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Pentraxins such as serum amyloid P (SAP; also known as PTX2) regulate several aspects

of the innate immune system. SAP inhibits the differentiation of monocyte-derived

fibroblast-like cells called fibrocytes, promotes the formation of immuno-regulatory

macrophages, and inhibits neutrophil adhesion to extracellular matrix proteins. In this

minireview, we describe how these effects of SAP have led to its possible use as a

therapeutic, and how modulating SAP effects might be used for other therapeutics.

Fibrosing diseases such as pulmonary fibrosis, cardiac fibrosis, liver fibrosis, and renal

fibrosis are associated with 30–45% of deaths in the US. Fibrosis involves both fibrocyte

differentiation and profibrotic macrophage differentiation, and possibly because SAP

inhibits both of these processes, in 9 different animal models, SAP inhibited fibrosis. In

Phase 1B and Phase 2 clinical trials, SAP injections reduced the decline in lung function in

pulmonary fibrosis patients, and in a small Phase 2 trial SAP injections reduced fibrosis in

myelofibrosis patients. Acute respiratory distress syndrome/ acute lung injury (ARDS/ALI)

involves the accumulation of neutrophils in the lungs, and possibly because SAP inhibits

neutrophil adhesion, SAP injections reduced the severity of ARDS in an animal model.

Conversely, depleting SAP is a potential therapeutic for amyloidosis, topically removing

SAP from wound fluid speeds wound healing in animal models, and blocking SAP

binding to one of its receptors makes cultured macrophages more aggressive toward

tuberculosis bacteria. These results suggest that modulating pentraxin signaling might

be useful for a variety of diseases.

Keywords: pentraxin, serum amyloid P component (SAP), fibrosis, macrophage, fibrocyte, pulmonary fbrosis

INTRODUCTION: SAP AND DEBRIS CLEARANCE

SAP (PTX2) is a member of the pentraxin family of proteins that includes C-reactive protein (CRP;
PTX1) and pentraxin-3 (PTX3). SAP is made by hepatocytes and secreted into the blood (1, 2).
Searches of proteomics and RNA-seq databases suggests that the liver is the major source of SAP. In
humans and most mammals, the levels of SAP in the plasma are maintained at relatively constant
levels, between 20 and 50µg/ml (3–5). There is little evidence for sequence variation of SAP at
the genomic or amino acid level. In mice, SAP acts as an acute phase protein, with levels rising
up to 20-fold following an inflammatory insult (6, 7). SAP is a pentameric protein with sequence
and structural similarity to CRP (8–10). The structure of SAP (and CRP) pentamers is a flat disk
with a hole in the middle (11, 12). The crystal structure of PTX3 has yet to be determined, but
models based on site-directed mutagenesis, electron microscopy, and small-angle X-ray scattering
data suggests that PTX3 is an octamer of two tetramers (13). Each SAP molecule has two Ca++

atoms bound to it, and the pentamer thus has 10 Ca++ atoms on one side of the disk. With the
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help of the bound Ca++, this side of the disk binds to a variety of
molecules including apoptotic debris, bacterial polysaccharides,
amyloid deposits, and bacterial toxins (1, 14, 15). Phagocytic cells
such as monocytes and macrophages then bind the SAP, CRP,
or PTX3, and engulf the debris or other material the pentraxin
has bound (16). CRP and PTX3 can similarly bind a variety of
debris molecules (17, 18). Proteins with strong similarity to SAP
(and CRP and PTX3) are present in the hemolymph of horseshoe
crabs (17, 19), so this debris clearancemechanism appears to have
evolved during the early evolution of animals (Figure 1).

REMOVING STUCK SAP AS A POSSIBLE
THERAPEUTIC FOR AMYLOIDOSIS

Amyloidosis is a disease where misfolded proteins aggregate and
form large deposits in a tissue, leading to organ dysfunction
(20, 21). SAP was originally isolated as a serum-derived protein
found in all types of amyloid deposits (hence the serum amyloid
part of its name) (22, 23). SAP was found to be a pentameric
protein, hence the P part of its name (24–27). SAP is also easily
purified by incubating serum with certain types of agarose in
the presence of calcium, washing unbound protein off, and then
eluting fairly pure bound SAP with a calcium chelator (28, 29).
One possibility is that the SAP in the amyloid deposits binds
to the misfolded proteins in an attempt to opsonize them for
phagocytosis, but cannot pull proteins out of the deposit, and
the SAP then gets stuck in the deposits. SAP knockout mice
have reduced severity of experimentally-induced amyloidosis,
suggesting that the stuck SAP exacerbates the amyloid deposit
formation and/or hinders the ability of other opsins to pull the

FIGURE 1 | SAP regulates multiple aspects of immune responses. Some of

the known effects of SAP are shown clockwise from top: SAP inhibits

neutrophil adhesion to extracellular matrix and inhibits neutrophil movement

into tissues. SAP binds to FcγR and DC-SIGN to inhibit monocyte to fibrocyte

differentiation. SAP also binds multiple plasma proteins such as the

complement component C1q and mannose-binding lectin (MBL) to promote

phagocytosis of bacteria and regulate macrophage differentiation. SAP

opsonizes bacteria and cell debris to promote removal by macrophages, and

binds amyloid deposits. Finally, SAP promotes immuno-regulatory, and M1

phagocytic macrophages.

amyloid complexes apart (30). The Pepys group found a small
molecule compound that causes two human SAP pentamers to
stick to each other, and this complex is then quickly cleared
from the circulation (31). In SAP knockout mice expressing
human SAP, the compound decreased serum SAP levels but did
not reduce the severity of experimentally-induced amyloidosis
(31). Adding anti-SAP antibodies to this treatment however
did reduce experimentally-induced amyloidosis, suggesting that
reducing SAP levels is a possible therapeutic for amyloidosis
(32–35).

INTERMEZZO 1: WOUND HEALING AND
FIBROSIS

Most plant and animal tissues have a remarkable ability to heal
mechanical wounds, indicating a strong evolutionary pressure
for wound healing (36). In vertebrates, a typical dermal wound
fills with scar tissue consisting of fibroblasts, connective tissue,
and a capillary bed, and then is covered with an epithelium
(37). Unfortunately, inappropriate wound healing responses to
perceived wounds cause fibrosing diseases, where scar tissue
forms in an internal organ, leading to organ dysfunction.
There are at least 62 different fibrosing diseases, and these are
associated with 30–45% of deaths in the US (38, 39). Examples
of fibrosing diseases include cardiac fibrosis, probably triggered
by reduced blood flow to part of the heart, and this fibrosis
accounts for a significant fraction of the 450,000 deaths per year
from cardiovascular disease in the US (40, 41). Other fibrosing
diseases are cirrhosis of the liver, triggered by damage from
viral infections, alcohol, or other chemical insults (39), end-stage
kidney disease in diabetics, where the scar tissue formation is
probably triggered by damage from high glucose levels (42), and
pulmonary fibrosis, where particulate matter such as coal dust,
and other unknown factors, triggers the progressive formation of
scar tissue in the lungs (43). The only FDA-approved therapeutics
for fibrosis are two drugs which slow, but do not stop, the
progression of pulmonary fibrosis (44).

INTERMEZZO 2: FIBROCYTES

In the 1850’s, James Paget examined healing wounds and
observed that cells from the blood enter the wound and then
differentiate into elongated cells with an oval nucleus [see Figure
14, page 127 in (45)]. Bucala et al. found that these cells originate
from bone marrow derived circulating CD14+ monocytes and
express markers such as such as CD34 and CD45 that identify
them as bone marrow-derived cells, as well as markers such
as collagen that identify them as fibroblast-like cells (46–49).
They named the cells fibrocytes. Although fibrocytes are rarely
observed in normal tissues, they are present in high numbers in
healing wounds (46, 50, 51) and fibrotic lesions in pulmonary
fibrosis (51–58), keloid scars (59, 60), asthma (52, 61, 62), chronic
kidney disease (63–65), and nephrogenic systemic fibrosis (66).
Fibrocytes are also present in the fibrotic lesions in animalmodels
of pulmonary fibrosis (53, 67–75), liver fibrosis (71) and renal
fibrosis (73, 76). In addition to contributing to themass of fibrotic
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lesions, fibrocytes promote angiogenesis (77), which can then
promote the growth of the scar tissue, and secrete TGF-β (78),
which causes resident fibroblasts to proliferate and increase their
collagen production. Fibroblasts thus have a multiplicative effect
on scar tissue formation. At the time we started working on
fibrocytes, nothing was known about extracellular factors that
regulate their differentiation, and thus why fibrocytes are present
in wounds but not normal tissues, and how to control them.

OUR ENTRY INTO THE SAP, FIBROCYTES,
WOUND HEALING, AND FIBROSIS FIELDS

Our lab had been studying the ability of diffusible secreted
factors to indicate the local density and composition of cells in
a tissue, using the eukaryotic amoeba Dictyostelium discoideum
as a model system (79, 80). We decided to try to look for
cell density sensing factors secreted by human white blood
cells. To simplify the purification of any such factors from the
extracellular medium, human peripheral blood mononuclear
cells (PBMCs) were cultured in serum-free medium. Some of
the cells became long, spindle-shaped cells after 3–5 days (81,
82). Videomicroscopy indicated that these spindle shaped cells
were quite motile, and they stained for fibrocyte markers (81).
Fibrocytes did not appear during this timeframe when serum
was present, indicating that something in serum inhibits fibrocyte
differentiation.

Since removing something that inhibits fibrocyte
differentiation might potentiate wound healing, and conversely
adding something that inhibits fibrocyte differentiation might
inhibit fibrosis, we abandoned the search for human density
sensing factors and purified the fibrocyte differentiation
inhibitor from human serum. It turned out to be SAP (81).
SAP also inhibits the differentiation of mouse, rat, and dog
PBMCs into fibrocytes (83–86). CRP has no significant effect
on, and PTX3 potentiates, fibrocyte differentiation, indicating
that the three pentraxins differentially affect fibrocytes (81, 87).
When PBMCs were cultured in serum that was depleted of SAP,
fibrocytes rapidly appeared, indicating that SAP is the main
endogenous inhibitor of fibrocyte differentiation in the blood
(81).

Pentraxins also regulate macrophages (17, 39, 88–95). In
addition to inhibiting fibrocyte differentiation, SAP inhibits pro-
fibrotic macrophages, and promotes the formation of immuno-
regulatory macrophages (84, 95–105). Although SAP can bind
complement component C1q and mannose-binding lectin, these
proteins have very modest effects on the ability of SAP to affect
macrophage phenotypes (95, 106–108).We refer the reader to the
above references and reviews for information on the complexity
of pentraxin (including SAP) regulation of macrophages that is
beyond the simplicity of this minireview (Figure 1).

REMOVING SAP AS A POSSIBLE
THERAPEUTIC FOR WOUND HEALING

Since after blood clots, a wound is covered with serum, and serum
contains SAP, and SAP inhibits fibrocyte differentiation and thus

wound healing, an intriguing possibility is that removing SAP
from wound fluid might potentiate fibrocyte differentiation and
wound healing. Wound dressings with Ca++ and the type of
agarose originally used to purify SAP from serum were tested on
full thickness dermal wounds in rats. These dressings speeded
healing of these wounds, as well as partial thickness dermal
wounds in pigs (109). In the pig wounds, the agarose/ Ca++

dressings caused wound to heal faster than wounds treated with
commercial dressings such as Tielle, Intrasite, and Xeroform.
Although SAP levels in humans are unaffected by inflammation,
serum SAP levels in the general population range from 20 to
60µg/ml (3, 5, 110). Compared to controls, patients with low
levels of SAP have better survival of skin grafts, supporting the
idea that reducing SAP levels might help wound healing (111).
In part because the wound dressing market is basically saturated,
efforts to fund clinical tests of this SAP-depleting dressing have
been unsuccessful.

ADDING SAP AS A POSSIBLE
THERAPEUTIC FOR FIBROSING DISEASES

A simple non-surgical animal model of a fibrosing disease
is pulmonary fibrosis in mice and rats, where a drug called
bleomycin can be pipetted through the mouth into the airway,
and within 14 days causes pulmonary fibrosis (112, 113). In
the bleomycin model, SAP injections led to reduced numbers
of fibrocytes in the lungs and reduced fibrosis in rats and
mice, and delaying SAP injections until inflammation and
fibrosis was already apparent (therapeutic dosing) also reduced
symptoms (84). SAP injections have now been shown to
inhibit inflammation and fibrosis in other models of pulmonary
fibrosis (102, 103), cardiac fibrosis (96, 97), radiation-induced
oral mucositis (101), allergic airway disease (100), autoimmune
encephalomyelitis (114), corneal wound healing (75), and two
models of renal fibrosis/ end stage kidney disease (98). An
obvious question about using SAP as a therapeutic for fibrosis
is that this might block wound healing. We found that SAP
injections slow, but do not stop, dermal wound healing in mice
(115).

SAP EFFICACY AS AN ANTIFIBROTIC IN
CLINICAL TRIALS

Compared to control mice, mice lacking SAP have strongly
increased pulmonary fibrosis in response to bleomycin,
indicating that an endogenous function of SAP is to reduce
fibrosis (116). Compared to controls, patients with renal fibrosis,
pulmonary fibrosis, scleroderma, myelofibrosis, rheumatoid
arthritis, and mixed connective tissue disease tend to have low
levels of SAP, supporting the idea that fibrosis might in part
involve a SAP deficiency (81, 98, 103, 117). One initial problem
obtaining NIH funding to study SAP and fibrosis was that
people confused SAP with serum amyloid A (SAA; a completely
different, and probably not beneficial protein). We encountered
this with a grant application where a reviewer denounced our
efforts to inject animals with SAA. After politely explaining
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that SAP was not SAA, the grant was funded. An early worker
in the SAP field encountered this too, and published a letter
in Nature entitled “Serum Amyloid P component (not Serum
Amyloid Protein)” (118). For this and other reasons, colleagues
used the alternative SAP nomenclature Pentraxin 2 (PTX2)
(26, 119), and called the recombinant SAP used for clinical trials
PRM-151 (120). Compared to standard of care, injections of
recombinant human SAP/PTX2 improved lung function in a
Phase 1b trial and a Phase 2 trial in pulmonary fibrosis patients
(5, 121). In the 28-weeks Phase 2 trial, SAP injections slowed
the decline in forced exhalation volume (FEV), and essentially
stopped the decline in the distance patients could walk in 6min.
61 of the patients receiving SAP in this trial were also taking
either pirfenidone or nintedanib, FDA-approved drugs that slow
the decline in lung function in pulmonary fibrosis, while 16
other patients treated with SAP were not taking these drugs.
Intriguingly, the 16 patients not taking these drugs who were
treated with SAP appeared to show on average a very slight
improvement in forced exhalation volume and an improvement
in how far they could walk in 6min, suggesting the exciting
possibility that SAP might be able to partially reverse pulmonary
fibrosis. Myelofibrosis is a fibrosis of the bone marrow (122).
SAP injections also reduced fibrosis and improved bone marrow
function in a 27-patient Phase 2 trial on myelofibrosis patients
(123).

SAP PHARMACOLOGY

The plasma clearance rates for patients treated with SAP is ∼24
to 30 h (5, 124). In the Phase 2 clinical trial, and in earlier
trials, efficacy was observed with monthly dosing. The apparent
paradox of how something with a short plasma half-life could
show efficacy with monthly dosing can be answered by looking
at the tissue half-life, which for healthy volunteers is 7.2 days
(124). SAP, as well as CRP and PTX3, have long been known
as opsonins that helps phagocytic cells ingest debris (16, 125–
129). In fibrosis, debris and other tissue insults are thought
to both initiate as well as potentiate fibrosis (39). Clearing
debris from the vicinity of a fibrotic lesion is very likely one
mechanism whereby SAP inhibits fibrosis. The debris is not
detectable in the circulation, rather it is localized to the vicinity
of the fibrotic lesion. Thus this beneficial effect of SAP occurs
in the tissue rather than in the circulation. Although SAP
has some modest effects on macrophage differentiation from
monocytes (changes in the expression of a small number of
surface markers in some but not all of the macrophages) (95,
99), macrophage polarization from one macrophage phenotype
to another macrophage phenotype (again, even more subtle
changes in the expression of a small number of surface markers)
(95), and neutrophil adhesion to tissue extracellular matrix
components (see below), the most obvious effect of SAP on
innate immune cells is its ability to completely inhibit the
differentiation of monocytes into fibrocytes. All of these effects
on innate immune cells affect what the cells do after they
have entered a tissue. A reasonable assumption is thus that
the SAP effects occur in the tissue, specifically in the vicinity

of the fibrotic lesion, rather than in the circulation, and thus
that the key half-life is the tissue rather than plasma half-
life.

Two observations suggest that the half-life of SAP in a fibrotic
lesion may be considerably longer than 7.2 days. First, amyloid
deposits resemble in many ways fibrotic lesions, and the half-life
of SAP in amyloid deposits is 24–27 days (124, 130, 131). Second,
in mice where fibrosis was induced in one kidney by obstructing
the ureter, injected SAP localized to the fibrotic kidney, with
much less localization to the non-injured contralateral kidney
(98). Together, these arguments and results support the idea that
even with a short plasma half-life, monthly injections of SAP can
be efficacious.

SAP INHIBITION OF FIBROCYTES
ALLOWS AN ASSESSMENT OF THE
POSSIBLE EFFECT OF FACTORS SUCH AS
DIETARY SALT ON FIBROSIS

Human PBMC cultured in serum-free medium differentiate
into easily identifiable (by microscopy) fibrocytes, and adding
different concentrations of SAP to inhibit this generates a
standard curve of SAP effects. This allows a simple assay to
look at the effects of various conditions or compounds on
this process. For instance, ELISA assays of sera from keloid
patients (these patients form greatly exaggerated dermal scars)
showed normal levels of SAP, but the fibrocyte assay on
keloid patient PBMC showed that these cells are relatively
insensitive to SAP (132). A variety of compounds affect fibrocyte
differentiation and/or the ability of SAP to inhibit fibrocyte
differentiation (57, 63, 82, 87, 117, 133–142). One compound
that may be clinically relevant is NaCl, which when added to
increase the medium NaCl concentration by 25mM (this level
of increase can be seen in the serum after a very salty meal)
potentiates fibrocyte differentiation and inhibits the SAP effect,
possibly explaining why high salt intake is associated with a
propensity for cardiac fibrosis (137). Peritoneal dialysis can lead
to peritoneal fibrosis, and we found that peritoneal dialysis
fluid and dialysis fluid components such as NaCl also promote
fibrocyte differentiation and impede SAP (139). In support of
this connection between salt and fibrocytes, low dietary salt
reduces the severity of bleomycin-induced pulmonary fibrosis in
mice, suggesting that low salt diets may be beneficial for fibrosis
patients (143).

SAP CAN OVERRIDE OTHER
PROFIBROTIC FACTORS

A variety of signals promote wound healing and fibrosis. For
instance, TGF-β1 is an extracellular signal that drives fibrosis
(144, 145), and in mice, conditional expression of TGF-β1 in
the lungs causes pulmonary fibrosis (103, 146). In this model,
SAP injections stopped and reversed fibrosis (103). We found
that although quiescent fibroblasts secrete the protein Slit2
to inhibit fibrocyte differentiation (essentially telling incoming
monocytes that no more fibroblast-cells are needed) (138),
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fibroblasts activated by the pro-fibrotic signal TNF-α secrete the
protein lumican, which promotes fibrocyte differentiation (142).
Thankfully, SAP can override the effect of lumican on fibrocytes
(142). Other signals that promote fibrocyte differentiation
and profibrotic macrophage differentiation include thrombin
activated during blood clotting (this may thus initiate the
fibrocyte component of wound healing), and tryptase released
from mast cells (147, 148). SAP also competes with these signals
to inhibit fibrocytes and macrophages (148, 149). In addition,
SAP inhibits fibrocyte differentiation induced by IL-4, IL-13, high
molecular weight hyaluronic acid, and PTX3 (82, 87, 136, 141).
Together, these results suggest that one reason SAP appears to be
effective in the clinic as an anti-fibrotic is a fortunate dominance
of SAP over these signals.

ELUCIDATING SAP RECEPTORS LED TO
SMALL-MOLECULE SAP MIMETICS

Fcγ receptors (FcγRs) bind the Fc domain of IgG
immunoglobulins (150). Once aggregated IgG cross-links
multiple FcγRs (this prevents monomeric IgGs from activating
FcγRs), a signaling cascade is activated through tyrosine
kinases to initiate an immune response (151). Phagocytic cells,
such as monocytes, bind SAP, CRP, and PTX3 using different
combinations of FcγRs (16, 86, 98, 152–156), and the structure
of SAP bound to FcγRIIa and modeling of SAP binding to other
Fc receptors has been published (157, 158). In support of the
hypothesis that SAP inhibits fibrocyte differentiation by binding
to FcγRs, we found that cross-linked but not monomeric IgG
also inhibits fibrocyte differentiation (159). Mouse monocytes
lacking FcγRI, or human monocytes with siRNA-reduced FcγRI,
had a reduced sensitivity to SAP, while mouse cells lacking other
FcγRs had normal or enhances sensitivity to SAP, indicating
that FcγRI mediates SAP signaling (86). Surprisingly, monocytes
from cells lacking all four known FcγRs still responded to SAP,
indicating that a different receptor also mediates SAP signaling
(156, 160).

To help elucidate SAP signaling, we mutated SAP protein
surface amino acids that were different from CRP, and the
mutant SAPs were assayed for their ability to inhibit fibrocyte
differentiation (SAP and CRP are have highly similar amino acid
sequences and structures, but CRP does not inhibit fibrocyte
differentiation) (81, 87)). None of the mutant SAPs completely
abrogated SAP activity (86, 156). One amino acid initially
overlooked was a glycosylated asparagine on SAP that is a non-
glycosylated alanine on CRP, and when SAP was desialylated,
the SAP largely lost its ability to inhibit fibrocyte differentiation;
conversely when the CRP alanine was mutated to an asparagine,
the asparagine became glycosylated and the glycosylated CRP
inhibited fibrocyte differentiation (160). This suggested that
a polysaccharide receptor might help to sense SAP, and we
found that the C-type lectin DC-SIGN mediated SAP effects on
monocytes (160). Other workers found a variety of compounds
that block the ability of polysaccharides to bind DC-SIGN, and
three of these potently inhibited fibrocyte differentiation. One
of the DC-SIGN-binding molecules showed efficacy in a mouse

pulmonary fibrosis model at 0.001 mg/kg (160). These results
suggest that small molecules that mimic SAP might be useful as
therapeutics for fibrosing diseases.

ADDING SAP AS A POSSIBLE
THERAPEUTIC FOR NEUTROPHIL-DRIVEN
DISEASES

Inflammatory lesions recruit neutrophils to the site of damage
(161, 162). This however can sometimes be counterproductive;
for instance some patients with damaged lungs develop acute
respiratory distress syndrome/ acute lung injury (ARDS/ ALI),
where neutrophils enter the lungs and release proteases and
reactive oxygen species. This causes further damage and
further neutrophil recruitment and subsequent damage, and
this vicious cycle results in the ∼40% mortality seen in the
∼200,000 ARDS patients each year in the US (163). SAP
decreases neutrophil binding to extracellular matrix components
(164–166), and in a mouse model of ARDS, SAP injections
starting 24 h after injury reduced the number of neutrophils
in the lungs (166). The small-molecule SAP mimetic discussed
above also showed efficacy in this ARDS model (160). These
results suggest that SAP and SAP mimetics might be useful
as therapeutics for neutrophil-driven diseases such as ARDS/
ALI.

BLOCKING SAP SIGNALING AS A
POSSIBLE THERAPEUTIC FOR DISEASES
SUCH AS TUBERCULOSIS

M1macrophages are highly aggressive against bacteria and other
pathogens, but SAP, which is a constitutive component of the
blood, pushes macrophages toward an anti-inflammatory/anti-
fibrotic phenotype (90, 95, 99, 100, 103, 156, 167, 168).
Tuberculosis bacteria can live inside macrophages, where
they also push the host macrophage away from a M1
phenotype to help the survival of the parasitic bacteria
(169). To test the hypothesis that blocking SAP signaling
to macrophages would reduce regulatory macrophages and
increase M1 macrophages, we screened 3,000 compounds
for the ability to inhibit the binding of SAP to FcγRI,
and found 12 that reduced this binding (170). In support
of the hypothesis, SAP potentiated the proliferation of
Mycobacterium smegmatis and Mycobacterium tuberculosis
in human macrophages, and in the presence of SAP, 2 of the
compounds reduced the intra-macrophage proliferation of these
bacteria (170).

CONCLUSION

Pentraxins are ancient and fascinating molecules. Increasing
levels of SAP either locally or systemically is showing promise
as a therapeutic for a variety of diseases where the ability
of SAP to help clear debris and calm the innate immune
system is beneficial. Conversely, decreasing levels of SAP, or
decreasing SAP effects, shows promise as potential therapeutics
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where unleashing the innate immune system is beneficial. An
intriguing possibility is that altering levels of other pentraxins
might similarly be useful as stand-alone therapeutics or in
combination with manipulations of SAP levels for even more
diseases.
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