operative for innate
cells, such as NK-T cells and ILCs. These pathways may also
limit the efficacy of engineered T cells, such as CAR-T cells,
as well as bispecifics. Future combinations of these strategies
to harness immune-mediated MM control are therefore eagerly
awaited.
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