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The cornea is an extraordinary component of vision that functions as the principal barrier

to pathogens in the eye while allowing light transmission into the retina. Understanding

the cellular and molecular mechanisms that maintain homeostasis in this tissue is the

subject of intense scientific study given the high prevalence of corneal disease. Over the

past decade, the interactions between lectins and glycans on plasma membranes have

emerged as important regulatory factors in corneal biology. In particular, members of

the galectin family have been shown to bind multiple β-galactoside-containing receptors

to regulate immunopathological processes associated with viral and bacterial infection,

transplantation, wound healing, dry eye, angiogenesis, and lymphangiogenesis. In this

review, we describe the current understanding of how these surface interactions intersect

with different pathways to activate unique cellular responses in cornea as well as their

potential therapeutic implications.
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INTRODUCTION

Lectins are proteins widely distributed among the animal kingdom that specifically recognize
carbohydrates. Traditionally, they have been classified based on their ability to recognize
specific carbohydrate sequences but, with the advent of new molecular biology methods, novel
classes have been defined based on the presence of unique structural domains within their
amino acid sequences. This novel classification stems from the presence of highly conserved
carbohydrate-recognition domains (CRDs) that appear to have evolved from shared ancestral genes
(1). Examples of major families of animal lectins include C-type (e.g., selectins, dectins), I-type
(e.g., siglecs), P-type (mannose-6-phosphate receptors), and S-type (galectins). Among the different
classes of lectins described so far, galectins have been the most extensively characterized in cornea
and are the major focus of this review.

Galectins are expressed by different cell types, including epithelial, stromal, endothelial, and
immune cells and typically bind β-galactose-containing glycoconjugates. They are grouped into
three categories based on structure: (1) prototypical, with a single CRD that may associate to form
homodimers, (2) chimeric, with a single CRD and a large amino-terminal domain that contributes
to self-aggregation and, (3) tandem-repeat, with at least two CRDs occurring within a single
polypeptide (2). Members of these different categories have been reported in humans and include
galectins-1,−2,−7,−10,−13, and−14 (prototypical), galectin-3 (chimeric) and galectins-4,−8,−9,
and−12 (tandem-repeat). Each galectin CRD recognizes distinctive carbohydrate structures in a
manner that is influenced by the oligomeric state of the lectin and the multivalency of the glycan
ligand (2). Galectins are exceptional in that they are synthesized on free ribosomes, exhibit no
signal sequence and are secreted through a non-classical pathway that bypasses the Golgi (3). Only
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a few amino acids within the canonical CRD of galectins
make direct contact with carbohydrate ligands, although binding
sites for non-carbohydrate ligands, such as those found in the
cytosol and nucleus, have also been described on the CRD. The
presence of these binding domains ensures that galectins have
both intracellular and extracellular activities. On the cell surface,
galectins function by forming multivalent complexes with
glycosylated receptors to control multiple biological events, such
as receptor turnover, cell signaling, host–pathogen interactions
and immune cell activation and homeostasis (4).

Other lectins that mediate biological events in cornea include
selectins and dectins. Selectins are cell adhesion molecules
expressed on platelets, endothelial cells, and leukocytes. They
contain a single transmembrane domain and a CRD at the amino
terminus with affinity toward sialylated, fucosylated structures
(e.g., sialyl Lewis x) (5). Dectins are transmembrane proteins
important in fungal defense expressed mainly in dendritic cells
and macrophages (6). The two members of this family, dectin-1
and dectin-2, recognize β-glucans, and α-mannans, respectively.

STRUCTURE OF THE CORNEA

The cornea is a clear, curved surface covering the anterior
segment of the eye. It is responsible for refracting light onto the
lens and retina in addition to resisting infection and damage. The
lack of lymphatic and blood vessels is essential to maintaining
the transparency of the cornea. Injury resulting from infection,
transplantation, autoimmune conditions, and other pathologies
can lead to the abnormal growth of vessels and loss of vision (7).

Structurally, the cornea consists primarily of the epithelial,
stromal and endothelial compartments (Figure 1). The epithelial
compartment is the outermost surface and it is composed of a
stratified, non-keratinized epithelium along with intraepithelial
nerve terminals and dendritic cells. The stromal compartment is
a dense connective tissue of significant regularity and represents
the structural axis of the cornea. It is populated with keratocytes
that synthesize extracellular matrix components and bone
marrow derived cells that are recruited in response to injury and
infection. The endothelial compartment is a simple low cuboidal
epithelium that enables the exchange of ions and fluid between
the stroma and the interior of the eye. The cornea is encircled by
the corneoscleral limbus, which serves as a reservoir for the adult
stem cell population that continuously replenishes the tissue. The
use of histochemical techniques has evidenced that the cornea is
rich in galectins and galectin-binding sites (8). In normal corneas,
galectin-1 is present mainly in the stroma, galectin-3 localizes
mainly in the epithelium, and galectins-7,−8, and−9 are present
in both corneal epithelium and stroma (9).

LECTIN-GLYCAN INTERACTIONS IN
CORNEAL PHYSIOLOGY

The apical surface of the corneal epithelium constitutes an
exceptional barrier against foreign particles and microorganisms
that attempt to penetrate the eye. Highly glycosylated
transmembrane mucins emanating from ridge-like folds of

the plasma membrane are an essential component of this
protective layer. They have single membrane-spanning regions
with large extracellular domains that form rod-like structures,
which extend over 100 nm from the cell surface, far above other
glycoconjugates in the glycocalyx (10).

Research over the past decade has defined a mechanism by
which transmembrane mucins contribute to the physiological
protection of the corneal epithelium by interacting with galectins.
Microarray analyses have revealed that the mucins MUC1
and MUC16 together with galectin-3 are among the most
highly expressed glycogenes at the ocular surface (11). They
localize primarily on apical membranes within the superficial
stratified squamous epithelia, and the two mucins bind galectin-
3 in a carbohydrate-dependent manner. Importantly, the
mucin-galectin interaction is necessary to maintain galectin-
3 anchored to the cell surface and to preserve transcellular
barrier function in corneal epithelial cells (12). The association
between transmembranemucins and galectin-3 further functions
to mask viral entry mediators on the corneal epithelial glycocalyx
(13). Mechanistically, this protective function of galectin-3 is
dependent on its large amino-terminal domain and the ability to
form surface lattices in the epithelial glycocalyx (14).

Core 1 O-glycans are major components on transmembrane
mucins at the ocular surface (15). Initial experiments targeting
c1galt1, a critical galactosyltransferase required for the synthesis
of core 1 O-glycans, evidenced the contribution of this
modification to promoting surface retention of galectin-3 and
maintaining barrier function (12). Yet, use of synthetic glycan
microarrays has shown that galectin-3 displays maximum
binding affinity toward N-glycans compared to O-glycans (16),
implying a role for mucin N-glycans in the stabilization of the
epithelial glycocalyx despite having a much lower abundance
than O-glycans. Recent evidence supports this hypothesis.
Structural data indicate that mucin N-glycans in cornea are rich
in complex-type structures that bind galectin-3 and promote
barrier integrity (17). Deciphering the relative contributions and
biological significance of the different classes of mucin glycans
when interacting with galectins should be an important goal of
future research on mucosal surfaces.

LECTIN-GLYCAN INTERACTIONS IN
CORNEAL PATHOLOGY

Ocular Infection
Microbial colonization of the eye due to viral, bacterial, or
fungal pathogens remains an important cause of blindness
worldwide. Several findings provide strong evidence that lectin-
glycan interactions play an important role in the pathogenesis
and immune response to ocular infection.

Primary or recurrent episodes of herpes simplex virus (HSV)
infection result in viral replication and destruction of the infected
cells. This process triggers non-specific innate host defenses that
contribute to infection control but also adaptive responses when
dendritic cells leave the site and carry viral antigens to draining
lymph nodes (18). A large number of activated T cells in ocular
HSV lesions express the inhibitory molecule TIM-3 needed
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FIGURE 1 | Lectin-glycan interactions reported in cornea. (A) Schematic diagram illustrating the involvement of lectins in cornea. Specific binding partners are

indicated for galectins. (B) Examples of preferred glycan ligands for lectins shown in (A). DC, dendritic cell; LacNAc, N-acetyllactosamine; LPS, lipopolysaccharide;

TIM-3, T cell immunoglobulin- and mucin-domain-containing molecule-3.

to control the lesion. Addition of excess galectin-9, a natural
ligand of TIM-3, has been shown to diminish the severity of the
lesions by inducing apoptosis of pathogenic effector Th1 cells
but also increasing the representation of anti-inflammatory Tregs
and decreasing neovascularization (19). Subsequent studies have
shown that the interaction of galectin-9 with TIM-3 functions to
constrain the response of effector and memory CD8+ T cells to
infection (20). Other galectins, such as galectin-1, can also lessen
the severity of the HSV lesion by reducing the number of IFN-
γ- and IL-17-producing CD4+ T cells and the recruitment of
neutrophils into the cornea (21).

It was the Hazlett laboratory that first reported in 1997 the
presence of a member of the galectin family in cornea and its
potential pathogenic contribution to bacterial infection. Using
binding inhibition assays, this group found that adhesion of
Pseudomonas aeruginosa to corneal epithelial cells could be
blocked by an antibody targeting galectin-3, a binding receptor

for bacterial lipopolysaccharides (22). Further work established
the pattern of expression of galectins in mouse corneas under
normal and infective conditions. Exposure to P. aeruginosa
resulted in overall downregulation of galectin-3 and upregulation
of galectins-8 and−9 (9). Galectin-1 within the corneal stroma
appeared to limit P. aeruginosa-mediated inflammation by
impairing the infiltration of neutrophils and CD4+ T cells,
particularly proinflammatory Th17 cells (23).

Fungal infection is a major cause of corneal ulceration in
developing countries and tropical regions commonly associated
with severe inflammation. Evidence suggests that the C-type
lectin receptors dectin-1 and dectin-2 play important roles in
regulating disease severity and survival. Dectin-1 on corneal
macrophages can be activated by β-glucans on Aspergillus
fumigatus to promote recruitment of neutrophils into the corneal
stroma and trigger fungal killing (24). Interestingly, to promote
survival, A. fumigatus spores express RodA hydrophobin, a
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surface protein that confers hydrophobicity and covers cell wall
components that would otherwise activate dectin-1 and dectin-2
(25). Dectin-1 also plays a critical role in cornea by controlling
Candida albicans (26) and Fusarium solani (27) infections.

Corneal Transplantation
Corneas are among the most common and successful
transplanted tissue worldwide. They express factors that
contribute to immune privilege by inhibiting the induction
and function of alloimmune T cells among others (28). Recent
investigations looking at the repertoire of galectins expressed in
accepted murine corneal allografts have demonstrated increased
levels of galectins-1,−3,−7,−8, and−9 compared to controls
(29). Interestingly, when the corneas were rejected, the levels of
galectin-8 were markedly higher, whereas those corresponding
to galectin-9 were substantially lower, compared to the accepted
corneas. The latter complements initial observations showing
that constitutive expression of galectin-9 and its ligand TIM-
3 play an immunosuppressive role in corneal allografts, in
particular by preventing the destruction of corneal endothelial
cells by alloreactive T cells (30).

E-selectin is a carbohydrate-binding protein commonly
expressed during corneal inflammatory disease (31). It localizes
to vascular endothelial cells in the stroma of rejected corneal
allografts, within areas with high T cell and macrophage content
(32). Because of its crucial role in leukocyte extravasation and
migration, E-selectin has been proposed as a therapeutic target
in preventing transplant rejection. Recent data indicate that E-
selectin mediates T cell recruitment in corneal transplantation
and support a role for E-selectin neutralization in reducing the
frequency of mature antigen-presenting cells in the draining
lymphoid tissue (33). In these experiments, however, the long-
term graft survival was limited, which has been attributed to the
overlapping function of factors mediating leukocyte adhesion.

Corneal Injury and Wound Healing
Almost 40 years ago Gipson and Anderson reported the
requirement of carbohydrate moieties on cell surface
glycoproteins and basement membrane to promote epithelial
cell migration during the healing of corneal abrasions (34). This
initial work pointed to the presence of glucosamine residues
on N-glycans that were upregulated as the stratified corneal
epithelium became migratory (35, 36). It was not until two
decades later than the Panjwani laboratory radicalized the field
by implicating galectins in the re-epithelialization of corneal
wounds, particularly galectins-3 and−7 (37). The molecular
basis by which galectin-3 modulated epithelial migratory events
included the promotion of lamellipodia formation by interacting
with complex N-glycans on α3β1 integrin, and the initiation
of cell-cell disassembly by inducing matrix metalloproteinase
expression in a manner that was dependent on the clustering
of the matrix metalloproteinase inducer CD147 (38, 39).
More recently, the successful use of recombinant galectin-3 in
promoting epithelial migration in non-human primate corneas
has emphasized the potential of galectins as a novel therapeutic
modality in wound healing (40).

It is now clear that not all kinds of injury lead to a similar
expression pattern of galectins in cornea. The expression of
galectin-3 is downregulated in mouse corneas following bacterial
infection and chemical burn (9). Yet, galectins-7,−8, and−9
are upregulated in the epithelium following infection but not
cauterization. It also appears that the changes in galectin
expression during injury are species-dependent. Whereas tissue
damage in mice leads to reduced galectin-3 expression, injured
tissue in patients with active corneal ulceration show a greater
galectin-3 immunoreactivity compared to normal subjects (41).
It is possible to speculate that the inflammatory environment
following injury likely influences the differential responses in
galectin expression in cornea.

Dry Eye Disease
Disruption of barrier function at the ocular surface is associated
with a wide range of inflammatory disorders that includes dry
eye, an age-related disease affectingmillions of people worldwide,
and whose pharmacological treatment remains unresolved. Both
N- and O-glycosylation are altered in the ocular surface epithelia
of dry eye patients (42), which has led to question whether there
are accompanying changes in galectin expression or localization.
Several studies have found that epithelial dysfunction in dry
eye correlates with the release of cellular galectin-3 into tears
(43, 44). This increase in extracellular galectin-3 appears to have
pathological implications, since the lectin can interact with the
plasma membrane of corneal epithelial cells to exacerbate the
proinflammatory activities of IL-1β (45). Of particular interest
are recent findings indicating galectin-3 binds to the homeostatic
protein clusterin, one of the most abundant transcript in the
human corneal epithelium (46). Preserving the nature of this
interaction may provide therapeutic value in a variety of drying
conditions at the ocular surface (47).

Corneal Angiogenesis
Corneal angiogenesis represents a major public health problem
affecting 1.4 million individuals each year in the United States
alone (48). The growth of new vessels occurs within the
anterior corneal stroma when pro-angiogenic factors overcome
anti-angiogenic stimuli. The subject of how glycosylation and
galectin-3 impact vascular endothelial cells and influences
corneal angiogenesis was reviewed in 2014 (49); therefore,
we present a brief overview and highlight additional findings.
An important breakthrough in VEGF- and bFGF-mediated
angiogenesis was the discovery that galectin-3 plays a pro-
angiogenic role in cornea by clustering N-glycans on αvβ3
integrin and activating focal adhesion kinase (50). This function
of galectin-3 has been supported by additional data indicating
that galectin-3 can activate VEGFR2 in endothelial cells (51)
and form a complex with pericyte-derived NG2 proteoglycan
and α3β1 integrin to promote endothelial cell motility (52).
Examples of ways in which regulation of galectin-3 can have
therapeutic applications have been recently described. Strategies
to block galectin-3 with small-molecule inhibitors have proven
efficacious in experimental models of corneal neovascularization
and fibrosis (53).
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In addition to galectin-3, other lectins have been implicated
in corneal angiogenesis. Galectin-1 and−9 have been shown to
possess anti-angiogenic activity in a mouse model of herpetic
keratitis, where they decrease the production of proinflammatory
cytokines and molecules involved in the formation of new vessels
(19, 21). C-type lectins also appear to be critical to the process
of corneal angiogenesis. Human soluble E-selectin is known
to induce chemotaxis of human endothelial cells and to be
angiogenic in rat cornea (54). These contributions, however,
remain controversial (55). Additional experiments using corneal
micropocket assays have demonstrated a role for the E-selectin
cytoplasmic domain in facilitating the antiangiogenic activity of
endostatin, a collagen derivative that inhibits endothelial cell
migration by binding to α5β1 integrin (56). These findings
evidence that formation of new vessels in cornea depends on
a delicate balance of lectin-receptor interactions that can either
promote or inhibit angiogenic stimuli.

Corneal Lymphangiogenesis
The lymphatic vasculature plays an important role in
coordinating antigen transport and immune-cell trafficking
from peripheral tissues to secondary lymphoid organs. At
the ocular surface and under inflammatory conditions,
lymphatics in the limbal region can give rise to new vessels
that extend pathologically into the cornea (57). There is scarce
information on the role of lectin-glycan interactions in corneal
lymphangiogenesis, with just one report implicating galectin-8
(58). Here, the authors demonstrated that galectin-8 is markedly
upregulated in inflamed corneas and can promote corneal
lymphangiogenesis. Mechanistically, they found that in the
absence of VEGFC or VEGFR3, the CRDs of galectin-8 crosslink
integrins α1β1/α5β1 and heavily O-glycosylated podoplanin
to activate lymphangiogenic signaling. These interactions can

potentiate the VEGFC/VEGFR3 axis when present, and further
increase the magnitude of the lymphangiogenic response.

CONCLUDING REMARKS

Progress has been made in providing mechanistic insights
into the role of lectin-glycan interactions in cornea (Figure 1).
Manipulating these signals represents a useful approach to
control or cure ocular diseases, yet the therapeutic translation of
this knowledge faces numerous challenges. For galectins, these
stem from their ability to recognize a myriad of receptors on
any given cell, each receptor with a unique binding affinity,
in a process that is heavily influenced by the metabolic state
of the cell and the cellular environment. The extent to which
inhibition or activation of specific galectin signaling pathways
affect others remains to be better defined, as this knowledge will
be critical to produce comprehensive physiological responses. In
this regard, any modulation of galectin activity will need to take
into consideration the glycosylation state of the cellular receptors
to achieve success. We anticipate that a better understanding
of the coordinated function of lectins and glycans in cornea
will unlock novel therapeutic approaches for pathological
states.
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