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Primary hepatobiliarymalignancies include a heterogeneous group of cancers with dismal

prognosis, among which hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA),

and hepatoblastoma (HB) stand out. These tumors mainly arise from the malignant

transformation of hepatocytes, cholangiocytes (bile duct epithelial cells) or hepatoblasts

(embryonic liver progenitor cells), respectively. Early diagnosis, prognosis prediction and

effective therapies are still a utopia for these diseases. Extracellular vesicles (EVs) are

small membrane-enclosed spheres secreted by cells and present in biological fluids.

They contain multiple types of biomolecules, such as proteins, RNA, DNA, metabolites

and lipids, which make them a potential source of biomarkers as well as regulators of

human pathobiology. In this review, the role of EVs in the pathogenesis of hepatobiliary

cancers and their potential usefulness as disease biomarkers are highlighted. Moreover,

the therapeutic value of EV regulation is discussed and future directions on basic and

clinical research are indicated.

Keywords: extracellular vesicles, hepatocellular carcinoma, cholangiocarcinoma, hepatoblastoma, pathogenesis,

therapy, diagnosis

INTRODUCTION

Liver cancer is a major health problem worldwide, representing the second leading cause of all
cancer-related deaths (1). This cancer involves a heterogeneous set of hepatobiliary malignancies
including hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and hepatoblastoma
(HB), which mainly arise from the malignant transformation of hepatocytes, cholangiocytes,
and hepatoblasts, respectively (1, 2). Early non-invasive diagnosis, prediction of prognosis
and treatment-response, as well as effective personalized therapies are still a challenge, highly
compromising patient outcome (3–5).

HCC is the sixth most prevalent malignant tumor (10:100,000 incidence) and is strongly
associated (∼90%) with the presence of liver cirrhosis (LC) caused by alcohol, viral infections
[hepatitis B (HBV) or C (HCV) viruses], and/or steatosis, among others (5, 6). CCA is a rare cancer,
but its incidence (∼5/100.000) is increasing worldwide. Although the etiology of the majority of
CCAs is unknown, several risk factors may predispose for its development, including the presence
of primary sclerosing cholangitis (PSC), liver fluke infections (endemic from East Asia), cirrhosis
and congenital biliary disorders (3). On the other hand, HB is the most common pediatric liver
malignancy, principally affecting children between 6 months and 3 years of age. HB is responsible
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for up to ∼1% of all pediatric cancers, with an annual incidence
of 0.5–1.5 cases (4, 7). Despite most HB cases are sporadic, some
of them have been associated with hereditary cancer syndromes
including familial adenomatous polyposis (FAP) and Beckwith-
Widemann syndrome (BWS), as well as with prematurity or low
birth weight (4, 7). Since hepatobiliary malignances are usually
diagnosed in late stages and are highly chemoresistant, the
complete surgical resection of the tumors or liver transplantation
constitute the only potential curative options. However, these
therapeutic strategies are exclusively indicated under certain
strict and conservative clinical criteria (3, 5, 6). Therefore,
there is an urgent need to determine new accurate non-invasive
biomarkers for the early diagnosis of these diseases, as well
as to monitor and predict disease progression and treatment
response. Moreover, new effective personalized treatments are
desirable in order to improve the outcome and life quality of
patients.

During the last decade, extracellular vesicles (EVs) have
opened new opportunities for non-invasive diagnosis and
monitoring of human diseases. Their presence in biological fluids
(serum, urine, bile, saliva, etc.) and their unique and diverse
biomolecular composition (proteins, RNA, DNA, metabolites,
and lipids) make EVs excellent candidates as a source of
biomarkers (8, 9). Furthermore, since EVs participate in
intercellular communication in human health and disease, they
have been postulated as potential tools or targets for therapy.
EVs are small membrane-encapsulated spheres produced and
secreted by cells through complex and precise molecular
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mechanisms (10–13). Traditionally, EVs are classified according
to their biogenesis into exosomes, microvesicles (MVs) or
microparticles, and apoptotic bodies (11, 12). Exosomes are
referred to those EVs produced inside the multivesicular
endosomes (MVEs) of the cells. Their morphology is spherical
and the size ranges between 40 and 150 nm in diameter
(11, 14, 15). Cell MVEs are vesicular entities generated in
the maturation process of the early endosomes, and where
intraluminal vesicles (ILVs) are formed by the invagination
of the MVE membrane. ILVs are the incipient exosomes that
are released to the extracellular media upon the fusion of the
MVEs with the plasma membrane of the cell (11). On the
other hand, MVs or microparticles originate from the direct
budding of the cell plasma membrane. Their size (40–1000 nm)
and morphology are heterogeneous (15, 16). Apoptotic bodies
are vesicles produced by cells undergoing apoptosis. Thus, their
size (∼40 to 2000–5000 nm) and morphology are diverse (15,
16). Although this classification is widely accepted, to date,
there are no specific biomarkers to differentiate exosomes from
other types of nano-sized vesicle populations, limiting their
specific isolation from biofluids. Therefore, the smallest vesicles
(nano-vesicles) present and isolated from biological fluids
comprise a mix of exosomes and plasma membrane-derived
vesicles.

EVs have changed the paradigm of intercellular
communication, which was traditionally restricted to the
autocrine, paracrine and endocrine interaction through soluble
proteins and lipids, or through direct cell-to-cell contact
mediated by proteins, gap junctions, or tunneling nano-tubes in
pluricellular organisms (17, 18). Accordingly, EVs contain an
aqueous lumen and a specific subset of membrane and soluble
proteins, nucleic acids (DNA and RNA), lipids and metabolites
that can be horizontally transferred to local or distant cells by
direct EV-cell membrane contact, fusion or internalization (12).
The importance of EVs is highlighted by the fact that their
composition is specific depending on the cell status and on the
received stimuli (19, 20), which indicates a certain degree of
selective packaging. EVs confer protection to the biomolecules
enclosed inside the lipid bilayer, preventing their enzymatic
degradation (21).

EVs participate in the regulation of multiple cancer hallmarks.
They can transmit oncogenic signals by transferring pro-tumor
RNAs and proteins that regulate diverse key processes in tumor
progression such as proliferation, survival, differentiation, and
invasion/migration of cancer cells (22–30). Additionally, EVs
are involved in the crosstalk between tumor cells and stroma,
promoting inflammation (31), cell matrix remodeling (32),
neovascularization or angiogenesis (33, 34), chemoresistance
(35–37), formation of the metastatic niche (38, 39), and
inhibition of the anti-tumor immune response (40–42).
Therefore, EVs represent key targets for therapy at various
levels, including production, release and uptake by target cells.
Additionally, the blockage or removal of tumor-derived EVs by
apheresis with specific devices constitutes a potential therapeutic
approach. Of note, EVs are also excellent candidates for the
delivery of new anti-cancer proteins, RNAs, metabolites, drugs
or cancer vaccines.
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EV BIOGENESIS AND REGULATION

EV production is a highly regulated and complex cellular process
where several protein networks and diverse intracellular signals
are involved (Figure 1). Among the different EV populations, the
exosome production machinery is the best studied. Nevertheless,
both exosomes and MVs share numerous mechanisms that
participate in their biogenesis, release, and uptake (43).
Regarding the mechanisms involved in the biogenesis of
exosomes, the endosomal sorting complex required for transport
(ESCRT) machinery has been reported to participate inMVE and
ILV generation (44). However, ESCRT independent mechanisms
have also been described in the formation of exosomes, including
ceramide production by neutral type II sphingomyelinase
(nSMase2) (45, 46), lipid rafts (47), phospholipase D2 (PLD2)
(48, 49), and tetraspanin family of proteins (e.g., CD9, CD63, and
CD81) (50, 51), which form dynamic membrane microdomains
that promote their budding and assure exosome formation.

Intracellular trafficking of MVEs is coordinated by the
cytoskeleton and motor proteins such as dynein (52) and
Rab family of GTPases (Figure 1) (53). MVEs fuse with the
plasma membrane via SNARE proteins, finally allowing exosome
secretion (53, 54). In contrast, MVs arise as a result of the direct
budding of the cell plasma membrane. Their biogenesis requires
Ca2+-dependent membrane phospholipid and cytoskeleton
rearrangements, which enable MV blebbing and release (55).
Released EVs are recognized by the recipient cells through
specific interactions between their membrane components.
These include integrins, lipids, tetraspanins, proteoglycans,
among others (56). Plasma membrane-bound EVs can be
internalized through clathrin-mediated endocytosis (CME)
or clathrin-independent processes that include phagocytosis,
macropinocytosis and lipid rafts.

Several experimental strategies have targeted the
aforementioned mechanisms to interfere with EV production,
release and uptake at different levels (Figure 1). Among these,
intervention on ceramide production has been the most widely
used strategy to decrease exosome production in cancer cells
and thereby abolish the multiple oncogenic effects of tumor-
derived exosomes in several cancers. Experimental inhibition
of nSMase2, responsible for ceramide production, with its
inhibitor GW4869 reduces exosome secretion (45, 57) and
sensitizes cancer cells to chemotherapy (58). Of note, the
presence of GW4869 inhibits the migratory capacity of CCA
cells (31). Several intercellular signals involved in the regulation
of the EV production are also under investigation, including
the reduction of intracellular Ca2+ concentration. In fact, the
Na+/Ca+2 exchange inhibitor dimethyl amiloride (DMA) leads
to diminished EV production in lymphoma cells, resulting in
an enhanced anti-tumor immune response (40). Regarding
the proteins that participate in the transport of exosomes,
Rab family proteins are key mediators of MVE transit to the
plasma membrane, their inhibition being linked to a decrease
of exosome release (59). Accordingly, the repression of Rab27a
diminished growth and dissemination of cancer cells in vivo
(39, 60).

Different complexmechanisms, including protein and/or lipid
interactions between EV and recipient cell surface components,
are required for the EV cell uptake (Figure 1). These mechanisms
include phagocytosis, macropinocytosis, clathrin, and caveolin
dependent endocytic pathways, as well as lipid raft-mediated
and membrane fusion processes (56). Therefore, aiming to
block tumor EV uptake processes, different components of
these machineries have been targeted. Membrane proteins
including tetraspanins, integrins, lectins, proteoglycans, major
histocompatibility complex (MHC)molecules, glycoproteins and
other receptors are involved in EV-recipient cell interaction.
Tetraspanins, enriched proteins present in EVs and well-
established markers of these vesicles (61, 62), participate in EV-
cell surface adhesion mediating their uptake. Thus, antibody-
based inhibition of the CD81 and CD9 tetraspanins as well
as the blockade of αV and β3 integrins, hampers EV uptake
(63, 64). Lectins, such as galectin-5, can also be targeted
with the glycoprotein asialofetuin to interfere with EV-cell
interaction and the subsequent cellular internalization (65).
Likewise, targeting the lectin receptors DC-SIGN or DEC-205
with specific antibodies also results in a reduction of EV uptake
(66, 67). Heparin can also block the internalization of cancer
EVs by binding to the cell surface heparan sulfate proteoglycans
(68, 69). Furthermore, the pivotal interaction between EVs and
the plasma membrane of the cell can be partially inhibited
by proteinase K treatment, blocking EV recognition and the
subsequent endocytic process in cancer cells (70).

The best studied EV internalization mechanisms are
related with the endocytic pathway (63, 70, 71). Since these
processes depend on the cytoskeleton, the inhibition of
actin polymerization by cytochalasin D reduces EV uptake
by phagocytosis (56, 70, 71). In addition, the uptake of
EVs by macrophages can be abrogated by the inhibition
of phosphoinositide-3-kinase (PI3K) with wortmannin or
LY294002 (72). Moreover, inhibitors of macropinocytosis
or CME [5-ethyl-N-isopropyl amiloride (EIPA) and
chlorpromazine, respectively] reduce tumor-derived EV
internalization (70). Dynasore can also impair CME through the
inhibition of dynamin 2, needed for clathrin-coated endosome
membrane fission (65, 73–76). On the other hand, certain
endocytic processes are closely related to lipid rafts, and the
intervention on their composition impairs the uptake of EVs.
Thus, the use of the glycosphingolipid synthesis inhibitors [i.e.,
fumosinin B1 and N-butyldeoxynojirimycin hydrochloride (also
known as CAS72599)] reduces EV uptake (77). Cholesterol
reducing agents including methyl-beta-cyclodextrin (MβCD)
(70, 78, 79), filipin (71, 79) and simvastatin, as well as the
inhibition of ERK1/2 signaling by U0126 may also impair the
uptake of EVs (79). Masking phosphatidylserine (PS), present
in the membrane surface of EVs, by Diannexin and blocking its
receptor TIM4 inhibits epidermal growth factor receptor (EGFR)
transfer from tumor EVs to endothelial cells resulting in reduced
tumor growth and microvascular density in vivo (80). EVs can
also release their content into the recipient cells by the direct
fusion of plasma and EV membranes. This fusion is enhanced in
acidic conditions, a general feature of cancer cells (81). In this

Frontiers in Immunology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 2270

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lapitz et al. EVs in Liver Cancer

FIGURE 1 | Regulatory mechanisms of EV biogenesis, release, and uptake. Exosome release can be inhibited by interfering their biogenesis (e.g., ceramide

production) or the membrane fusion of the multivesicular endosome (MVE) with the plasma membrane (e.g., Rab27). Once EVs are released to the extracellular milieu,

their uptake can be blocked by interfering the EV-plasma membrane protein interactions (e.g., Tetraspanins), clathrin- and caveolin-dependent endocytosos (e.g.,

Dynasore), phagocytosis (e.g., Wortmannin), and by inhibiting lipid-raft mediated endocytosis (e.g., Filipin). DFMO, difluoromethylornithine; DMA, dimethyl amiloride;

ESCRT, endosomal sorting complex required for transport; EVs, extracellular vesicles; HSPG, heparan sulfate proteoglycans; ICAM-1, intercellular adhesion molecule

1; MβCD, methyl-β-cyclodextrin; nSMase, neutral sphingomyelinase; PS, phosphatidylserine.

sense, proton pump inhibition leads to reduced EV uptake by
cancer cells (82).

EVs IN HEPATOBILIARY CANCERS

Hepatocellular Carcinoma
HCC cell-derived EVs participate in autocrine and/or
paracrine cellular communications, regulating tumor growth,
chemoresistance, angiogenesis, and dissemination. Several lines
of evidence indicate that HCC cell-derived EVs promote tumor
resistance against chemotherapeutic drugs such as sorafenib,
doxorubicin or camptothecin. For instance, an enrichment of
long intergenic non-coding RNA regulator of reprogramming
(linc-ROR) in EVs derived from sorafenib-treated HCC
cells prevents chemotherapy-induced apoptosis through p53
repression and increases the expression of tumor-initiating
liver cancer stem cell CD133 marker (83). Another molecular
mechanism involved in HCC cell-derived EV-induced sorafenib
resistance includes the activation of the hepatocyte growth

factor (HGF)/c-Met/Akt signaling pathway in liver cancer
cells (84).

EVs derived from HCC cells may also regulate angiogenesis
(85). Experimental in vitro models indicate that EVs derived
from CD90+ liver cancer cells (i.e., cancer stem-like cells present
in primary tumors and blood of HCC patients, associated with
metastasis as well as bad prognosis) are enriched in long non-
coding RNA (lncRNA) H19, which promotes the expression
of vascular endothelial growth factor (VEGF) and its receptor
VEGF-R1 in endothelial cells. Moreover, lncRNA H19 stimulates
tube formation as well as cell-adhesion properties in endothelial
cells, inducing the expression of intercellular adhesion molecule
1 (ICAM-1) in this cell-type.

Concerning the role of EVs in metastasis, several studies have
reported that EVs secreted from HCC cells or from adjacent
cells are also involved in the promotion of tumor cell metastasis
(86). Transcriptomic and proteomic profiling revealed that EVs
derived from metastatic HCC cells carry a larger number of pro-
tumorigenic RNAs and proteins, such as MET proto-oncogene,
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S100 family members (S100A4, S100A10, and S100A11) and
the caveolins (CAV1 and CAV2). HCC-derived EVs trigger the
activation of PI3K/Akt and MAPK signaling pathways and the
secretion of active MMP2 and MMP9 matrix metalloproteinases
(MMPs) in hepatocytes, which in turn enhance their migratory
and invasive ability. On the other hand, cancer-associated
fibroblast (CAF)-derived EVs may also contribute to HCC cell
proliferation and metastasis (87). Thus, a reduction in the miR-
320a level was observed in CAF-derived EVs compared to para-
cancer fibroblasts (PAFs). This miR-320a directly targets pre-B-
cell leukemia transcription factor 3 (PBX3), suppressingHCC cell
proliferation, migration, and invasion. The anti-tumor effects of
miR-320a were confirmed in vivo using HCC tumor xenograft
models, in which tumor growth was inhibited when HCC cells
were co-injected with miR-320a over-expressing CAFs into nude
mice. Besides EVs derived from CAFs, innate immune cell-
derivedMVs have also been reported to enhance HCCmetastasis
through CD11b and CD18, also known as integrin αMβ2 (88).

Cholangiocarcinoma
The presence of EVs in bile and their role regulating
cholangiocyte physiology was first described in murine models
(89). However, EVs also play a role in biliary pathobiology. In
CCA tumors, several reports have emphasized the importance
of EVs in the regulation of the interplay between CCA cells
and the cells present in the tumor stroma. CCA cell-derived
EVs favor the fibroblastic differentiation of bone marrow-
derived mesenchymal stem cells (MSCs) and the secretion
of pro-inflammatory cytokines and chemokines, including
interleukin (IL)-6, chemokine (C-X-C motif) ligand 1 (CLXC1),
and chemokine (C-C motif) ligand 2 (CCL2/MCP-1), which
ultimately stimulate CCA cell proliferation via IL6/STAT3
signaling pathway (31).

CCA-derived EVs may contain oncogenic biomolecules not
only involved in modulating inflammatory and proliferative
responses but also controlling migratory and metastatic
processes. Two studies employing comparative proteomic
approaches have explored the protein content of CCA-
derived and cholangiocyte-derived EVs in vitro, identifying
significant differences and a particular oncogenic protein profile
related to proliferation and motility in cancer cell-derived
EVs (90, 91). Differentially expressed proteins involved in
cholangiocarcinogenesis included EGFR, Mucin-1, integrin
β4 (ITGB4), and epithelial cell adhesion molecule (EPCAM)
(90). EGFR participates in CCA progression, favoring the
dedifferentiation and invasiveness of tumor cells and represents
a bad prognostic factor (92, 93). Similarly, Mucin-1 and EPCAM,
which are also upregulated in CCA, correlate with poor outcome
in patients with CCA (94–96). Interestingly, ITGB4 has recently
been described as an EV integrin that dictates future metastatic
sites, contributing to preferential organotropism of tumor
cells (38). On the other hand, EVs secreted by liver-fluke
associated CCA cells induce cholangiocyte proliferation (97)
and invasion (91), events that are associated with an enrichment
of oncoproteins in EVs, including galectin-3 binding protein
(LG3BP), prostaglandin F2 receptor negative regulator, 4F2

cell-surface antigen heavy chain (4F2hc), integrin-β1 and
EPCAM (91).

NON-INVASIVE BIOMARKERS

The presence of EVs in biological fluids and their diverse
molecular cargo has recently placed EVs as a new source of
non-invasive disease biomarkers. Indeed, potential biomarker
candidates (miRNAs and proteins) have been described in serum-
and bile-derived EVs for the diagnosis and/or the prognosis
prediction of HB, HCC, and CCA (Table 1).

In HB patients, serum EV miR-21 levels were higher than in
healthy children, and negatively correlated with patient survival
(98). On the other hand, decreased levels of miR-34a, miR-
34b, and miR-34c were reported in serum EVs from HB infants
compared to healthy individuals. Combination of these miRs
showed higher diagnostic value than the gold standard alpha
fetoprotein (AFP) (99). Furthermore, reduced levels of the miR-
34 panel in EVs of HB were associated with lower overall survival
(99).

In HCC patients, levels of miRs 18a, 221, 222, and 224 in
serum EVs were found upregulated compared to patients with
chronic hepatitis B (CHB) or liver cirrhosis, patients, whereas
miR-101 level was downregulated (105). Likewise, increased
expression of miR-21 was identified in serum EVs from patients
with HCC compared to CHB patients or healthy individuals, and
correlated with cirrhosis and advanced tumor stage (106). MiR-
665 in serum EVs may also be a potential prognostic biomarker
for HCC, as high miR-665 levels positively correlated with larger
tumor size, local invasion and advanced clinical stages (stage
III/IV), and negatively with overall survival (107). Moreover,
diminished levels of several miRNAs in serum EVs have been
suggested as predictors of HCC recurrence or overall survival
(108, 109). MiR expression profiling in serum EVs identified the
tumor suppressor miR-718 downregulated in patients with larger
tumor diameters and recurrence. Reduced miR-718 expression
also correlated with poor histological tumor cell differentiation
(108). Furthermore, low levels of miR-125b in serum EVs
have been linked to advanced TNM stages and encapsulation,
suggesting this miR as a potential prognostic candidate of
recurrence and overall survival (109). Besides miRNAs, different
proteins present in serum EVs such as LG3BP, polymeric
immunoglobulin receptor (PIGR) and alpha-2-macroglobulin
(A2MG) were found upregulated in HCC patients compared to
healthy individuals, with a better diagnostic value than AFP (90).
Apart from changes in the EV cargo, the EV concentration itself
could also serve as a disease biomarker. In fact, stage I and II HCC
patients showed higher EV concentration in serum compared to
patients with liver cirrhosis (100).

In CCA, a panel of miRs (191, 486-3p, 1274b, 16, 484)
was found upregulated in bile EVs of patients with CCA
compared to a control group containing PSC, biliary obstruction
and bile leak syndrome patients (102). The analysis of the
lncRNA profile in bile EVs from CCA patients vs. patients
with biliary obstruction identified the upregulation of two
lncRNAs (i.e., ENST00000588480.1 and ENST00000517758) in
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TABLE 1 | EVs as non-invasive biomarkers of hepatobiliary malignancies.

Disease Name Biomarker

type

EV

source

Number of patients Expression SEN (%) SPE (%) AUC References

HB miR-21 miRNA Serum HB (n = 32) vs. Healthy

individuals (n = 32)

Up — — 0.861 (98)

miR-34a* Serum HB (n = 63) vs. Healthy

individuals (n = 63)

Down — — 0.963 (99)

miR-34b* — —

miR-34c* — —

HCC LG3BP Protein Serum HCC (n = 29) vs. Healthy

individuals (n = 32)

Up 96.6 71.8 0.904 (90)

PIGR 82.8 71.8 0.837

A2MG 92.9 56.2 0.796

MV (ug/mL) Microvesicle

concentration

Blood Stage I HCC (n = 28) vs.

Cirrhosis (n = 40)

Up — — 0.83 (100)

Stage II HCC (n = 20) vs.

Cirrhosis (n = 40)

Up — — 0.94

AnnexinV+ EpCAM+

(microparticle/mL)

TAMP

concentration

Serum HCC (n = 86) vs. Healthy

individuals (n = 58)

Up — — 0.77 (101)

AnnexinV+ EpCAM+

ASGPR1+

(microparticle/mL)

Serum HCC (n = 86) vs. Cirrhosis

(n = 49)

Up — — 0.73

CCA FIBG Protein Serum iCCA (n = 12) vs. HCC (n = 29) Up 83.3 89.6 0.894 (90)

A1AG1 83.3 82.1 0.845

VTDB 75 89.2 0.823

AMPN Serum CCA (n = 43) vs. Healthy

individuals (n = 32)

Up 90.7 65.6 0.878

VNN1 72.1 87.5 0.876

PIGR 83.7 71.8 0.844

PIGR Serum CCA I-II (n = 13) vs. Healthy

individuals (n = 22)

Up 75 95.4 0.905

AMPN 91.7 72.7 0.833

FIBG 100 68.1 0.833

FIBG Serum CCA (n = 43) vs. PSC (n = 30) Up 88.4 63.3 0.796

A1AG1 76.7 70 0.794

S10A8 69.8 66.6 0.759

FCN2 Serum CCA I-II (n = 13) vs. PSC

(n = 30)

Up 100 80.9 0.956

ITIH4 91.7 80.9 0.881

FIBG 91.7 80.9 0.881

miR-191* miRNA Bile CCA (n = 46) vs. Control

(n = 50; including PSC, biliary

obstruction and bile leak)

Up 67 96 — (102)

miR-486-3p*

miR-1274b*

miR-16*

miR-484*

ENST00000588480.1* lncRNA Bile CCA (n = 35) vs. Control (n = 56) Up 82.9 58.9 0.709 (103)

ENST00000517758.1*

Nanoparticles/L EV

concentration

Bile Malignant CBD stenoses

(pancreatic cancer; n = 10 and

CCA; n = 5) vs. nonmalignant

CBD stenoses (chronic

pancreatitis; n = 15)

Up — — 1 (104)

(Continued)
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TABLE 1 | Continued

Disease Name Biomarker

type

EV

source

Number of patients Expression SEN (%) SPE (%) AUC References

AnnexinV+ EpCAM+

ASGPR1+

(microparticle/mL)

TAMP

concentration

Serum CCA (n = 38) vs. Cirrhosis

(n = 49)

Up — — 0.63 (101)

Liver

cancer

(HCC/CCA)

AnnexinV+ EpCAM+

ASGPR1+

(microparticle/mL)

TAMP

concentration

Serum Liver tumor (HCC; n = 86 and

CCA; n = 38) vs. Cirrhosis

(n = 49)

Up — — 0.7 (101)

A1AG1, alpha-1-acid glycoprotein 1; A2MG, alpha-2-macroglobulin; AMPN, aminopeptidase N; ASPGPR1, asialoglycoprotein receptor 1; AUC, area under the receiver operating curve;

CBD, common bile duct; CCA, cholangiocarcinoma; EpCAM, epithelial cell adhesion molecule; FCN2, ficolin-2; FIBG, fibrinogen gamma chain; iCCA, intrahepatic cholangiocarcinoma;

ITIH4, inter-alpha-trypsin inhibitor heavy chain H4; HB, hepatoblastoma; HCC, hepatocarcinoma; LG3BP, galectin-3-binding protein; lncRNA, long non-coding RNA; miR, microRNA;

MV, microvesicle; PIGR, polymeric immunoglobulin receptor; PSC, primary sclerosing cholangitis; SEN, sensitivity; SPE, specificity; TAMP, tumor-associated microparticle; VNN1,

pantetheinase; VTDB, vitamin-D binding protein. *biomarker panel.

CCA patients (103). The combined expression of both lncRNAs
showed relevant diagnostic and prognostic value, being increased
in advanced TNM stages (III-IV) and showing worse overall
survival at high lncRNA concentrations. On the other hand,
different proteins present in serum EVs exhibited high diagnostic
values when comparing CCA patients with healthy individuals,
such as aminopeptidase N (AMPN), pantetheinase (VNN1),
and PIGR (90). Some proteins present in serum EVs, such as
ficolin-2 (FCN2), inter-alpha-trypsin inhibitor heavy chain H4
(ITIH4) and fibrinogen gamma chain (FIBG), displayed better
diagnostic values than CA19-9 (a non-specific tumor marker for
the diagnosis of CCA) in the differential diagnosis between CCA
(stage I-II) and PSC (90). Nowadays, the differential diagnosis
between intrahepatic CCA (iCCA) and HCC by non-invasive
methods is not feasible and compromises adequate treatment.
In this regard, proteins present in serum EVs—such as FIBG,
alpha-1-acid glycoprotein 1 (A1AG1) and vitamin-D binding
protein (VTDB)—exhibited higher accuracy than CA19-9 and
AFP for the differential diagnosis of iCCA vs. HCC (90). As
aforementioned, the EV concentration analysis could also be
relevant for the diagnosis of malignant biliary diseases. In
this regard, bile EV concentration was reported to accurately
discriminate between malignant common bile duct (CBD)
stenosis and nonmalignant CBD stenosis (104). In addition,
elevated concentration of AnnexinV/EpCAM/ASGPR1 positive
tumor-associated microparticles (TAMPs) allowed the diagnosis
of patients with liver cancer (HCC and CCA) compared to
cirrhotic patients, while no changes were detected between HCC
and CCA (101). Notably, the levels of these TAMPs decreased 7
days after the surgical resection of liver tumors, closely relating
this microparticle population with tumor presence.

THERAPEUTIC IMPLICATIONS

The use of EVs in anti-cancer therapy is currently under
investigation. As EVs carry different types of molecules, they can
be used as vehicles to deliver therapeutic cargo into cancer cells
(110). Moreover, EVs have shown the ability to modulate the
immune system, and to stimulate the immune response against
tumor cells (111).

Molecule Carriers
EVs as therapeutic delivery systems provide benefits for
the carried therapeutic molecule. Hence, encapsulation of
therapeutic compounds (such as chemicals, RNAs, DNAs,
proteins, or lipids) increases their bioavailability by preserving
their integrity and biological activity, as well as protecting
them from enzymatic degradation in biological fluids (112).
In comparison to other therapeutic vectors such as synthetic
nano-particles, liposomes or recombinant viral vectors, EVs
are generally non-immunogenic in nature, which enhances
their resistance to fast clearance from circulation (112). EVs
also display low toxicity and are quite stable in tissues and
circulation, representing adequate therapeutic delivery systems
against cancer (113). Furthermore, cell type-specific proteins
within EVs seem to provide certain cell tropism (112).

The strategy of using EVs as therapeutic molecule delivery
vehicles is starting in liver cancer, mainly focusing on miRNAs.
Stellate cell-derived EVs loaded with miR-335-5p, a tumor
suppressor miR downregulated in HCC, inhibits HCC cell
invasiveness in vitro and induces HCC tumor shrinkage in
vivo through the repression of proliferation and stimulation
of apoptosis (114). Moreover, miR-122 enriched EVs obtained
from adipose tissue-derived mesenchymal stem cells (ADMSCs)
increases HCC cell sensitivity to the chemotherapeutic agents
sorafenib and 5-FU (115). The underlying mechanism regulating
chemosensitivity consists on the downregulation of miR-122
target genes including cyclin G1 (CCNG1), disintegrin and
metalloproteinase domain-containing protein 10 (ADAM10),
and insulin-like growth factor 1 receptor (IGF1R), which induce
apoptosis and cell cycle arrest in vitro. Furthermore, intra-
tumor injection of miR-122-enriched EVs in a HCC xenograft
mouse model synergized the inhibitory effect of sorafenib in vivo,
reducing tumor size (115).

In CCA, stellate cell-derived EVs carrying miR-195 inhibited
CCA growth and invasiveness in vitro (116). Tail vein injection
of miR-195 loaded EVs into an orthotopic rat model of CCA
reduced tumor size and improved the overall animal survival
(116). These anti-neoplasic effects are likely mediated via
targeting VEGF, cell division control (CDC) proteins 25 and 42,
as well as cyclin-dependent kinases (CDK) 1, 4, and 6.
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Immunotherapy
An alternative therapeutic strategy contemplates the use of
EVs as stimulators of the immune system in order to elicit
a nontoxic, systemic, and long-lived anti-tumor immune
response. Different studies have described the potential use
of EVs as immunostimulatory entities against HCC (117–
121). For instance, HCC cells under stress conditions, such as
heat shock or chemotherapeutic anti-cancer drug treatment,
increased EV secretion and surface expression of heat shock
proteins (HSPs) (117). HSP-bearing EVs can boost natural
killer (NK) cell-mediated cytotoxic response against HCC
cells in vitro (117). Similarly, histone deacetylase inhibitor
MS-275 enhanced the protein levels of immunostimulatory
molecules [MHC class I polypeptide-related sequence B (MICB)
and HSP70] in EVs derived from HCC cells, increasing
the cytotoxicity of NK cells and anti-tumor response (118).
The anti-HCC tumor immune response can also be induced
by ADMSC-derived EVs, which promote natural killer T
cell (NKT) anti-tumor response, thereby facilitating HCC
suppression (119).

Alternatively, HCC cell-derived EVs display HCC antigens
AFP and glypican 3. Capture of these EVs by dendritic cells
(DCs) triggers a strong DC-mediated T cell dependent anti-
tumor immune response both in vitro and in ectopic and
orthotopic in vivo mouse models (120). EVs from antigen
presenting cells (APCs) can also induce anti-tumor immune
responses against HCC. EVs derived from AFP-expressing DCs
are able to trigger potent antigen-specific anti-tumor immune
responses and reshape the tumor microenvironment from an
immunoinhibitory to an immunostimulatory setting in diverse
HCCmice models including ectopic, orthotopic and carcinogen-
induced HCC (121). Thus, AFP-expressing DC-derived EVs
stimulate antigen-specific anti-tumor immune responses in vivo,
eliciting suppression of tumor growth and prolonging mice
survival (121).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Early diagnosis and treatment of hepatobiliary malignancies
is still far from being manageable. The development of non-
invasive diagnostic and disease monitoring tools represents
a major challenge. The presence of EVs in biological fluids,
as well as their capacity to carry tumor-associated molecules,
make EVs excellent candidates for clinical application. Hereof,
certain progress is being made in the potential use of EVs as
a source of non-invasive disease biomarkers. EV concentration
as well as their specific cargo can serve as indicators of
the different pathological stages of a disease, including the
discrimination between early and late phases, and estimation of
recurrence and metastasis risk. For that matter, the application
of omic technologies has provided some potential candidate
biomarkers. However, in order to transfer knowledge into
the clinical practice, several limitations, and concerns should
be considered: (i) different EV isolation procedures (i.e.,
ultracentrifugation, size exclusion, immune-affinity isolation,

polymeric precipitation, and microfluidics) are currently used,
providing diverse EV populations and yield depending on the
nature of the isolation protocol (ii) a proper characterization
of the EVs fraction should be performed. There are minimal
experimental requirements defined by the International Society
for Extracellular Vesicles (ISEV) (122), which include the
analysis of the EV quantity [e.g., nanoparticle tracking analysis
(NTA), IZON qNano technique, flow cytometry], size [e.g.,
NTA, IZON qNano technique, electron microscopy, dynamic
light scattering (DLS)], and presence of specific surface markers
(e.g., immunoblot, immune-gold electron microscopy) (122,
123), (iii) specific EV markers to distinguish EV subpopulations
according to their origin (e.g., exosomes, MVs, apoptotic
bodies) are still missing (122), (iv) appropriate clinically-
relevant control groups with biopsy-proven diagnosis, as well
as a representative number of samples should be included to
ensure the accuracy (sensitivity, specificity, AUC, predictive
and likelihood ratio values) and significance of the results
(124), (v) candidate biomarkers identified in a discovery phase
must be internationally validated using easily transferable
methodologies into the clinical settings (e.g., ELISA, qPCR),
ideally using raw biological fluids (i.e., serum, urine, saliva)
and avoiding the costly and time consuming EV isolation
techniques.

EVs represent a new opportunity for cancer therapy.
They participate in the development and progression of
cancer, including the formation of a pro-tumorigenic
microenvironment, angiogenesis, chemoresistance, and the
generation of a metastatic niche, promoting tumor growth,
and aggressiveness. Therefore, interfering the EV biogenesis
and/or release may be a potential therapeutic strategy. Several
inhibitors targeting these crucial steps have been developed
(Figure 1), although their safety and efficacy should be clinically
evaluated in the future. Nevertheless, additional regulatory
mechanisms of EV generation (e.g., loading), trafficking and
autocrine/paracrine signal transduction (e.g., recipient cell
internalization routes of specific EV subpopulations) need to be
elucidated, which could provide other targets for therapy (125).
On the other hand, EVs could be used as drug delivery systems
and as immunomodulators promoting anti-tumor response.
For drug delivery, a major challenge represents the specific cell
targeting in vivo, as well as the use of immunologically inert and
biocompatible EVs. In contrast, the capacity of EVs to regulate
the immune system opens new opportunities for targeting
malignancies and for developing anti-tumor vaccines (126).

In conclusion, EVs represent an emerging and stimulating
field of research in liver cancer with multiple potential
applications, from biomarker discovery to therapy. Nonetheless,
thorough research is still needed to gain knowledge on their
intrinsic role in liver health and disease, and to evaluate their
potential clinical application.
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