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Eosinophils are involved in the development of asthma exacerbation. Recent studies

have suggested that sputum and blood eosinophil counts are important factors for

predicting asthma exacerbation. In severe eosinophilic asthma, anti-interleukin (IL)-5

monoclonal antibody decreases blood eosinophil count and asthma exacerbation

frequency. However, even in the absence of IL-5, eosinophilic airway inflammation

can be sufficiently maintained by the T helper (Th) 2 network, which comprises a

cascade of vascular cell adhesionmolecule-1/CC chemokines/eosinophil growth factors,

including granulocyte-macrophage colony-stimulating factor (GM-CSF). Periostin, an

extracellular matrix protein and a biomarker of the Th2 immune response in asthma,

directly activates eosinophils in vitro. A major cause of asthma exacerbation is viral

infection, especially rhinovirus (RV) infection. The expression of intercellular adhesion

molecule (ICAM)-1, a cellular receptor for the majority of RVs, on epithelial cells is

increased after RV infection, and adhesion of eosinophils to ICAM-1 can upregulate the

functions of eosinophils. The expressions of cysteinyl leukotrienes (cysLTs) and CXCL10

are upregulated in virus-induced asthma. CysLTs can directly provoke eosinophilic

infiltration in vivo and activate eosinophils in vitro. Furthermore, eosinophils express

the CXC chemokine receptor 3, and CXCL10 activates eosinophils in vitro. Both

eosinophils and neutrophils contribute to the development of severe asthma or asthma

exacerbation. IL-8, which is an important chemoattractant for neutrophils, is upregulated

in some cases of severe asthma. Lipopolysaccharide (LPS), which induces IL-8 from

epithelial cells, is also increased in the lower airways of corticosteroid-resistant asthma.

IL-8 or LPS-stimulated neutrophils increase the transbasement membrane migration

of eosinophils, even in the absence of chemoattractants for eosinophils. Therefore,

eosinophils are likely to contribute to the development of asthma exacerbation through

several mechanisms, including activation by Th2 cytokines, such as IL-5 or GM-CSF or

by virus infection-related proteins, such as CXCL10, and interaction with other cells, such

as neutrophils.
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INTRODUCTION

Bronchial asthma is a chronic disease with airway hyperresponsiveness (AHR), reversible airflow
limitation, and airway inflammation (1, 2). Asthma is recognized as a heterogeneous disease that
has different phenotypes with distinct clinical characteristics, or different endotypes with distinct
functional or pathophysiological mechanisms including eosinophilic asthma or non-eosinophilic
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asthma (3, 4). Recent studies have suggested that eosinophils
play important roles in the development of asthma exacerbation
(5–7). Therefore, suppressing eosinophilic inflammation and
distinguishing eosinophilic from non-eosinophilic asthma may
be useful for the treatment or prevention of asthma exacerbation.
In the present review, the involvement and possible role of
eosinophils in asthma exacerbation is discussed.

ETHICS STATEMENT

Our studies in this review were approved by the Institutional
Review Board of Saitama Medical University Hospital, and
written informed consent was obtained from the patients.

ROLE OF EOSINOPHILIC INFLAMMATION
IN ASTHMA

Eosinophils, which tend to accumulate at sites of allergic
inflammation, contribute to the development of bronchial
asthma. They release a number of mediators, including specific
granule proteins, such as major basic protein (MBP), radical
oxygen species, cytokines, such as granulocyte-macrophage
colony-stimulating factor (GM-CSF) and interleukin (IL)-8, and
lipid mediators, such as cysteinyl leukotrienes (cysLTs) (8, 9).
However, previous studies investigating the effectiveness of anti-
IL-5 monoclonal antibody (mAb) treatment for asthmatics have
suggested that eosinophils may only play a small role (10,
11). For example, it has been reported that anti-IL-5 mAb
reduces the sputum or blood eosinophil count, but has no effect
on histamine-induced AHR or allergen-induced late asthmatic
response (10), which suggests that eosinophils do not play a
role in the development of AHR or allergen-induced airflow
obstruction.

By contrast, the role of eosinophils in the development of
airway remodeling has been established at a relatively early phase
(12). Eosinophil-deficient mice are reportedly protected from
peribronchiolar collagen deposition (13). Eosinophils produce
transforming growth factor (TGF)-β (14), which may contribute
to airway fibrosis. Additionally, eosinophils can produce cysLTs
(15) and be a major cellular source of cysLTs in the airways of
individuals with seasonal allergic asthma or aspirin-exacerbated
respiratory disease (16, 17), which also contribute to airway
remodeling. Anti-IL-5 mAb suppresses airway remodeling
(reduction of tenascin, lumican, and procollagen III) as well
as airway eosinophils expressing mRNA for TGF-β1 and
concentrations of TGF-β1 in the bronchoalveolar lavage (BAL)
fluid of asthmatics (18).

As for the role of eosinophils in asthma exacerbation, recent
studies have reported that sputum and blood eosinophil counts
are important factors for predicting asthma exacerbation (5–
7). Treatment for normalizing sputum eosinophil counts can
help prevent asthma exacerbation (5), and blood eosinophil
counts are associated with exacerbation frequency (6, 7).
Furthermore, in severe asthmatic patients with sustained blood
or sputum eosinophilia, anti-IL-5 treatment decreases both blood
eosinophil counts and asthma exacerbation frequency (19–21).

Eosinophil-derived granule products, such as MBP mediate
epithelial cell damage, thereby, inducing AHR (22, 23). In
accordance with these findings, anti-IL-5 mAb is now prescribed
for patients with severe eosinophil-dominant asthma in the
clinical setting.

However, even with anti-IL-5 mAb, eosinophils can still
accumulate and activate in the airways of asthmatics. One
study reported that anti-IL-5 mAb may be insufficient to inhibit
eosinophil activation in the airway (24). To accumulate in
asthmatic airways, circulating eosinophils needs to adhere to
vascular endothelial cells and then migrate over cells, which are
regulated primarily by cytokines or chemokines induced by a
number of cells, such as T helper (Th) 2 cells (Figure 1) (25).
The crucial step for selective eosinophil recruitment is likely the
adhesion of eosinophils with endothelial cells through the α4
integrin/vascular cell adhesionmolecule (VCAM)-1 (25–27). The
expression of VCAM-1 in endothelial cells is upregulated by IL-4
and IL-13, after which, blood eosinophils adhere spontaneously
to VCAM-1 (28, 29). The interaction of eosinophils with VCAM-
1 induces eosinophil superoxide anion (O−

2 ) generation and
degranulation, and therefore may be the first step of eosinophil
activation (28–30).

After adhering to the endothelial cells, CC chemokines,
such as eotaxin and regulated upon activation, normal T-cell
expressed and secreted (RANTES) effectively induce eosinophil
transmigration over endothelial cells expressing VCAM-1
(Figure 1) (25, 31). A number of studies have reported an
increase in CC chemokines in the airways of asthmatic patients.
The airway expression of eotaxin and its receptor, CCR3, are
elevated in atopic asthmatics compared with normal controls
(32). In patients with acute eosinophilic pneumonia, monocyte
chemotactic protein (MCP)-4, which is also a CCR3 ligand,
is involved in the development of eosinophil transendothelial
migration (33); however, the role of MCP-4 in asthma has yet to
be fully clarified.

GM-CSF play an important role in eosinophil activation
after migration process, even without IL-5 (Figure 1). GM-
CSF induces eosinophil O−

2 generation and the release of
specific granule proteins in vitro when incubated with VCAM-
1 or intercellular cell adhesion molecule (ICAM)-1 (29).
Furthermore, GM-CSF, but not IL-5, activates eosinophils of
airways after segmental allergen challenge (34, 35). These
findings suggest that in the absence of IL-5, the Th2 network,
which includes a cascade of VCAM-1/CC chemokines/GM-
CSF, is likely the primary pathway for maintaining eosinophilic
infiltration and activation in asthma (25).

Moreover, cysLTs may be involved in the eosinophil
accumulation in the airways of asthma. Inhalation of LTE4
stimulates the accumulation of eosinophils in asthmatic airways
(36). LTD4 upregulates the β2 integrin expression of human
eosinophils and increases eosinophil adhesiveness to ICAM-
1 in vitro (37). Furthermore, β2 integrin-enhanced adhesion
increases the effector functions of eosinophils. Therefore, cysLT-
induced β2 integrin activation may be a key process in regard to
cell activation in asthmatics (25, 29). In addition, LTD4 induces
eosinophil transendothelial migration, O−

2 generation, and the
release of specific granule proteins primarily through β2 integrin
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FIGURE 1 | Mechanisms of eosinophilic airway inflammation in bronchial asthma. IL-5 plays an important role in the development of eosinophilic airway inflammation.

However, in the absence of IL-5, the Th2 network, which includes a cascade of VCAM-1/CC chemokines/GM-CSF, can maintain eosinophilic infiltration and

activation. Yellow text indicates a cascade of VCAM-1/CC chemokines/GM-CSF.

and the cysLT1 receptor (38). Furthermore, leukotriene receptor
antagonist (LTRA) suppresses eosinophil airway inflammation
in vivo (39–41). These findings suggest that cysLTs, along with the
Th2 network, contribute to the development and maintenance of
airway eosinophilic inflammation in asthma.

Periostin is an extracellular matrix protein that is highly
expressed in the airways of asthmatics in response to Th2
cytokines, such as IL-13 (42), and is a biomarker of Th2-
mediated immune responses in bronchial asthma (43, 44).
Periostin also functions as a matricellular protein (42) that binds
to cellular receptors and activates cells, including eosinophils.
Periostin directly induces eosinophil adhesion, O−

2 generation,
and degranulation through the αMβ2 integrin in vitro (45).

INTERACTIONS OF VIRAL INFECTION AND
EOSINOPHILS IN THE DEVELOPMENT OF
ASTHMA EXACERBATION

Viral infection, especially rhinovirus (RV) infection, is a major
cause of asthma exacerbation. In some community-based studies,
viral infections have been identified in 80–85% of cases involving
asthma exacerbation, and RV was found to be involved in about
65% of the patients in whom the causative virus was identified
(46, 47). RVs have tremendous diversity (48). In addition to about
100 classical serotypes of the RV species A (RV-A) and B, over 60
types of RV-C were recently discovered by molecular techniques
(48). Recent clinical data suggests that RV-C (49, 50) or RV-
C and RV-A (51, 52) can induce more severe illness or asthma
exacerbations, compared with other RVs, such as RV-B.

The numbers of not only neutrophils, but also eosinophils,
increase in asthmatic airways during or after a viral infection (53–
55). Experimental RV infection induces increased recruitment
of eosinophils into the airway after segmental allergen challenge
in allergic rhinitis patients, but not in non-allergic volunteers
(53). Viral infection increases the eosinophil count in the
airway epithelium of patients with allergic asthma (55), and
high levels of eosinophilic cationic protein are observed in the
sputum of asthmatic patients with viral infection (54). Therefore,
eosinophils are indeed recruited to and activated in asthmatic
airways during or after a viral infection.

Recent studies have suggested that the presence of eosinophil
inflammation may be a risk factor for virus-related asthma
exacerbation (56, 57). High fractional exhaled nitric oxide and
sputum eosinophils are associated with an increased risk of future
virus-induced exacerbations (57). Epithelial cells are damaged
by eosinophil-derived granule products, such as MBP (23),
and this increases the susceptibility to RV infection (Figure 2)
(58). Furthermore, eosinophils can suppress the RV-induced
expression of interferons (IFNs), anti-viral cytokines, including
IFN-λ from epithelial cells, likely through the production of
TGF-β, resulting in an increased quantity of RV (Figure 2) (56).
Therefore, reducing the eosinophil count could be a reasonable
strategy for suppressing virus-induced asthma exacerbation.

ICAM-1 is a cellular receptor for the majority of RV-A

(major) and all of RV-B (59), and RV infection increases ICAM-
1 expression on epithelial cells (60). ICAM-1 is also an adhesion

molecule, and adhesion of eosinophils to ICAM-1 can activate the

functions of eosinophils (28, 29). Therefore, eosinophil adhesion

to epithelial cells via ICAM-1 may activate eosinophils during
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FIGURE 2 | Interactions of viral infection and eosinophils in the development of asthma exacerbation. RV infection releases a variety of mediators, including CXCL-10

and cysLTs, which can directly activate eosinophils and induce asthma exacerbation, from airway epithelial cells. RV infection increases the expression of ICAM-1,

which also activates eosinophils. On the other hand, activated eosinophils release MBP, which induces epithelial cell damage. Eosinophils also produce TGF-β, which

can suppress the expression of IFN-λ, anti-viral cytokines, on epithelial cells. Therefore, eosinophilic airway inflammation can increase susceptibility to RV infection.

ROS, reactive oxygen species; TGF, transforming growth factor.

RV-induced asthma exacerbation (Figure 2). Cadherin-related
family member 3 (CDHR3) is a recently found receptor for RV-C
(61). In this context, a coding single nucleotide polymorphism
(SNP) in CDHR3 has been shown to be related to the severe
exacerbation of childhood asthma (62). Moreover, this SNP has
been reported to increase the expression of the CDHR3 protein
on the cell surface (61, 62), resulting in increased RV-C binding
and progeny yields (61). Because the cadherin family members
are involved in cell adhesion, eosinophil adhesion to CDHR3
may activate eosinophil functions in a manner similar to that as
ICAM-1.

CXCL10 may also play a role in the virus-induced asthma
exacerbation (Figure 2). RV infection produces CXCL10 from
bronchial epithelial cells in vitro and in vivo (63). Specifically,
concentrations of serum CXCL10 are elevated in virus or RV-
induced asthma; correlations are reported between higher levels
of CXCL10 and disease severity, including airflow limitation
(63). CXCL10 induces eosinophil adhesion, O−

2 generation,
eosinophil-derived neurotoxin release, and cytokine production
through CXCR3, expressed on eosinophils, in vitro (64). As for
other CXCR3 ligands, CXCL9 is involved in severe asthma (65)
and produced from epithelial cells by RV infection (66). CXCL9

induces eosinophil adhesion, O−

2 generation, and eosinophil-
derived neurotoxin release in vitro (64), whereas it inhibits
eosinophil chemotaxis through a CCR3-dependent mechanism

(67, 68).
CysLTs are upregulated in the asthmatic airways during

virus or RV-induced exacerbation (69, 70). Respiratory syncytial
virus (RSV) induces LTC4 synthase expression on bronchial

epithelial cells (71). Therefore, cysLTs are likely to be involved

in virus-induced eosinophilic inflammation (Figure 2), and
LTRA may be useful for virus-induced asthma treatment.
The LTRA montelukast suppresses the respiratory symptoms
of RSV bronchiolitis (72) as well as the frequency of virus-
induced asthma exacerbation (73). Moreover, montelukast
inhibits eosinophil adhesion induced by CXCL10 and ICAM-1
in vitro (74), both are virus-infection-related proteins.

Innate immune responses play roles in the development of
eosinophilic airway inflammation; this process involves type
2 innate lymphoid cells (ILC2) as well as epithelial cell-
related cytokines including IL-33, IL-25, and thymic stromal
lymphopoietin, (75, 76). The ILC2 stimulated by these cytokines
produce IL-5 and IL-13 and induce eosinophilic inflammation.
In fact, ILC2 are upregulated in severe asthmatics (77). Recent
studies have suggested that innate immune responses contribute
to virus-induced asthma exacerbation. For example, IL-33-
dependent type 2 inflammation plays an important role in RV-
induced asthma exacerbation in vivo (78).

During viral infections, damage-associated molecular pattern
molecules (DAMPs) can be released by stressed or damaged
cells, and function as endogenous danger signals (79). Damaged
epithelial cells are capable of inducing eosinophilic migration,
specific granule protein release, and cytokine production,
likely via the release of DAMPs (80). Uric acid (UA) or
adenosine triphosphate (ATP), an important DAMP, activates
eosinophil functions in vitro (81, 82); however, the role of
DAMPs in the development of asthma exacerbation remains
unclear.
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INTERACTIONS OF NEUTROPHILS AND
EOSINOPHILS IN THE DEVELOPMENT OF
SEVERE ASTHMA OR ASTHMA
EXACERBATION

Both neutrophilic and eosinophilic inflammation may play
roles in severe asthma [(83–85)]. Neutrophilic inflammation
has been shown to be involved in the pathogenesis of asthma
exacerbation (86), which occurs frequently in severe asthma.
The European Network for Understanding Mechanisms of
Severe Asthma (ENFUMOSA) study suggested that compared
with patients with mild-to-moderate asthma, those with severe
asthma have both a greater sputum neutrophil count and an
increased release of eosinophil-derived mediators (84). IL-8
plays an important role in the accumulation of neutrophils
in inflammation sites, and IL-8 expression is upregulated in
the airways of severe asthmatic patients (87, 88). In addition,
we reported that neutrophils that had migrated to IL-8
induce the transbasement membrane migration of eosinophils
in vitro, even without eosinophil chemoattractants (89); this
neutrophil-induced eosinophil migration is suppressed by LTB4
antagonist or platelet-activating factor (PAF) antagonist. LTB4
and PAF are potent chemotactic factors for eosinophils (90, 91);
therefore, IL-8-stimulated neutrophils can lead to eosinophil
accumulation in asthmatic airways through LTB4 or PAF
(92).

Lipopolysaccharide (LPS) may play a role in inducing IL-8
or neutrophilic inflammation in the airway of severe asthmatics.
In the BAL fluid of asthmatic children, LPS levels correlate
with airway neutrophils or IL-8 (93). Furthermore, the BAL
fluid LPS and genes associated with LPS signaling activation are
higher in corticosteroid-resistant asthma (94). Furthermore, a
positive correlation is observed between IL-8 mRNA expression
in BAL cells and the amount of LPS in BAL fluid (94). Several
studies have suggested that Gram-negative bacteria or house
dust plays a role in the LPS upregulation in the airways of
severe asthmatics. We previously reported that LPS-stimulated
neutrophils induce the transbasement membrane migration of
eosinophils in vitro (95).

IL-17 is another candidate for the upregulation of IL-8
expression (96). Sputum IL-17 concentration correlates with the
clinical severity of asthma (97), and the airway expression of
IL-17 is increased in severe asthmatics only (98). Furthermore,
a correlation between the number of bronchial cells that
produce IL-17 and the number of bronchial neutrophils and
frequency of asthma exacerbation has been reported (86). In
addition, we reported that the dopamine D1-like receptor
antagonist attenuates the Th17-mediated immune response
and neutrophilic airway inflammation in mice (99) this could

be reasonable strategy for controlling neutrophilic airway
inflammation in severe asthma or asthma exacerbation.

The role of neutrophil extracellular traps (NETs) in the
pathogenesis of asthma exacerbation has recently been
highlighted. In a mouse model, RV infection triggered a
double-stranded DNA (dsDNA) release that was associated
with the formation of NETs; this is known as NETosis (100).
Furthermore, in humans, a significant correlation is identified
between the release of host dsDNA after RV infection and the
exacerbation of type-2 allergic inflammation (100).

ROLE OF MAST CELLS AND
PROSTAGLANDIN (PG) D2 IN
EOSINOPHILIC INFLAMMATION OF
ASTHMA

Mast cells also play roles in the development of severe asthma.
Mast cell numbers and PGD2 concentrations are increased in
the lower airway of patients with severe asthma (101, 102). Mast
cells are major cellular sources of PGD2, and D prostanoid (DP)
and chemoattractant receptor-homologous molecule expressed
on Th2 cells (CRTH2) are receptors for PGD2 (103). Recently,
the role of CRTH2 in the pathogenesis of asthma has been
highlighted. CRTH2 is expressed on Th2 cells, ILC2, eosinophils,
and basophils (103). PGD2 induces chemotaxis in eosinophils
through CRTH2 (104), and CRTH2 antagonist suppresses
eosinophil chemotaxis and respiratory burst (105). CRTH2
antagonists are already being developed (103, 106), and clinical
trial data suggest that CRTH2 antagonists may target eosinophilic
asthma (103, 107).

CONCLUSION

Eosinophils are likely to contribute to the development of asthma
exacerbation. This process can involve cytokines, such as IL-5
or GM-CSF, chemokines, such as CCR3 ligands, matricellular
proteins, a danger signal, and other cells, such as neutrophils or
mast cells.
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