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Discussion of the antibody repertoire usually emphasizes diversity, but a conspicuous

feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic

variants of germline light chain genes is also limited, even in well-studied species. In this

review, the implications of this lack of diversity are considered. We explore germline and

rearranged light chain genes in a variety of species, with a particular focus on human and

mouse genes. The importance of the number, organization and orientation of the genes

for the control of repertoire development is discussed, and we consider how primary

rearrangements and receptor editing together shape the expressed light chain repertoire.

The resulting repertoire is dominated by just a handful of IGKV and IGLV genes. It has

been hypothesized that an important function of the light chain is to guard against self-

reactivity, and the role of secondary rearrangements in this process could explain the

genomic organization of the light chain genes. It could also explain why the light chain

repertoire is so limited. Heavy and light chain genes may have co-evolved to ensure that

suitable light chain partners are usually available for each heavy chain that forms early in B

cell development. We suggest that the co-evolved loci of the house mouse often became

separated during the inbreeding of laboratory mice, resulting in new pairings of loci that

are derived from different sub-species of the house mouse. A resulting vulnerability to

self-reactivity could explain at least some mouse models of autoimmune disease.

Keywords: immunoglobulin light chain, receptor editing, self-tolerance, antibody repertoire, V(D)J rearrangement,

models of autoimmune disease, sub-species of the house mouse

INTRODUCTION

The success of the humoral arm of the adaptive immune system depends upon a diversity of
antibody specificities within an individual’s population of circulating B cells. This diversity is made
possible by the process of gene recombination that takes place during B cell development, creating
functional antibody heavy and light chain V(D)J transcripts from relatively small sets of Variable
(V), Diversity (D), and Joining (J) genes. The basic processes underlying V(D)J recombination are
now well understood (1, 2) and recently, thanks to advances in sequencing technologies that allow
millions of different V(D)J gene rearrangements to be explored in a single individual, much has
been learnt about the nature of the expressed antibody repertoire (3–8). Most repertoire studies,
however, have focused upon the heavy chain repertoire. The nature of the light chain repertoire is
less clear.
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The diversity of the antibody repertoire is a consequence
of the permutations of heavy chain V, D, and J genes,
and light chain V and J genes, that are possible given the
size of these sets of genes within the genome, and of the
permutations of heavy and light chain pairings. This component
of the overall diversity is referred to as combinatorial diversity,
and is a simple reflection of the number of available heavy
chain genes and κ and λ light chain genes. Additional
diversity is generated during the recombination processes by
imprecise joining at the V(D)J junctions. This is referred to
as junctional diversity, and is principally determined by the
extent to which random nucleotides are inserted between joining
genes (4, 6).

In this review, we highlight important consequences for
repertoire development that result from the organization of
light chain genes within the mammalian genome. In particular,
this organization facilitates repeated rounds of light chain gene
rearrangement through the process of receptor editing. This
helps to ensure that virtually all developing B cells successfully
generate productive light chain rearrangements.

A number of biases and constraints are discussed which lead
to substantially less diversity in the light chain repertoire than is
usually calculated, and this limited diversity appears to be present
in a wide range of species. We conclude that diversity is not the
raison d’être of the light chain repertoire. In light of substantial
evidence for a special role for light chains in autoimmune
reactivity, we propose that the co-evolution of heavy and light
chain genes has resulted in a limited light chain repertoire
that usually serves to avoid self-reactivity. This hypothesis is
explored through an examination of the generation of light chain
repertoires in inbredmouse strains that are widely used inmodels
of autoimmune disease.

THE NUMBER AND ORGANIZATION OF
LIGHT CHAIN GENES WITHIN THE
MAMMALIAN GENOME

To properly understand how the heavy and light chain
repertoires are generated, it is essential to have a detailed
knowledge of the number of rearranging germline genes that
give rise to these repertoires, and of their organization within the
genome. The number of genes per species is highly variable as a
result of dynamic evolutionary processes in these complex gene
families. This can be appreciated by examining the phylogenetic
relationships among genes within and between species, and is
demonstrated in a phylogeny of functional human and mouse
heavy and light chain variable genes (Figure S1). However, our
understanding of the precise evolutionary histories of these genes
across a larger range of species remains limited, largely due to a
paucity of available genomic data.

The organization of the light chain genes is particularly
complex, and quite different to that of the heavy chain genes.
Heavy chain genes are found within a single gene locus (IGH),
while light chain genes are generally found as two separate gene
loci-the κ locus (IGK) and the λ locus (IGL). These two loci
are found in virtually all mammalian species, while loci for

these and other light chain variants are found in bony and even
cartilaginous fish (9, 10). Such a general distribution of light chain
genes between separate loci is intriguing, and suggests that this
genomic organization may carry evolutionary advantages.

Within the κ chain loci of humans, mice and most other
species, genes are organized in a similar fashion to the genes
of the heavy chain locus (11–15). That is, a cluster of IGKV
genes are found 5′ of a small number of IGKJ genes, with the
IGKJ gene cluster located 5′ of a single IGKC gene. The dog
genome is unusual in that half the canine IGKV genes are located
upstream, and half are located downstream of the IGKJ and IGKC
genes (16).

The number of functional IGKV genes varies widely between
species, and this number may have some relationship to species
size (Figure S1). We have argued that small species may require
more germline genes because of the small burst size of the
germinal center reaction in those species (17). As the number
of cells responding to antigen is limited in small species, there
is less chance for important higher affinity antibodies to emerge
from the germinal center through the process of somatic point
mutation. Critical specificities must therefore be encoded in the
germline.

Sequencing of the human κ locus has identified 44 functional
IGKV genes and open reading frames, which are found in two
clusters that arose through segmental duplication (18, 19). An
additional three functional IGKV sequences may be present in
some haplotypes (20). A comparable number of functional IGKV
genes (n = 54) was recently characterized in genomic sequences
from the rhesus macaque, a commonly used non-human primate
model (21). In contrast, studies of the horse genome reference
sequence identified only 19 apparently functional IGKV genes
(22), while 111 and 135 potentially functional IGKV genes
have been found in the guinea pig and rat genome reference
sequences, respectively (23, 24). Among mammalian species
studied to date, the microbat (Myotis lucifugis) is unique in
that it lacks a κ locus (25). It has been suggested that this
may be part of a general simplification of immune function
in a species that has met the weight to muscle challenge
that is necessary for flight capability (26). This hypothesis
is indirectly supported by the fact that the κ locus is also
absent from the genome of chickens (25) and zebra finches
(27), and it may have been lost from the genomes of all bird
species.

In line with numbers reported in the small rodent species
mentioned above, the genome of C57BL/6 mice carries around
101 functional IGKV genes (28). This number may, however,
not be accurate for other inbred mouse strains. We recently
reported that the heavy chain loci of different inbred strains of
mice are derived from different sub-species of the house mouse.
As a result, the C57BL/6 strain carries 99 functional IGHV
genes, but the BALB/c strain carries 163 functional IGHV genes
(29). We have also noted that based on available whole-genome
SNP data (30), almost all inbred strains carry κ chain loci that
appear to be derived from the Mus musculus domesticus sub-
species (17). NOD/ShiLtJ mice are unusual in that they carry a
M. m. castaneus-derived κ locus (17). Interestingly, many of the
distinct κ genes of this diabetes-prone strain are identical to κ
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genes of the Systemic Lupus Erythematosis (SLE)-prone (NZB×

NZW)F1 and MRL strains (31). SNP analysis shows that parts
of the IGKV loci of NZB and MRL mice are also derived from
the M. m. castaneus sub-species (Figure 1). This confirms an
observation from a very early study of BALB/c and NZB-derived
myeloma proteins. It was reported that NZB and BALB/c mice
share some κ light chain sequences, but that other κ genes differ
markedly between the strains (32). SNP analysis shows that the
chr6:67.5m−68.2m region of the κ locus of the NZB strain is
of M. m. castaneus origin. The chr6:68.2m−68.5m region is of
uncertain origin, and the remainder of the NZB κ locus is M.
m. domesticus-derived. Genes of M. m. castaneus origin are also
found in the MRL strain, in the region chr6:68.8m−70.7m (see
Figure 1).

The λ locus of most species investigated to date includes a
set of IGLV genes that are located 5′ from a variable number
of tandem cassettes, each made up of an IGLJ gene and an
IGLC gene. The human locus includes as many as 38 functional
IGLV genes and Open Reading Frames (18) and five functional
J-C gene pairs (34). In the rhesus macaque, 47 IGLV genes are
predicted to be functional based on genomic data (21), and in the
pig, there are nine functional IGLV genes (35). In these species
too, the IGKV genes are located 5′ of functional J-C pairs, but
this organization is not invariant. 144 IGLV genes of uncertain
functionality have been identified in the horse, with 110 genes
being located upstream and 34 being located downstream of
the IGLJ/IGLC cluster (22, 36). The locus of the mouse is also
differently organized.

The C57BL/6 genome includes just three IGLV genes
(Figure S1), and there has been speculation that IGLV genes
might have been lost during the inbreeding of laboratory strains.
In fact, diversity is lacking in wild mice of all three Mus
musculus subspecies (37). Two of the C57BL/6 IGLV genes
are associated with one functional J-C gene pair, while the
third IGLV gene is associated with a second J-C pair. Lambda
rearrangement in the mouse takes place within each of the
two VJC units, with little or no recombination between the
units (38).

The genes of both the human and mouse λ IGLV loci are
all in the same transcriptional orientation as the λ J-C gene
clusters (18, 39). The V, D, and J genes of the heavy chain loci
of mammalian species are also found in the same orientation as
their associated constant region genes (40–42). The κ chain locus
of these species, on the other hand, includes many IGKV genes
that are found in the opposite orientation to their associated IGKJ
and IGKC genes. In the human, the orientation of the distal κ

gene cluster is opposite to that of the IGKJ genes and IGKC gene,

while all but the two most 3
′

genes of the proximal gene cluster
share their orientation with the IGKJ and IGKC genes (20). The
κ locus of the mouse also includes IGKV genes in both the same
and the opposite orientation to their respective IGKJ and IGKC
genes (13). Such variable orientations of IGKV genes have also
been reported in other species including the elephant (43), horse
(22), pig (14), dog (16), and rhesus macaque (21).

In the horse, which is a species with a λ -dominant repertoire,
IGLV genes are found both upstream and downstream of the λ

J-C gene clusters. Many of these sequences are pseudogenes, but
the few functional genes in the downstream cluster are found in
the opposite orientation to that of the horse J-C genes, thereby
allowing the genes to recombine (36).

The orientation of genes has other consequences for the
generation of diversity. The opposite orientation of many
IGKV genes within the murine and human κ loci means that
primary rearrangements of such genes do not lead to deletion
of the genes that are located between recombining IGKV and
IGKJ genes (see Figure 2). This retention of genes becomes
important if a rearrangement results in a non-productive chain
or a self-reactive B cell receptor (BCR). In such situations,
all other IGKV and IGKJ germline genes remain available for
secondary rearrangements (see discussion below). In any cell
that experiences such successive rounds of recombination, the
order and orientation of the genes within the locus will be
subject to complex changes, and this will have consequences for
the repertoire that is generated by secondary rearrangements
(Figure 2).

The frequencies with which different V, D, and J genes
are utilized in gene rearrangements vary by many orders
of magnitude. This appears to reflect, at least in part, the
accessibility of genes, and their positions within the genome
(28, 44, 45). Dramatic changes in the order of genes and in
the distances between IGKV and IGKJ genes, arising from
a primary rearrangement of genes, should therefore lead to
changes to gene accessibility. This may mean that the utilization
frequency of a gene can vary between primary, secondary and
subsequent rearrangements. Complex changes could therefore
compromise the tight regulation that otherwise appears to guide
the generation of the antibody repertoire. In many species, this
risk to the regulation of the repertoire may be mitigated by
the action of Kappa Deleting Elements (KDE). The consecutive
rearrangements that are possible within the κ locus can be
terminated by KDE-mediated recombination, driving B cells to
the expression of genes of the λ locus (46). This may also prevent
or lead to the resolution of allelic inclusion, which can arise
because of the orientation of IGKV genes within the locus (see
Figure 2) (47).

Kappa Deleting Elements (KDE) are located downstream of
IGKC genes, and they appear to be highly conserved within
the mammalian genome (48). The mouse KDE is referred to
as the Recombining Segment (RS), and it is distinct but very
similar to the Recombination Signal Sequences (RSS) located
adjacent to the 3′ ends of the IGKV genes and the 5′ ends
of the IGKJ genes (49). KDEs of all species studied are made
up of conserved heptamer and nonamer sequences separated
by 23 base pair spacers (48). The KDEs function by allowing
recombination between the KDEs and recombining elements that
contain the palindromic heptamer CACAGTG. These are located
within the IGKJ-IGKC intron and in the RSS at the 3′ ends
of the IGKV genes. Such recombination effectively terminates
the involvement of the rearranging locus in the generation of
diversity. This will drive recombination from the first to the
second κ locus (i.e., on the alternate chromosome), or from
the second κ locus to the λ gene-bearing chromosomes (see
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FIGURE 1 | Predicted sub-specific origins of germline haplotypes found in the (A) immunoglobulin IGHV and (B) immunoglobulin IGKV loci among selected classical

inbred and wild-derived mouse strains. The MRL/MpJ strain is the parental strain of the MRL/lpr strain, and although MRL/MpJ mice carry a normal Fas gene, they

are also prone to autoimmunity. The lowest three strains shown are wild-derived, with genomes that are representative of the three major subspecies. M. m.

domesticus-derived sequences are shown in blue, M. m. musculus-derived sequences are shown in red, and M. m. castaneus-derived sequences are shown in

green. Data from Yang et al. (30). Graphics by Mouse Phylogeny Viewer (33).

Figures 2, 3). It is likely that despite the conservation of this
element within the κ locus, the strength of action of the elements
varies between species. The preponderance of κ chains in the
expressed antibody repertoire of themouse, for example, suggests
that the mouse RS usually fails to drive rearrangement to the
λ locus. Instead, each murine κ locus will likely be rearranged
to exhaustion, and this will prevent the overexpression of the
handful of λ genes that remain in the mouse genome. The
activities of RS in different sub-species of the house mouse have
not been explored.

Gene Rearrangement of the Light Chain
Loci
The light chain repertoire is shaped by the order of gene
rearrangement, and early studies in the mouse and human
showed that rearrangement begins with the κ locus (34, 50).
This may not be true for all species. It has recently been
shown that the λ locus rearranges first in the fetal and neonatal
pig (51, 52). Timing therefore requires further investigation,
particularly in species with repertoires that are dominated by
the λ light chain, for regulation of the expressed repertoire
could be more difficult if the minor locus was to rearrange

first. If a species had just a handful of functional κ genes, and
abundant functional λ genes, initial rearrangements of the κ

locus would risk over-expression of the few available IGKV
genes.

In the mouse and human, if an initial κ rearrangement is
unproductive or self-reactive, additional rounds of secondary
rearrangement can proceed, in a process known as receptor
editing (53–55). Receptor editing is usually discussed as a
pathway to resolution of auto-reactivity, either in developing
B cells in which self-reactivity is generated by primary
rearrangements (56), or in mature antigen-selected B cells where
self-reactivity may result from somatic point mutations (57). Less
attention has been paid to the more general role that receptor
editing plays in shaping the formation of the repertoire.

The organization of genes within the light chain loci facilitates
receptor editing, and this increases the likelihood that each B cell
will form an in-frame light chain rearrangement (58). As long
as unrearranged V genes remain 5′ of a VJ rearrangement, and

unrearranged J genes remain 3
′

of the rearrangement, receptor
editing can continue (see Figure 2). In the mouse, the potential
of κ chain receptor editing is maximized by a bias toward
rearrangement of the 5′ IGKJ1 gene (59), and this targeting
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FIGURE 2 | Three rounds of VJ rearrangement of the κ locus, that might result from non-productive rearrangements or rearrangements resulting in self-reactive BCR.

The initial configuration of genes (top) shows four IGKV genes in the reverse orientation to the IGKJ and IGKC genes, and 3 IGKV genes in the orientation shared with

those genes. Gene loss, as well as the changing order and orientation of genes is highlighted through successive rounds of rearrangement. Expression of the final

configuration (shown in row 4), which threatens allelic inclusion and possible continuing auto-reactivity, is terminated through the action of the Kappa Deleting Element

(bottom).

results from the action of the proximal IGKJ germline transcript
promoter (60).

A process of serial rearrangement of the κ chain locus
may continue on one chromosome until all possibilities of
recombination have been exhausted. Recombination will then
proceed on the second κ chromosome (Figure 3). A failure to
produce a productive, self-tolerant rearrangement on the second
chromosome, after multiple rounds of rearrangement, will be
followed by rearrangement of the λ loci.

The human λ locus also seems permissive of receptor editing
(61), and the absence of deletional elements in the λ locus
should maximize the potential of serial λ recombination in the

human. This should ensure that relatively few human B cells
fail to make a suitable productive light chain rearrangement
that is self-tolerant when expressed in association with the cell’s
heavy chain rearrangement. The possibility of repeated rounds
of λ rearrangement could be particularly important for the
avoidance of self-reactivity, for it has been suggested that λ -
bearing human B cells are less prone to self-reactivity than κ-
bearing B cells (61). The λ chains of these cells may also provide
stability during an ongoing immune response, for it has been
shown that the codon usage of λ genes reduces the likelihood
of structural changes arising from accumulating somatic point
mutations (62).
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FIGURE 3 | Light chain rearrangements provide multiple pathways to the production of self-tolerant B cells. Alternative pathways are a consequence of

rearrangements of the light chain loci that result in non-productive or auto-reactive BCR. Beginning with rearrangements of the κ locus on the first selected

chromosome, a succession of light chains can be paired with an existing heavy chain that is already expressed on the surface of the pre-B cell. Each resulting BCR is

assessed for affinity to self-antigen. Cells expressing autoreactive antibodies can be rescued via further rounds of receptor editing. If repeated rounds of

rearrangements of a locus fail to generate a functional, self-tolerant antibody, and the possibilities of rearrangement are exhausted, the process may continue on other

chromosomes. Rounds of κ rearrangement may be prematurely curtailed by the action of the kappa deleting element. B cells unable to generate self-tolerant

antibodies despite multiple rounds of receptor editing will ultimately be deleted or rendered anergic. In contrast, B cells that generate successful light chain

rearrangements that result in self-tolerant antibodies will go on to develop further into immature B cells.

Population Variation in the κ and λ Gene
Loci
Combinatorial diversity is expanded by heterozygous gene loci,
and such diversity appears to be of functional significance (63).
It is therefore important that repertoire studies include a focus
on alleles and gene heterozygosity. Although a few new allelic
variants of human IGKV genes have recently been reported
(19), the reported IGKV germline gene repertoire appears to
be relatively complete (64). According to the IMGT reference
directory, 26 IGKV genes have no known allelic variants, while
15 IGKV genes have only one reported variant and five have two
known variants. The extent of allelic variation within the κ light

chain locus could be even less than is indicated in the IMGT
reference directory, for some of the reported variants are likely
to be artifacts arising from sequencing errors. This is certainly
the case for many reported IGHV alleles that were identified in
early sequencing studies (65).

The reported human IGLV germline gene repertoire may also
be relatively complete, for only five new alleles have been reported
since 1997. These sequences are more varied than genes and
allelic variants of the IGH and κ loci (66), but like the IGKV
repertoire, there appears to be relatively little allelic variation
amongst the IGLV genes. Functional and ORF allelic variants
have been reported for 24 IGLV genes, but not for 15 other
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IGLV genes. No more than four alleles are identified in the
IMGT reference directory for any IGLV gene (http://www.imgt.
org/vquest/refseqh.html).

In contrast to the genes of the κ and λ loci, there is
just a single functional IGHV gene (IGHV3-NL1) that lacks
reported allelic variants in the IMGT reference directory or
in the IgPdb database (https://cgi.cse.unsw.edu.au/~ihmmune/
IgPdb/). So many common variants are known for some genes
that heterozygosity in any individual is almost assured. For
example there are 16 IGHV1-69 gene sequences in the IMGT
reference directory, and a further 13 alleles have been inferred
from analysis of high throughput genomic and AIRR-seq data
(67, 68). Although the larger number of IGHV allelic variants
could reflect the greater attention that has been given to
defining this set of germline genes, there is additional evidence
that points to a lack of diversity in the light chain gene
repertoire.

A lack of allelic variation in the human κ locus is supported
by AIRR-seq studies of κ rearrangements. In a study of four
individuals, involving the dominant three human IGKV gene
families (IGKV1, IGKV2 and IGKV3), VJ rearrangements were
seen involving between 20 and 25 genes (69). One individual
was homozygous at all gene loci. In the three other individuals,
heterozygosity was only seen at 1 or 2 of the IGKV loci (69). The
contrast with the heavy chain locus is striking. A recent AIRR-seq
study of 95 individuals explored heterozygosity at 50 heavy chain
IGHV gene loci (70). Other than in three individuals from whom
relatively few sequences were generated, study participants were
shown to be heterozygous at between 20% and 40% of the loci. Six
gene loci were heterozygous in over 50% of study participants.
Only six genes that were relatively abundantly present in
the datasets showed homozygosity in all individuals (70).
Similar patterns of heterozygosity within IGHV coding segments
have also been noted from targeted genomic sequencing
data (67).

In addition to allelic variation, gene copy number variation
is also enriched in the IGHV locus, relative to IGLV and IGKV.
Greater than half of the known human functional/ORF IGHV
genes have evidence of copy number variation (45, 67, 70–
75), compared to only one and three IGLV and IGKV genes,
respectively (76–78).

Additional albeit indirect evidence for an evolutionary drive
to conserve rather than diversify the human κ locus comes from
the similarity of the genes in the proximal and distal IGKV
clusters. The large segmental duplication that gave rise to the
human κ locus appears to have occurred since the divergence
of the human lineage from the most recent shared ancestor
with other great apes (11). There are 23 functional IGKV
genes and ORFs in the proximal cluster, and 22 in the distal
cluster. Eighteen paired sequences are found in both clusters,
and no coding changes have evolved at eight of these paired
gene loci. In addition, one sequence in each of two other
sequence pairs are now non-expressible pseudogenes. Expressed
variation is therefore concentrated in just 8 of the 18 sequences.
Furthermore, comparisons of nucleotide variation across the
entirety of the sequence comprising the large proximal and distal
gene clusters reveal strong similarity. Diversity within the large

segmental duplications harboring these gene clusters appears to
be much lower on average (>6 fold less) than that observed
within segmental duplications found in the IGHV locus (19).
We have speculated that this lack of diversity in IGKV may
be the result of homogenizing effects of gene conversion events
between the proximal and distal regions, as such events have been
explicitly documented (19). We also reported that locus-wide
IGHV diversity is ∼3-fold higher than IGLV diversity; in fact,
IGHV diversity appears to be generally higher than the genome
average (19). Earlier analyses based on limited datasets have
suggested that nucleotide and amino acid substitution patterns
within V segments may differ between IGHV, IGKV, and IGLV
loci (79); specifically, and consistent with decreased genomic
diversity in κ locus haplotypes, Schwartz and Hershberg showed
that, relative to κ chain V segments, heavy and λ chain genes
exhibit greater amino acid diversity in both framework and
complementarity determining regions (66). Together, these data
suggest contrasting evolutionary histories that have resulted in
different genetic features being associated with the human heavy
and light chain loci.

The κ locus of the mouse seems to display the same lack of
variation that is seen in the human locus. The IGKV locus was
first mapped using YACs and BACs derived largely fromC57BL/6
and C3H mice (12, 80, 81), and these sequences dominate
the IMGT mouse IGKV database. An alternative assembly of
the mouse κ locus was later produced based upon data from
the C57BL/6, A/J, 129 and DBA/2 strains (82). Each of the
IGKV genes previously reported by Zachau and colleagues were
mapped to this new assembly, and they were all found to have
>99% identity. Not a single allelic variant was reported from this
study, although it is true that their approach means that some
highly similar but previously unreported polymorphisms may
have been overlooked (82).

Evidence of a lack of allelic variation amongst germline genes
within mouse strains also comes from analysis of the IMGT
database. Studies of light chain germline genes have included
a sampling of a wide variety of inbred strains, and from wild-
derived M. m. musculus and M. m. castaneus mice (83–85).
Yet the IMGT database includes allelic variants for just 11
functional IGKV genes, and when analysis is confined to reports
from studies of strains appearing to carry M. m. domesticus-
derived genes, variants have only been seen for 6 IGKV genes.
Confirmation that the apparent lack of variation is genuine,
rather than reflecting insufficient investigation of mouse light
chain genes, needs to be pursued through more comprehensive
surveys of variation across wild mice from each of the sub-
species.

The Diversity of the Expressed Light Chain
Repertoire
It is generally held that a stupendous diversity is the defining
characteristic of the antibody repertories of all species. This
was famously expressed by Peter Medawar as the miracle of
immunology: “that a rabbit yet unborn will be able to make
antibodies to an antigen not yet synthesized” (86). We have
recently argued that the production of antibodies that target
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molecules never before seen, and unlikely to be seen, could
be a costly investment for many species (17). The immune
repertoires of different species may have developed varying
levels of diversity in response to the quite differing evolutionary
pressures faced by each species. Some of the most significant
pressures may result from basic aspects of the biology of species,
including their differing reproductive strategies and longevity,
and especially from their varying sizes. The antibody repertoires
of small species are necessarily small, and there is therefore a
greater need for regulatory processes to steer the development
of their repertoires toward specificities that target key pathogens
(17). This may explain why in comparison to the human
antibody repertoire, the murine repertoire includes more heavy
chain clonotypes that are shared by many individuals of the
species (6, 17, 87).

Public clonotypes may be rare in the human heavy chain
repertoire, but there is a surprising lack of diversity in the human
light chain repertoire, and public clonotypes account for about
60% of the human κ (69) and λ (88) light chain repertoires.
This is in part a consequence of very strong biases in light chain
gene usage. Six IGKV sequences dominate reported human IGK
rearrangements: IGKV3-20∗01, IGKV3-15∗01, IGKV3-11∗01,
IGKV1-5∗01, IGKV2-30∗01, and IGKV1-39∗01/IGKV1D-39∗01
(69). The IGKV3-20∗01 gene alone is seen in over 30% of
rearrangements in some individuals (69). On the other hand,
some genes are utilized at very low frequencies. In fact, amongst
22,193 rearrangements analyzed from four individuals, we saw no
sequences that utilized eight reportedly functional IGKV genes
(69).

Similarly, while the mouse may have over 100 available
IGKV genes, just seven genes are responsible for over 40% of
rearrangements, and the utilization frequencies of some IGKV
genes are as low as 0.001% (28).

Biased usage of λ IGLV genes is also seen. Three IGLV
genes account for more than 50% of human rearrangements,
and individual IGLV genes are used at frequencies that range
from 0.02 to 27% (89). In the neonatal pig, biases are even
more extreme, with three IGLV genes accounting for 70%
of rearrangements (51). The utilization of the four functional
human IGLJ genes are also affected by biases, with frequencies
varying from just 5% for IGLJ1 to almost 55% for IGLJ7 (90, 91).

The lack of D genes in light chain rearrangements limits their
diversity. Diversity is further limited by the fact that relatively
few nucleotides are lost from κ and λ V and J gene ends by
exonuclease removals and few N nucleotides are added to the
junction of the joining genes. Public human κ clonotypes have
on average just 0.4 added N nucleotides, while even private
clonotypes have an average of only 2.5N additions (69). Similarly,
on average, public λ VJ junctions include a single N addition,
and private junctions average around two additions (88). There
is even less N addition in the mouse (92), and interestingly,
this is also true in the humanized mouse (88). This severely
limits junctional diversity of the complementarity determining
region 3 (CDR3) of light chains in the mouse. Together with the
lack of combinatorial diversity, this ensures that the light chain
repertoire of the mouse and human are highly constrained. In an
analysis of over 250,000 mouse κ chain VJ rearrangements from

59 mice, over 90% of the sequences encoded just 1000 amino
acid sequences (28). A similar number of amino acid sequences
dominate the human κ chain repertoire (69).

LIGHT CHAINS AND THE CONTROL OF
SELF-REACTIVITY

The light chain repertoire is constrained, and there is an
extensive body of research that suggests that an important
factor that constrains the repertoire is the need for light
chain rearrangements to minimize BCR self-reactivity. Human
antibodies formed with κ chains may have a greater tendency
toward self-reactivity (61), but through repeated rounds of κ

rearrangement, and through similar rounds of λ rearrangement,
much self-reactivity seems to be avoided. This may explain the
recent observations that reduced light chain editing is associated
with several autoimmune conditions in the human, including
Systemic Lupus Erythematosis (SLE), type 1 diabetes (T1D), and
myasthenia gravis (47, 93). This has also been observed in several
mouse models of autoimmunity (47). It has also been shown
that reduced KDE rearrangements can lead to dual κ and λ

chain expression, through a failure to delete κ rearrangements
in λ-switched cells, and this disturbance of light chain editing is
associated with SLE (94).

The study of cells in which both κ and λ rearrangements are
present has highlighted the fact that certain IGKV genes may be
prone to self-reactivity. Biases in IGKV gene expression are seen
when productive κ rearrangements are studied in λ-bearing B
cells, and compared with κ rearrangements from κ-bearing cells
(95). This comparison is possible because of the persistence of κ

VJ rearrangements in cells that have switched to a λ light chain
rearrangement as a consequence of the earlier generation of a
self-reactive κ positive BCR. The biased gene expression therefore
points to a tendency of some genes to mediate self-reactivity.

Some heavy chain IGHV genes are also associated with
autoreactivity, and human IGHV4-34 in particular has been
implicated in anti-red blood cell autoimmune responses (96).
It may be, however, that this association should be seen as
resulting from a difficulty in finding a suitable light chain partner
for IGHV4-34. The persistence of IGHV4-34 in the human
population, and its expression at relatively high frequency within
the antibody repertoire, points to the value of IGHV4-34 heavy
chains when a self-tolerant light chain partner is found.

Evidence in support of a special role for light chains in the
etiology of autoimmune diseases also comes from a consideration
of mouse disease models. There are several types of mouse model
of autoimmune disease (97). Autoimmunity can be induced by
challenging animals with self-antigen in the presence of powerful
adjuvants. An example is the Experimental Allergic Encephalitis
(EAE) model that involves the challenge of SJL mice with spinal
cord homogenate (97). Other models of autoimmune disease
involve the spontaneous development of disease. This is the
case with the NOD Type 1 Diabetes model and models of SLE
using MRL/lpr mice and (NZB × NZM)F1 mice (97). These
spontaneous models may more closely approximate human
disease than the antigen challenge models.
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A third kind of model relies upon genetic manipulation
of animals using gene knockout and transgenic techniques.
These models have been particularly important for the study
of self-reactive B and T cells, and how they are deleted or
otherwise controlled. Some of these models involve the use of
transgenic antigen and antibody pairs (eg HEL/anti-HEL) (98).
Other models use transgenic immunoglobulin chains derived
from autoreactive B cells arising in autoimmune-prone mice.
For example, Andrews and colleagues recently published a study
exploring receptor editing in mice that carry an IGKV4-IGKJ4
anti-DNA transgene (99). Although more self-reactive cells were
seen when the transgene was expressed in autoimmune-prone
MRL/lpr mice, self-reactive B cells were also generated when the
transgene was expressed in C57BL/6 mice (99).

This IGKV4-IGKJ4 anti-DNA transgene sequence is derived
from a monoclonal antibody that was first isolated from an
MRL/lpr mouse in 1987 (100, 101). In describing this and other
anti-DNA antibodies, the authors acknowledged their lack of
knowledge of the germline genes inMRL/lpr mice, but concluded
that themAb antibody gene sequences were relatively unmutated,
based upon a consensus sequence created from both the anti-
DNA and other non-DNA-specific antibodies. The apparent
presence of some somatic point mutations was, however, deemed
to be highly significant. In fact studies describing these antibodies
stand as the first evidence for the possibility that self-reactive
B cells can arise from self-tolerant B cells by the accumulation
of somatic point mutations within the germinal center reaction
(100, 101).

Thirty years later, our understanding of MRL/lpr germline
genes is still far from complete, but comparisons can now
be made between the anti-DNA antibodies and the complete
repertoire of C57BL/6 IGKV genes and other murine IGKV
genes. This includes sequences that are likely to be NOD IGKV
germline genes, many of which are identical to MPL-derived
IGKV sequences in GenBank (31). The IGKV sequence in the
transgene includes 18 nucleotide differences with respect to the
nearest reported IGKV gene (IGKV4-81) in the IMGT reference
directory. The sequence is, however, much more similar to a
NOD sequence reported by Henry and colleagues, differing only
within the CDR3 region of the sequence (31). We believe that
the many differences with respect to C57BL/6 IGKV genes are
a consequence of the separate evolutionary origins of the IGKV
loci of the C57BL/6 and MRL/lpr mouse strains. Based upon the
haplotype analysis depicted in Figure 1, the MRL/MpJ-derived
transgene appears to be ofM. m. castaneus origin. In the absence
of further information about the MRL/lpr IGK locus, there can
now be no certainty regarding the presence or absence of somatic
point mutations in the anti-DNA sequences reported in 1987.
Only when the germline IGKV genes of MRL mice have been
properly documented will it be possible to say whether or not
these anti-DNA antibodies arose through an accumulation of
point mutations in previously self-tolerant cells.

We believe that the autoreactivity of the light chain product
of the IGKV4-IGKJ4 transgene may be the result of its M. m.
castaneus origin, and of its association withM. m. domesticus and
M. m. musculus-derived heavy chains. We also believe thatM. m.
castaneus genes may also explain the spontaneous autoreactivity

that is seen in NOD and other inbred mice. The complete κ light
chain locus of the NOD strain, and portions of the loci of the
MRL/lpr and NZB strains, are derived from the M. m. castaneus
sub-species of the house mouse (Figure 1). The heavy chain locus
of the NOD mouse, on the other hand, comes from the M. m.
musculus sub-species, while the MRL/lpr and NZB strains appear
to carry IGH loci that areM. m. domesticus-derived.

The three major sub-species of the house mouse emerged
from a common ancestor about 350,000 years ago (102), and it
is reasonable to assume that their heavy and light chain genes
co-evolved as the sub-species diverged. This co-evolution would
be required to minimize self-reactivity, and to ensure that each
heavy chain could successfully partner with light chains encoded
by at least a subset of the IGKV genes. It appears, however, that
the breeding histories of many laboratory mice have resulted
in heavy and light chain gene sets that did not evolve together
being found in their genomes. A few common laboratory
strains, including BALB/c and 129 mice, carry matching M.
m. domesticus-derived IGH and IGK loci, whereas others like
the AEJ, C57BL/6, C57BL/10, and SJL strains carry a M. m.
domesticus-derived IGH locus but a M. m. musculus-derived κ

locus (Figure 1).
Not all inbred mice that have been reported to be prone to

autoimmunity harbor obviously mismatched loci. For example,
C57BLKS/J mice are diabetes-prone, but have heavy and light
chain loci that appear to be derived fromM. m. domesticus (103).
DBA mice are used in a collagen-induced arthritis model of
rheumatoid arthritis (104), and both their heavy and light chain
loci also appear to beM.m. domesticus-derived. It is also true that
not all strains that carry mismatched loci have been reported to
be susceptible to autoimmunity. An example is the RF/J strain,
which appears to have a M. m. domesticus IGH locus and a M.
m. castaneus IGK locus. However, it is striking howmany models
of autoimmunity involve mismatched heavy and light chain gene
loci. In addition to theNOD,MRL/lpr, andNZBmodels, SJLmice
that are used in the EAE model of multiple sclerosis (97) appear
to have a M. m. musculus IGH locus and a M. m. domesticus
IGK locus. A model of autoreactivity to matrix collagen uses
a C57BL/6-derived IGKV3 transgene in C57BL/6 hosts (105).
In this strain, the IGH locus seems to be M. m. musculus-
derived, while the IGK locus is M. m. domesticus-derived.
Hybrid (129 × C57BL/6) mice spontaneously develop an SLE-
like condition (106), and these mice express M. m. domesticus
heavy chains in association with both M. m. domesticus and
M. m. musculus-derived κ chains. Finally, the BXSB mouse
spontaneously develops lupus-like pathology (107). SNP analysis
suggests that it has a M. m. domesticus IGH locus and a M. m.
musculus κ locus (Figure 1).

For over 30 years, mouse models have provided profound
insights into the nature of autoreactivity and self-tolerance.
It may be though that an ignorance of the makeup of the
immunoglobulin gene loci has kept hidden a key genetic
contributor to autoimmunity. To determine if this may be the
case, the repertoires of laboratory mice will need to be compared
to repertoires generated in animals in which the heavy and light
chain loci and all critical regulatory elements, as well as self-
antigens, are all derived from the same sub-species of the house
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mouse. The immunoglobulin genes of the different strains will
also need to be properly characterized. It is possible that this may
reveal that the apparently matched loci of some autoimmune-
prone strains are derived from disparate sources. SNP analysis
at present characterizes mouse strains with respect to the three
major sub-species of the house mouse, but other minor sub-
species may also have contributed genes to the laboratory mouse.
We believe that such a focus on heavy and light chain pairings, in
mouse models and in human studies, may help explain some of
the mysteries that still surround autoimmune diseases.
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