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Graft-vs.-host disease (GvHD), a severe complication of allogeneic hematopoietic stem

cell transplantation, significantly affects the post-transplant morbidity and mortality.

Systemic steroids remain the gold standard for the initial management of GvHD.

However, up to 60% of patients will not sufficiently respond to steroids. Extracorporeal

photopheresis (ECP), a cell-based immunotherapy, has shown good clinical results

in such steroid-refractory/resistant GvHD patients. Given its immunomodulatory, but

not global immunosuppressive and steroid-sparing capacity, ECP constitutes an

attractive option. In the case of GvHD, the balance of immune cells is destroyed:

effector cells are not any longer efficiently controlled by regulatory cells. ECP therapy

may restore this balance. However, the precise mechanism and the impact of ECP

on anti-viral/anti-leukemic function remain unclear. In this study, 839 ECP treatments

were performed on patients with acute GvHD (aGvHD) and chronic GvHD (cGvHD). A

comprehensive analysis of effector and regulatory cells in patients under ECP therapy

included multi-parametric flow cytometry and tetramer staining, LuminexTM-based

cytokine, interferon-γ enzyme-linked immunospot, and chromium-51 release

assays. Gene profiling of myeloid-derived suppressor cells (MDSCs) was performed
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by microarray analysis. Immunologically, modulations of effector and regulatory cells

as well as proinflammatory cytokines were observed under ECP treatment: (1)

GvHD-relevant cell subsets like CD62L+ NK cells and newly defined CD19hiCD20hi B

cells were modulated, but (2) quantity and quality of anti-viral/anti-leukemic effector cells

were preserved. (3) The development of MDSCs was promoted and switched from an

inactivated subset (CD33−CD11b+) to an activated subset (CD33+CD11b+). (4) The

frequency of Foxp3+CD4+ regulatory T cells (Tregs) and CD24+CD38hi regulatory B

cells was considerably increased in aGvHD patients, and Foxp3+CD8+ Tregs in cGvHD

patients. (5) Proinflammatory cytokines like IL-1β, IL-6, IL-8, and TNF-α were significantly

reduced. In summary, ECP constitutes an effective immunomodulatory therapy for

patients with steroid-refractory/resistant GvHD without impairment of anti-viral/leukemia

effects.

Keywords: GvHD, ECP, immunomodulation, regulatory cells, proinflammatory cytokines, effector cells, anti-viral

effect, anti-leukemic effect

INTRODUCTION

Graft-vs.-host disease (GvHD) constitutes a severe
complication of allogeneic hematopoietic stem cell
transplantation (allo-HSCT). Clinically significant acute
GvHD (aGvHD) will occur in 40–80% of patients undergoing
allo-HSCT (1). Approximately 35–70% of patients will develop
chronic GvHD (cGVHD) (2, 3). Systemic steroids represent
the first-line therapy. However, up to 60% of patients will
not sufficiently respond to steroids and require additional
immunosuppressive treatment (4). Broad immunosuppression
increases the risk of disease relapse, infections, and subsequent
mortality (5). Moreover, the efficacy of allo-HSCT strongly
relies on the graft-vs.-leukemia (GvL) effect which is tightly
linked to GvHD. Thus, strategies for GvHD treatment that are
efficient, steroid-sparing and not compromising the beneficial
anti-leukemia and anti-viral immunity are highly desirable.

Extracorporeal photopheresis (ECP) is a second-line
treatment for GvHD, which has been associated with good
clinical responses. It employs (i) apheresis with ex vivo collection
of peripheral mononuclear cells, (ii) photoactivation with
exposure of leukocyte-enriched plasma to the photosensitizing
agent 8-methoxypsoralen and ultraviolet A light, (iii) reinfusion
of such physico-chemically modified ECP-treated cells to the
patient. In a pooled analysis (6), overall response rates (ORR)
were 69% and 64% for acute and chronic GvHD, respectively.

In the case of GvHD, the balance of effector and regulatory

cells is severely impaired with effector cells not being efficiently

controlled by regulatory cells. ECP therapy might restore this

balance. Apoptotic cells play a major role in ECP therapy

and trigger the differentiation of monocytes toward tolerogenic
dendritic cells. This may result not only in induction of
regulatory T cells (Tregs) but also in dysfunction of effector
T cells (7, 8). CD4+ Tregs and neutrophilic myeloid-derived
suppressor cells (MDSCs) (9–13) have been described as cell
subsets of importance for response to ECP therapy. However, the
immunomodulation of other immune regulatory cells, effector
cells and proinflammatory cytokines influencing the success of

the ECP treatment remains to be elucidated. This study was
performed to address these unsolved questions.

MATERIALS AND METHODS

Patients
Twenty patients with steroid-refractory/resistant aGvHD ≥ II
and moderate to severe cGvHD received ECP therapy at the
University Hospitals Heidelberg andGreifswald in Germany. The
diagnosis of steroid-refractory/resistant GvHD is based on the
European recommendations (14, 15). Adequate venous access
and leukocytes > 1/nl were required to be eligible for ECP.
The study was approved by the Institutional Review Board. All
participants signed informed consent.

ECP Procedure
Each ECP treatment was administered over two consecutive
days using the Therakos UVAR XTS photopheresis system. For
patients with aGvHD, 12 weeks of intensive, semiweekly (twice
per week) treatment, were followed by biweekly (every 2 weeks)
ECP treatment (16, 17). Patients with cGvHD received either an
8-week intensive treatment followed by a biweekly treatment or
a biweekly treatment upfront. ECP therapy was stopped when
patients either achieved complete response (CR) or maximal
partial response (PR) with steroid reduction.

Sample Collection and Cell Preparation
Peripheral Blood Mononuclear Cells (PBMCs) and

Serum Collection
Blood was drawn from consenting patients from the first therapy
and every second to fourth ECP cycle before the ECP treatment
process. PBMCs were diluted 2:1 with phosphate-buffered saline
(PBS), then isolated by density gradient centrifugation (2,000
rpm, 30min, room temperature, without break) and stored in
liquid nitrogen. Serum was isolated (1,500 rpm, 10min, room
temperature) and stored at−80◦C.
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Separation of CD8+ T Cells and CD8− T Cells
After thawing, PBMCs were rested overnight as described earlier
(18), followed by CD8 MicroBeads separation according to the
manufacture’s instruction (Miltenyi Biotec).

Enrichment of CD56+ NK Cells
CD56+ NK cells were enriched by negative selection with NK
cell isolation kit according to the manufacturer’s instructions
(Miltenyi Biotec).

Fluorescence Activated Cell Sorting of MDSCs
MDSCs subsets were sorted by FACSAria (BD biosciences) using
CD11b allophycocyanin (APC) (clone: ICRF44, BioLegend),
CD14 APC-eFluor 780 (clone: 61D3, eBioscience), CD33
fluorescein isothiocyanate (FITC) (clone: HIM3-4, BD
bioscience), HLA-DR Peridinin chlorophyll (PerCP) (clone:
L243, ebioscience) antibodies.

Flow Cytometry
Immunophenotyping and immunomonitoring were performed
on rested PBMCs except MDSCs (18). Cells were stained with
different combinations of antibodies (Supplementary Table 1).
Blocking buffer containing 50% human serum was used to
reduce nonspecific binding, and NEAR-IR was used for dead
cell exclusion. Each antibody was first titrated to determine
its optimal concentration for staining. Appropriate negative
controls, fluorescence minus one (FMO) control or un-
stimulated control, were used in the study. All acquisitions
were performed on an LSRII device (BD Biosciences). To
ensure the quality of measurement, CS&T was performed
per working day. Furthermore, fluorescence compensation was
applied before data acquisition. Data were analyzed using BD
FACSDiva software (BD Biosciences). Gate placement was based
on the recommendation from the International Multiconsortia
Proficiency panel (19, 20).

Surface Marker Staining
Briefly, after 10min blocking, cells were either stained with
antibodies for 15–30min at 4◦C, room temperature (CD33,
HLA-DR) or 37◦C [C-C chemokine receptor type 7 (CCR7)]
in the dark, followed by washing once with FACS buffer (1%
bovine serum albumin and 2mM Ethylenediaminetetraacetic
acid in PBS).

MHC Class I-Peptide Tetramer Staining
After blocking, 1× 106 cells were incubated with
cytomegalovirus (CMV) phosphoprotein65495−503 (pp65495−503)
(CMV-A2)/HLA-A∗0201 tetramer and CCR7 antibody for
15min at 37◦C, followed by staining with other antibodies for
20min at 4◦C in the dark.

Intracellular Cytokine Staining
Following NEAR-IR (30min, room temperature, in the dark) and
surface marker (20min, 4◦C, in the dark) staining, activated cells
which were stimulated with 1µg/ml staphylococcal enterotoxin
B (SEB) (Sigma-Aldrich) in the presence of brefeldin A
(Biolegend) for 6 h, were fixed and permeabilized by using

Miltenyi Forkhead box proteins3 (Foxp3) fix/perm buffer set,
then finally stained for 30min with FoxP3 and IL-17a antibody.

Enzyme-Linked Immunospot (ELISpot)
Assay
1 x 105 CD8+ cells were mixed with auto-CD8− cells at a ratio
of 1:1 and plated in triplicate. CMV/Epstein-Barr virus/Influenza
virus (CEF) Pool (extended) (JPT Peptide Technologies) was
added directly to the experimental well at a concentration of
2 µg/ml/peptide. ELISpot assay was performed according to
the manufacturer’s instructions, as described previously (21).
Image analysis of ELISpot plates was performed with an
ImmunoSpotTM Analyzer (Cellular Technology Limited).

Chromium-51 (51Cr) Release Assay
A 4-h 51Cr release assay was performed to test the NK
activity, as described previously (22). Briefly, target cells K562
labeled with 51Cr were cocultured with effector CD56+ NK
cells at effector-to-target cell ratios ranging from 50:1 to 6:1.
Maximal release and spontaneous release were determined by
incubating the target cells with 1% Triton X-100 (Sigma-
Aldrich) and medium alone, respectively. NK activity was
calculated by the following formula: % specific lysis = [mean
count per minute (c.p.m.) (experimental release)–mean c.p.m.
(spontaneous release)]/[mean c.p.m. (maximal release)–mean
c.p.m. (spontaneous release)]× 100.

Microarray Analysis
Total RNA was extracted with the RNeasy Micro kit (QIAGEN)
from sort-purified MDSCs and gene expression determined
using Affymetrix GeneChip R© Human Genome U133 Plus 2.0
Arrays. mRNA was amplified and biotinylated with Affymetrix

3
′
IVT Pico Reagent Kit before hybridization. Gene Expression

Microarrays were scanned using the Affymetrix GeneChip R©

Scanner 3000.

Cytokine Analysis
Quantification of the cytokines IL-1β, IL-2, IL-6, IL-8, and
tumor necrosis factor-α (TNF-α) in human serum samples was
conducted by the LUNARISTM Human 6-Plex Ophthalmology
Kit384 (AYOXXA Biosystems) according to the manufacturers’
instructions. Results were analyzed using the LUNARISTM

Analysis Suite Software.

Statistical Analysis
Gene expression was assessed after adjustment by the Benjamini-
Hochberg procedure. Differences in cell frequency between
before and post ECP therapy were assessed by paired-sample T
test. The significant difference between healthy donors (HDs) and
GvHD patients was assessed by independent T test. In all tests, a
p-value < 0.05 was considered to be statistically significant.

RESULTS

Demographics
A total of 20 patients suffering from GvHD were treated by
ECP. Nine aGvHD patients were treated with ECP in addition
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to immunosuppressive therapies including steroids, calcineurin
inhibitors and/or mycophenolate mofetil (MMF) as well as
pentostatin and/or ruxolitinib (Table 1). Eleven patients with
cGvHD received ECP treatment despite triple drug therapy
comprising of steroids, cyclosporine A (CsA), mTOR inhibitors,
and/or MMF (Table 1). Of these 20 patients, one patient with
aGvHD (patients #1) and two patients with cGvHD (patients #15
and #18) had to be withdrawn after only four to five ECP cycles
due to pancytopenia, poor clinical condition, or incompliance,
which were not associated with toxicity of ECP therapy.

All patients showed neither increased susceptibility to
infections nor reactivation of CMV nor loss of complete
chimerism during ECP therapy (Table 1).

Development of NK Cells Without Losing
NK Activity
The proportion of CD56briCD16− NK cell subset in aGvHD
patients was significantly higher than in HDs (Figure 1A).
Undergoing ECP therapy, CD56briCD16− NK cells could
slightly decrease (Figure 1A) with significant reduction of the
marker expression of NKG2D and CD62L (Figure 1B). In
parallel, a normalization (increase) of CD56dimCD16+ NK cells
was observed after ECP therapy (Figure 1C). Moreover, the
expression of NKG2D and CD62L on CD56dimCD16+ NK cells
could be significantly reduced by ECP therapy (Figure 1D). To
address the question of whether ECP affects the NK activity,
we performed a 51Cr release assay using isolated CD56+ NK
cells as effector cells and K562 as target cells. No significant

change in NK activity was observed during ECP, as illustrated in
Figure 6E.

Reduction of CD19hiCD20hi B Cells
Strikingly, a novel CD19hiCD20hi B cell population is
significantly elevated in cGvHD patients (Figures 2A,B),
suggesting a crucial role in the development of cGvHD. A
reduced expression was observed for BAFF-R (p = 0.007)
and CD38 (p = 0.000) on CD19hiCD20hi B cells (Figure 2C)
with consequently a significantly higher percentage of BAFF-
R+CD38− B cell subset (Figure 2D) and CD24+CD38−

memory B cell subset (Figure 2E) when compared with
CD19+CD20+ B cells. Under ECP therapy, patients with
either stable cGvHD or with response tended to have a
decrease in frequency of CD19hiCD20hi B cells, whereas an
increase was observed in patients with progressive cGvHD
(Supplementary Figure 1).

Education of MDSCs by ECP Therapy
Inactivated CD33−CD11b+, transitional CD33dimCD11bdim,
and activated CD33+CD11b+ subsets were identified out of
CD14+HLA-DR−/low MDSCs. Figure 3A depicts the different
components of inactivated, transitional and activated subsets
within CD14+HLA-DR−/low MDSCs among aGvHD, cGvHD
patients and HDs, suggesting a development from inactivated
to activated MDSCs. After 8 cycles of ECP therapy, the
inactivated subset which is absent in HDs could be dramatically
decreased in aGvHD patients (Figure 3B). In cGvHD cohort,

FIGURE 1 | Differentiation and education of NK cell populations by ECP in aGvHD patients. The assessment of CD56briCD16− NK cells (A) and CD56dimCD16+ NK

cells (C) before and after ECP therapy shows that ECP treatment can promote the development of NK cells from CD56briCD16− NK cells to CD56dimCD16+ NK

cells as well as educate NK cells by decreasing expression of NKG2D and CD62L (B,D). *means p < 0.05.
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FIGURE 2 | The role of CD19hiCD20hi B cells in cGvHD. (A) shows representative dot plots of CD19hiCD20hi B cells among HD, aGvHD and cGvHD groups. (B)

displays the frequency of CD19hiCD20hi B cells in both aGvHD and cGvHD groups prior to ECP treatment. (C) Characterization of CD19hiCD20hi B cells showed

significantly lower expression of BAFF-R and CD38 but slightly increased CD24 expression. (D,E) When compared to CD19+CD20+ B cells, CD19hiCD20hi B cells

showed a different component pattern, a significantly higher BAFF-R+CD38− proportion and memory B cells. Dashed lines represent the corresponding median

value of frequencies observed in 25 HDs. Differences in cell frequency between different groups were assessed by Independent T test. In all tests, a p-value < 0.05

was considered to be statistically significant. *means p < 0.05.

the homogeneous CD14+HLA-DR−/low MDSC population,
activated CD33+CD11b+ subset, with a normalization was
observed (data not shown).

In order to determine the impact of ECP therapy on
gene expression profiling of MDSCs, we performed microarray
analysis in the highly purified two different subpopulations
of MDSCs from HD as well as aGvHD patients. Relative to
inactivated MDSCs, three genes were significantly upregulated,
whereas eight genes were significantly downregulated in
activated MDSCs (Figure 3C). Among these 11 genes, FAS,
which positively regulates lymphocyte and inflammatory cell
apoptotic process, as well as MAPK cascade and myeloid
cell differentiation, while has a negative regulation on B
cell activation, showed significantly higher expression in
activated MDSCs. In addition, pathways related to negative
regulation of immune system process were enriched in activated
MDSCs (Supplementary Table 2). Taken together, our data

indicated activated MDSCs have stronger immunosuppressive
potency.

Kinetics of Different Regulatory Cells
Besides MDSCs, also FoxP3+CD8+ and FoxP3+CD25+CD4+

Tregs, and CD24+CD38hi regulatory B cells (Bregs) were
identified to be of relevance in our cohort (Figure 4). In the
aGvHD cohort, the frequency of CD8+ Tregs in patients before
ECP treatment was similar to the values of HDs (Figure 4A).
However, it was significantly increased by ECP therapy when
compared to HDs. Consistent with previous reports (9–11,
13), a significant increase of CD4+ Tregs was seen after ECP
therapy (Figure 4B). Moreover, ECP could increase Bregs to
reach the HD values (Figure 4C). In contrast, the frequency of
CD4+ Tregs and Bregs was barely influenced by ECP therapy
in cGvHD patients (Figures 4B,C). However, the frequency of
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FIGURE 3 | CD14+HLA-DR−/low MDSC subpopulations in the peripheral blood of GvHD patients with ECP treatment. The immunophenotype of MDSCs was

assessed by flow cytometry. (A) Different components of inactivated, transitional and activated subsets were observed within CD14+HLA-DR−/low MDSCs among

aGvHD patients, cGvHD patients and healthy donors (HDs) suggesting a development from inactivated into activated MDSCs. (B) A reduction of inactivated MDSCs

was observed after ECP therapy in aGvHD patients. (C) The volcano plot shows the gene expression between activated MDSCs and inactivated MDSCs. The

horizontal axis represents the fold change in intensity and the vertical axis represents statistical significance (Log Odds). The bar chart indicates the differential gene

expression between activated and inactivated MDSCs. Gene expression was assessed after adjustment by the Benjamini-Hochberg procedure. Differences in cell

frequency between different groups were assessed by paired-sample T test. In all tests, a p-value < 0.05 was considered to be statistically significant. *means p <

0.05.

CD8+ Tregs in cGvHD was apparently elevated under ECP
treatment (Figure 4A).

Reduction of Proinflammatory Cytokines
Elevated levels of proinflammatory cytokines (IL-1β, IL-6, and
IL-8) were found even on high doses of steroids e.g., 2 mg/kg
body weight. ECP had a positive effect in all cases with a decline of
proinflammatory cytokines (Figure 5). High peaks of cytokines
IL-1β (Figure 5A) and TNF-α (Figure 5D) in patient #7 caused
by rapid steroid reduction were returned back to low levels by
ongoing ECP treatment.

Intact Anti-viral and Anti-leukemia
Immunity Under ECP
Neither frequency nor IFN-γ release of virus specific T cells was
hampered by ECP (Figures 6A–C). Besides these, no significant
influence of ECP therapy on CD4+CD8+ T cells, γδ T cells, and
NKT cells as other well-established protective cell subsets could

be observed (Figure 6D). Furthermore, no significant change in
NK activity was shown during ECP (Figure 6E).

Dissection of Cell Population Dynamics
With Medicines and Clinical Parameters
To further corroborate our findings and to investigate
the underlying mechanism of ECP therapy in GvHD,
a comprehensive analysis including immunosuppressive
medicines as well as cell populations was performed in
representative patients (Figure 7). Immunosuppressive therapy
was reduced or stabilized following ECP therapy with clinical
improvement, including a decrease of stool frequency and
change of consistency from loose to formed stools (patient #7),
as well as alleviation of itching, dryness and pain of the skin
(patient #16), as shown in Figure 7.

Activated MDSCs subset was steadily increased under ECP
therapy in patient #7. The frequency of DNT cells was apparently
elevated under ECP treatment (patient #7: 1.2-fold). Similar
changes were detected for vδ2+ T cells (patient #7: 2-fold).
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FIGURE 4 | Immunomodulation of regulatory T and B cells through ECP. The percentages of CD8+ Tregs (A), FoxP3+CD25+CD4+ Tregs (B), and CD24+CD38hi

Bregs (C) were monitored in patients with aGvHD and cGvHD before and after ECP therapy. Foxp3+CD8+ Tregs significantly increased under ECP therapy in both

aGvHD and cGvHD patients, along with significant up-regulation of Foxp3+CD4+ Tregs and Bregs in aGvHD patients, as assessed by paired-sample T test. * means

p < 0.05.

Furthermore, a strong up-regulation of CD4+ TE cells with a
dramatical loss of homing marker CD62L was observed under
therapy. The frequency of MDSCs and Tregs in patient #16
was stable over time. However, a rebound of Th17 after steroid
reduction could be decreased when ECP was continued.

DISCUSSION

Allo-HSCT constitutes a curative therapy for many
hematological malignancies. Its success depends on the
engraftment of donor hematopoietic stem cells and on the
complete reconstitution of a donor-derived immune system
in the recipient (23). However, unbalanced reconstitution

of diverse stimulatory and suppressive elements may lead
to expansion of alloreactive T cells and contribute to the
development of GvHD. Simultaneously, GvL is mediated by
donor effector T cells and results in a reduced risk of relapse
through the elimination of MRD (24). Thus, after allo-HSCT
the major goal is to control the activation of alloreactive
T cells and to mitigate, but not to completely prevent,
GvHD through the administration of immunosuppressive
drugs.

Steroids with strong immunosuppressive and anti-
inflammatory effects remain the gold standard for initial
management of GvHD (15). However, steroids hamper not
only effector T cells but also regulatory cells, thus indicating an
inhibition of tolerance induction through immunosuppressors
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FIGURE 5 | A fast reduction of proinflammatory cytokines IL-1β (A), IL-6 (B), IL-8 (C), and TNF-α (D) was observed in all patients. Patient #7 showed a rebound of

IL-1β and TNF-α after rapid steroid reduction. Eventually the level of both cytokines decreased when ECP was continued. Dashed lines represent the corresponding

median value of cytokine levels observed in healthy donors. The frequency of ECP cycles is indicated on the x-axis. The black bars below the x-axis indicate a high

frequency of ECP treatment during the first 12 weeks (twice per week) followed by a gray bar representing a reduced frequency (twice every second week) in weeks

13–28.

(25). Moreover, high doses of steroids are usually accompanied
by an increased risk for infections and subsequent mortality
(14). Therefore, successful management of GvHD does not
in general imply high-dose immunosuppression but rather a
balance between effector and regulatory cells. In the case of
steroid-refractory GvHD the treatment is rather heterogeneous.
As an optional second line treatment, ECP shows promising
clinical responses and a steroid-sparing effect, which seems to be
favorable in the treatment of GvHD as several studies reported
(6, 26–28).

B cells contribute to the pathogenesis of both aGvHD and
cGvHD due to their effect on host APCs (24, 29).When analyzing
B cells in our cohort, we observed a clear CD19hiCD20hi B cell
population in cGvHD patients and demonstrated that BAFF-
R+CD38− memory B cells represent the predominant subset
within CD19hiCD20hi B cells. These memory B cells could be
rapidly reactivated, leading to the production of large quantities
of high-affinity antigen-specific antibodies (30). Moreover,
CD38− memory B cells have the potency to produce pro-
inflammatory cytokine TNF-α (31). BAFF, which is significantly
increased in plasma of cGvHD patients, could further activate B
cells via binding to BAFF receptor (32, 33). Taken together, we
assumed CD19hiCD20hi B cells might play a role in the cGvHD
pathophysiology. Subsequently, the hypothesis was confirmed
by our finding that a reduction of CD19hiCD20hi B cells was

observed in patients with clinical improvement under ECP
treatment.

Modulation of the trafficking patterns of alloreactive T
cells and NK cells has been identified as an effective way
of ameliorating GvHD. The important role of L-selectin in
effector cell migration to GvHD target tissues has been recently
demonstrated (24, 34). Our data indicate that ECP promotes the
NK cell differentiation from CD56bri to CD56dim NK cells with
loss of expression of NKG2D and CD62L, but without hampering
the GvL effect. This is substantiated by our own data and a
previous report showing that CD62L−CD56dim NK cells exert
high cytotoxicity against MHC class I negative tumor target cells
(35). Moreover, we found a loss of CD62L in TE population
as well. CD62L− T cells not only facilitate hematopoietic
engraftment and contribute to phenotypic and functional T cell
reconstitution after transplantation without causing GvHD, but
also enhance functional immune reconstitution against tumor
and viral antigens, which was recently reported by Zhang
et al. (36).

Regulatory cells are known to promote immune tolerance
after allo-HSCT and to shift the balance toward graft survival
and away from GvHD. The importance of FoxP3+CD4+ Tregs
in ECP-induced tolerance is well established. In accordance
with other previous results (9–11, 13), our data show a
significant increase of FoxP3+CD25hiCD4+ Tregs under
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FIGURE 6 | Impact of ECP therapy on anti-viral and anti-leukemic immune responses. (A) The representative dot plots with the frequency of CMV-specific CD8+ T

cells are shown at different time (T) points before (T1) and after (T2 and T3) ECP treatment in aGvHD patient #5 and cGvHD patient #13. (B) The distribution of TCM,

TN, TEM, and TE within the CMV specific CD8+ T cells in patients #5 and #13 is indicated. (C) The secretion of IFN-γ by virus specific T cells was measured by IFN-γ

ELISpot assay. The bar chart shows the overview of the INF-γ secretion by CD8+ T cells in seven patients under ECP treatment. There is no significant difference

among T1, T2, and T3 (p ≥ 0.05, one-way ANOVA test). Under ECP treatment, the frequency of CMV-specific CD8+ T cells was maintained. Most cells were TE cells

followed by TEM cells. The function of these cells in terms of IFN-γ release kept stable. (D) The dynamic changes of CD4+CD8+ T cells, γδ T cells and NKT cells in

aGvHD (upper panel) and cGvHD patients (lower panel) under the ECP treatment. Cell frequencies were not significantly different between before and under ECP

treatment groups, which assessed by Paired sample T test. (E) A 4-h 51Cr release assay was performed to test the NK activity, which was calculated by the following

formula: % specific lysis = [c.p.m. (experimental release)–mean c.p.m. (spontaneous release)]/[mean c.p.m. (maximal release)–mean c.p.m. (spontaneous release)] ×

100. The box chart shows the NK activity against K562 cells at two different time points in aGvHD group and cGvHD group. There was no significant difference, as

assessed by Paired sample T test. Each box represents three independent patients. The NK cell function was stable over the time of ECP treatment. The dashed lines

represent the corresponding median value of frequencies observed in 25 healthy donors. In all tests, a p < 0.05 was considered to be statistically significant.

ECP therapy in aGvHD patients. Apart from FoxP3+CD4+

Tregs, highly immunosuppressive FoxP3+CD8+ Tregs which
display preferential tropism for the gastrointestinal tract
and inhibit class I-restricted immune responses (37), were
dramatically increased in both aGvHD and cGvHD patients
after ECP therapy. Bregs have a prominent immunoregulatory
potential as well as broad inhibitory effect on CD4+ T cells
and monocytes. Thus, it can effectively prevent GvHD through
inhibiting Th1 and Th17 differentiation and expanding
CD4+ Tregs without adverse effect on GvL activity (38–47).
Our data show a significant increase of Bregs in aGvHD
patients.

Immunosuppressive MDSCs, especially the neutrophilic
subgroup, can be augmented by ECP and thereby hamper
Th1 and Th17 cells through metabolism of L-arginine (12). In
our study, an increase in monocytic MDSCs was observed in
aGvHD patients. Notably, our data further demonstrate that

ECP may promote the development of MDSCs by switching
the inactivated (CD33−CD11b+CD14+HLA-DR−/low) to
activated (CD33+CD11b+CD14+HLA-DR−/low) subsets.
In activated MDSCs we observed an up-regulation of the
suppressive FAS gene together with an enrichment of the
pathway related to negative regulation of immune system
process. It suggests these activated cells have a more potent
immunosuppressive capacity thus contributing to immune
tolerance.

Proinflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α)
play an important role in all phases of GvHD pathophysiology
from the activation of host antigen presenting cells, priming
of immune effector cells, to tissue damage mediated by
cytotoxic effector cells (48–50). Conditioning therapy induced-
intestinal damage is the crucial step in the initiation phase of
acute gastrointestinal GvHD where the inflamed gut mucosa
aggravates the activation of alloreactive T cells (51). IL-1β plays
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FIGURE 7 | Cell population dynamics are displayed with steroid dosing and clinical parameters in representative patients under ECP therapy.

a crucial role herein: (i) low level of IL-1β could protect
the gut mucosa from damage during the early stages of
inflammation (52), while (ii) increased level of IL-1β is
associated with ongoing and progressive mucosal inflammation
in acute gastrointestinal GvHD, which contributes to a state
of uncontrolled inflammation and progressive tissue damage
(53–56). Moreover, the injured tissue could release other
proinflammatory cytokines (such as IL-6 and TNF-α), which
activate and amplify the response of alloreative donor T cells
(57). IL-6 not only enhances the development of Th17 and
Tc17 cells but also inhibits the development of Tregs (58,
59). And TNF-α has the ability to enhance CD8+ T cell
mediated alloreactivity exacerbating immune destruction of

GvHD target tissues (60). Recent study showed that blocking
TNF-α signaling may protect donor hematopoietic stem cells
and progenitors from the host’s detrimental inflammatory signals
after transplantation (61). Therefore, TNF-α inhibitory drugs
such as the monoclonal antibodies infliximab and adalimumab
are now in use in the clinic for the treatment patients with
steroid-refractory GvHD. IL-8 contributes to downstream tissue
damage and transplant-related mortality and has been defined
as a diagnostic and prognostic biomarker for aGvHD (62,
63). In the light of our data, steroids were insufficient to
reduce proinflammatory cytokines in all cases since some
patients still had high levels of cytokines under the high-
dose of immunosuppressive medication. By contrast, ECP
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FIGURE 8 | Schematic overview of mechanisms of immunomodulation in aGvHD patients under ECP therapy. (A) ECP is a cell-based immunotherapy, involving (i)

apheresis with ex vivo collection of peripheral mononuclear cells, (ii) photoactivation with exposure of leukocyte-enriched plasma to the photosensitizing agent

8-methoxypsoralen and ultraviolet A light which results in crosslinking of the pyrimidine bases in DNA leading to cell death through apoptosis, (iii) reinfusion of the

ECP-treated cells to the patient. (B) Apoptosis of ECP-treated cells play a key role in vivo. Engulfing these apoptotic cells by immature dendritic cells results in a

tolerogenic phenotype and promotes tolerance through the secretion of immunosuppressive cytokines such as IL-10 and TGF-β as well. Upregulation of activated

MDSCs, Th2, vδ2+ T cells, FoxP3+ Tregs, double negative (DN) T cells and Bregs result in an overall increase in immune tolerance, accompanied by a decrease of

immune effector cells like IL-17+ T cells and Th1 cells as well as education of TE/EM cells via decreasing CD62L expression. Besides these, ECP promotes the NK

cell differentiation from CD56bri to CD56dim NK cells with loss of expression of NKG2D and CD62L.

has a potent effect on down-modulation of proinflammatory
cytokines.

In line with previous studies (64, 65), our patients showed
neither increased susceptibility to infections, nor reactivation of
CMV under ECP therapy. On the cellular level, the frequency of
cytotoxic CD8+ T cells, the most important mediators of GvL
activity, as well as CD4+CD8+ T cells, γδ T cells, and NKT cells
remained constant under ECP therapy. In addition, CMV specific
CD8+ T cells were maintained under ECP. Particularly, ECP did
neither affect NK activity nor the capacity of virus-specific CD8+

T cells to produce IFN-γ. Our results suggest that ECP therapy
preserves immunity against infections as well as the GvL effect
via maintaining the quality and quantity of effector cells.

Taken together, the key findings of our study indicate
that (1) under ECP treatment steroids could be significantly
reduced. This will make patients less prone to opportunistic
diseases. (2) Newly defined CD19hiCD20hi B cells, potentially
contributing to cGvHD, could be significantly reduced under
ECP treatment. (3) Expression of CD62L on NK cells was
significantly down-regulated by ECP treatment. In addition,
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ECP could also modulate CD62L expression on CD4 TE cells.
This indicates less migration of effector cells into the site
of inflammation. (4) The frequency of Foxp3+CD8+ Tregs,
Foxp3+CD4+ Tregs, and Bregs was significantly elevated.
The elevated frequency of regulatory cells will also hamper
inflammatory processes. (5) Levels of proinflammatory cytokines
were significantly reduced in patients under ECP therapy. (6)
ECP treatment had no significant impact on anti-viral/anti-
leukemic effect. This will make patients less prone to reactivation
of viral disease and relapse of the underlying hematological
neoplasm. A summary of the key findings of this work as
well as of previous studies (27, 28, 66–68) is depicted in
Figure 8.

Therefore, ECP constitutes an effective immunomodulatory
therapy for both aGvHD and cGvHD without hampering anti-
viral and anti-leukemic effects.
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