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Hypoxia, which characterizes most tumor tissues, can alter the function of different
immune cell types, favoring tumor escape mechanisms. In this study, we show that
hypoxia profoundly acts on NK cells by influencing their transcriptome, affecting their
immunoregulatory functions, and changing the chemotactic responses of different
NK cell subsets. Exposure of human peripheral blood NK cells to hypoxia for
16 or 96h caused significant changes in the expression of 729 or 1,100 genes,
respectively. Gene Set Enrichment Analysis demonstrated that these changes followed
a consensus hypoxia transcriptional profile. As assessed by Gene Ontology annotation,
hypoxia-targeted genes were implicated in several biological processes: metabolism, cell
cycle, differentiation, apoptosis, cell stress, and cytoskeleton organization. The hypoxic
transcriptome also showed changes in genes with immunological relevance including
those coding for proinflammatory cytokines, chemokines, and chemokine-receptors.
Quantitative RT-PCR analysis confirmed the modulation of several immune-related
genes, prompting further immunophenotypic and functional studies. Multiplex ELISA
demonstrated that hypoxia could variably reduce NK cell ability to release IFNy, TNFa,
GM-CSF, CCL3, and CCLS5 following PMA+lonomycin or IL15+4IL18 stimulation, while it
poorly affected the response to IL12+IL18. Cytofluorimetric analysis showed that hypoxia
could influence NK chemokine receptor pattern by sustaining the expression of CCR7
and CXCR4. Remarkably, this effect occurred selectively (CCR7) or preferentially (CXCR4)
on CD56PM9M NK cells, which indeed showed higher chemotaxis to CCL19, CCL21, or
CXCL12. Collectively, our data suggest that the hypoxic environment may profoundly
influence the nature of the NK cell infiltrate and its effects on immune-mediated responses
within tumor tissues.

Keywords: NK cells, hypoxia, tumor immunology, cytokines/chemokines, chemokine receptors, CD56bright cells,
tumor infiltration, transcriptome
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INTRODUCTION

NK cells are powerful effectors of the innate immunity with
anti-tumor activity (1-5). They are endowed with a unique
pattern of receptors sensing changes in MHC-I expression
levels (which are often decreased in tumor cells) or recognizing
ligands induced by tumor transformation, cell stress, and DNA
damage (1, 5-8). By these receptors NK cells can direct their
potent lytic machinery to target and eliminate many tumor cell
types (6). In addition, NK cells can release pro-inflammatory
cytokines and various chemotactic factors (IFNy, TNFa, GM-
CSE CCL3/CCL4) potentially amplifying immune responses to
the tumor (1, 6, 9-11). The cytolytic function and the capability
of releasing cytokines and chemokines appear to be differently
represented in the two major subsets of peripheral blood (PB)-
NK cells, characterized by the CD564m/CD16Prisht (CD56dMm) or
the CD56"i8ht/CD16%4™/¢8 (CD56""8M) phenotype (1, 12-14).
The CD56%™ cells are strongly cytotoxic and can also produce
cytokines in response to specific stimuli. These cells represent
the large majority of the PB-NK cell population and express
chemokine receptors, mainly CXCR1 and CX3CRI, that enable
their recruitment to inflamed tissues (1, 9, 11, 15, 16). Conversely,
CD56""8Mt cells are poorly cytotoxic and release high amount
of cytokines, especially in response to monokines. According
to their expression of CCR7 and CD62L, these cells are mainly
located within secondary lymphoid compartments while they
account for only 10% of PB-NK cells (1, 9, 11, 15).

The increasing interest on NK cells as potential tools for
immunotherapy has recently inspired many studies aimed
at defining how their anti-tumor activity can be influenced
by the tumor microenvironment. Along this line, different
suppressive interactions mediated by tumor cells, tumor-
associated fibroblasts, or regulatory immune cells have been
described and characterized (17-22). In addition, it has been
shown that tumor cells can escape NK cell attack by modulating
the surface expression of various NK-receptor ligands (2, 23-27).
In spite of these important advances in the field, a crucial issue
that still remains to be investigated for an effective exploitation
of NK cells in the therapy of solid tumors is the recruitment of
NK cells to tumor tissues. Few recent studies have shown that
higher NK cell infiltration correlates with a better prognosis of
the disease (23, 28, 29), but have also indicated that the NK cell
infiltrate in tumor tissues is often poor and, in some cases, mostly
represented by poorly cytotoxic CD5682 cells (5, 30, 31).
Specific chemokine milieus, or alteration of chemokine receptor
patterns, may account for these findings. However, an exhaustive
explanation on how the tumor microenvironment can influence
NK cell infiltration has not yet been achieved.

Reduced partial O, tension (pO,, 0-20 mm Hg, hypoxia),
which often affects tumor tissues, may play role in this context.

Abbreviations: PB, peripheral blood; pO,, low oxygen tension; GSEA, Gene
Set Enrichment Analysis; qRT-PCR, Real time PCR; Hy-NK, hypoxic NK cells;
HIE hypoxia-inducible factor; NES, normalized enrichment score; FDR g-val,
false discovery rate g-values; NOM p-val, nominal p-values; LEA, Leading
Edge Analysis; GO, gene ontology; HMGs, hypoxia-modulated genes; MDMs,
monocyte-derived macrophages; iDCs, immature DCs; mDCs, mature DCs;
IONO, ionomycin.

Hypoxia is an important driver of malignant progression and
resistance to therapy (23, 32, 33). It can influence the function
of different cell types within the tumor lesion and affect the
recruitment of immune cells, favoring tumor escape mechanisms
(33). Indeed, exposure to hypoxia can induce different immune
and non-immune cells to change the expression of pro-
angiogenetic factors, cytokines, and chemokines (including
VEGE SPP1, IL-18, MIF, CXCL12, and CXCLS8), or chemokine
receptors (including CXCR4, CCR2, and CCR5) (34-38). In spite
of many studies on this issue, limited information is currently
available on the impact of hypoxia on NK cells and their subsets,
notably on their ability to respond to specific chemotactic stimuli
or to release immune-active soluble factors (39-41). We have
previously shown that, in NK cells exposed to IL-2, hypoxia
can down-regulate expression and function of most NK cell
receptors that activate cytolytic activity against tumor or virally
infected cells, but preserves NK cell ability to kill targets via
ADCC (39), suggesting that NK cells may be effective even in
hypoxic niches in the context of combined immunotherapeutic
approaches. In this study, we integrate previous data and provide
an overview of the effect of hypoxia on NK cells stimulated with
IL-2. Moreover, we indicate some clues on how the composition
and the function of NK cell infiltrate may be influenced by the
hypoxic environment in tumor tissues.

MATERIALS AND METHODS

NK Cells Isolation and Culture

NK cells were obtained from PB of healthy donors provided
by the transfusion center of the Ospedale Policlinico San
Martino following approved internal operational procedures
(IOH78). Written informed consent from the donors was
provided according to the Declaration of Helsinki. Briefly: NK
cells from healthy donors were isolated from PB mononuclear
cells using RosetteSep NK Cell Enrichment Cocktail (StemCell
Technologies, 15025 Vancouver, Canada). Only preparations
displaying more than 95% of CD56+ CD3- CD14- NK cells
were selected for the experiments. After isolation, NK cells
were cultured for the indicated time points in RPMI 1640
(Lonza Verviers, Belgium) supplemented with 10% Fetal Bovine
Serum (FBS, Voden Medical S.p.a. Meda MB, Italy), antibiotic
mixture (0.05 mg/mL penicillin, 0.05 mg/mL streptomycin
Lonza, Verviers, Belgium), and 100 U/mL recombinant human
IL-2 (Proleukin, Novartis Basilea, Switzerland) at 2X 10°cells/mL
in round bottom 96-well microtiter plates. The cultures
were performed either under normoxic conditions in a
humidified incubator containing 20% O, 5% CO,, and 75%
N, or under hypoxic conditions. Hypoxic conditions were
obtained by culturing cells in a sealed anaerobic workstation
incubator (Ruskinn, INVIVO, 400, CARLI Biotec, Roma, Italy),
incorporating a gas mixing system (Ruskinn Gas Mixer Q)
and flushed with a mixture of 1% O,, 5% CO,, and 94%
N».

RNA Isolation and cRNA Synthesis
Total RNA was purified from NK cells derived from three
healthy donors using the RNeasy MiniKit from Qiagen (Milano,

Frontiers in Immunology | www.frontiersin.org

October 2018 | Volume 9 | Article 2358


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Parodi et al.

Hypoxia Effects on Human NK

Italy). RNA was controlled for integrity by nanoelectrophoresis
with an Agilent 2100 Bioanalyzer (Agilent Technologies Europe,
Waldbroon, Germany), quantified by spectrophotometry using
a NanoDrop ND-1000 (NanoDrop Technologies, Wilmington,
USA), and reverse-transcribed into double-stranded cDNA
on a GeneAmp PCR System 2700 thermal cycler (Applied
Biosystems, Milano) using the one-cycle cDNA synthesis kit
(Affymetrix, Milano). cDNA derived from three donors/time
point was purified and biotin labeled using the GeneChip IVT
kit (Affymetrix). Labeled cRNA was fragmented according to
Affymetrix’s instructions.

GeneChip Hybridization and Array Data

Analysis

Gene expression profiling was performed as described previously
(42). Briefly, Fragmented cRNA was hybridized on the Affymetrix
HG-U133 plus 2.0 GeneChips (Genopolis Corporation, Milano)
containing 54,000 probe sets (coding for 47,000 transcripts
and variants, including 38,500 unique human genes) on a
single array. Chips were stained with streptavidin-phycoerythrin
(Invitrogen Life Technologies, Milano) and scanned using
an Affymetrix GeneChip Scanner 3000, as described. Data
were processed by RMA normalization utilizing the “Affy” R
package. Statistical analysis using paired t-test was performed
to identify differentially expressed genes. We corrected the p-
value for multiple hypothesis testing by Benjamini-Hochberg
method to false discovery rate control. Only gene differences
that passed the test at a confidence level of 95% (P <
0.05) and a false discovery rate of 0.05% were considered
significant. Fold-change (FC) was calculated as the ratio
between the average expression level under hypoxia and
normoxia. Genes were defined as being differentially regulated
by hypoxia if they exhibited more than 2-fold increase in
gene expression or down-regulated if they showed <0.5-fold
change compared with normoxic cultures. We converted the
Affymetrix probe sets into the corresponding gene symbol
by Netaffx tool. When multiple probe sets were associated
with the same gene symbol, the probe set with the highest
expression signal was considered. The full set of data from
each microarray experiment has been deposited in the Gene
Expression Omnibus public repository at NCBI (www.ncbi.nlm.
nih.gov) and is accessible through GEO (Accession number
GSE116660). Biological processes were assessed by DAVID Gene
Ontology (GO) enrichment analysis (http://david.niaid.nih.gov).
The significant GO terms were defined as p < 0.05 and FDR <
0.05.

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) was performed on all
probe sets of the Affymetrix HG-U133 Plus 2.0 GeneChip, as
described previously (43). An enrichment score (ES) and a
normalized enrichment score (NES) were calculated for every
gene set. The statistical significance of NES was estimated by
an empirical test using 1,000 gene set permutations to obtain
the nominal p-value. A false discovery rate (FDR) q value was
estimated to control the probability that a NES could represent a
false positive finding. The gene sets used in the GSEA belong to

the C2.CGP collection of the Broad Institute Molecular Signature
v5 Database (MSigDB) (44). The analysis used Signal-to-Noise
metric and considered gene sets containing at least 15 and up
to 250 probe sets. An enrichment with FDR q-values lower than
0.05 and nominal p < 0.05 was considered significant. Leading
Edge Analysis (LEA) of enriched gene sets was used to identify
key genes related to NK response to hypoxia.

Real-Time RT-PCR

cDNA was prepared from purified total RNA using SuperScript
Double-Stranded cDNA synthesis kit (Invitrogen). Real time
PCR (qRT-PCR) was performed on a 7500 Real Time PCR System
(Applied) in triplicate for each target transcript using SYBR
Green PCR Master Mix and sense/antisense oligonucleotide
primers synthesized by TIBMolbiol (Genova) or purchased
from Quiagen, as detailed before (45). Expression data were
normalized on the values obtained in parallel for three reference
genes (actin related protein 2/3 complex subunit 1B, ARCP1B;
ribosomal proteins S18, RSP18; and RSP19), using the Bestkeeper
software, and relative expression values were calculated using
Q-gene software, as detailed (45).

mAbs and Flow Cytofluorimetric Analysis
The following mAbs were used in this study: anti-CCRI
(R&D System, MAB 145-100, Minneapolis U.S.A.), anti-
CCR5 (R&D System, MAB 182-100 Minneapolis U.S.A.),
anti-CCR7 (R&D System, MAB 197-100 Minneapolis
US.A), anti-CXCRI/IL-8 RA (R&D System, MAB 173-
100 Minneapolis U.S.A.), anti-CXCR3 (R&D System, MAB
160-100), anti-CXCR4 (R&D System, MAB 173-100), PE-
conjugated anti-CX3CR1 (Medical & Biological Laboratories
Co., LTD, D070-5), FITC-conjugated anti-CD3 (eBioscience,
11-0038-42 Thermofisher scientific, Waltham, Massachusetts,
Stati Uniti), PE-cyanine 7-conjugated anti-CD56 (Beckman
Coulter, A21692, Brea, California U.S.A.), PE-conjugated
anti-CD16 (130-106-704, Miltenyi Biotec Bergisch Gladbach,
Germany). The staining with the appropriate unlabeled mAbs
are followed by PE-conjugated isotype-specific goat anti-
mouse second reagent (Southern Biotechnology Associated,
Birmingham, AL, U.S.A.), and fluorescence was quantified on a
Gallios™ Flow Cytometer (Beckman Coulter, Brea, California
US.A)).

Multiplex ELISA Analyses

Freshly isolated NK cells were cultured for 20h at 5X 10°/mL
in flat bottom 96-well microtiter plates in the presence of the
following recombinant human cytokines: IL-2, IL-12+IL-18, or
IL-15+1L-18. The cytokine concentrations were: 100 U/mL IL-
2 (Proleukin, Novartis Basilea, Switzerland); 2.5 ng/mL IL-12
(Peprotech, 200-12 London, UK); 20 ng/mL IL-15 (Peprotech,
200-15 London, UK); 200 ng/mL IL-18 (Medical & Biological
Laboratories Co. LTD, B001-5, Japan). In the “PMA~+IONO IL-
2” condition, NK cells were cultured in the presence of IL-2
for 26 h, and 100 ng/mL PMA (Phorbol 12-myristate 13 acetate,
SIGMA-Aldrich Saint Louis, Missouri, U.S.A.) and 500 ng/mL
IONO (Ionomycin, SIGMA-Aldrich, Missouri, U.S.A.) were
added to the cultures for the last 6 h. The cultures were performed
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in parallel under normoxic and hypoxic conditions (see above).
Culture supernatants were then collected and analyzed for their
cytokine content by MAGPIX® System (Luminex® xMAP®
Technology, Merck Millipore, Germany).

Chemotaxis Assay

NK cells freshly isolated from peripheral blood and then cultured
for different time points (24, 48, and 96h) with IL-2 under
hypoxic or normoxic conditions were seeded at 2.5 x 10°/mL
in the upper chamber of a Transwell system (3 mm pore size;
Corning Costar, 3415). 10% FBS RPMI 1640 medium alone or
supplemented with recombinant human CXCL12 [100 ng/mL]
(Peprotech, 300-28A), or CCL19 [0.3ug/mL], or CCL21
[0.6 Lg/mL] was added to the lower compartment. Cells were
allowed to migrate for 2h at 37°C under normoxic condition.
Cells migrated in the lower chamber were collected and counted
using the MACSQuant Analyzer (Miltenyi Biotec Bergisch
Gladbach, Germany) or analyzed with the Gallios™ Flow
Cytometer after surface double staining of CD56/CD16 markers.
Cells migrated in the lower chamber containing medium alone
(w/o chemokines) represented spontaneous migration due to
unspecific cell motility. Chemotactic response was assessed as
percentage of spontaneous migration and was calculated as
follows: (number of migrated cells in the presence of chemotactic
stimulus/number of migrated cells in the absence of stimulus)
x 100. The chemotactic response of CD56P"8MCD164im/neg NK
cells to CCL19, CCL21, and CXCL12 was assessed as enrichment
of this specific cell subset within migrated cells and was calculated
as follows: CD56"8MCD169™/7¢8 cell percentage within cells
migrated in response to chemokines/CD56> 8 CD16%4™/7¢8 cell
percentage within spontaneously migrated cells.

Statistical Analysis

Statistical analyses were performed using the Prism software
package (GraphPad Software). Data are expressed as the
mean &= SEM of at least three independent experiments, unless
differently specified. Statistical significance was evaluated by two-
tailed paired Students t-test. A p < 0.05 (*), <0.01(**), or
<0.001(***) was considered statistically significant.

RESULTS

Gene Expression Profile of Hypoxic NK
Cells

To obtain an overview of NK cell response to hypoxia, we
assessed the gene expression profile of NK cells isolated from
the PB of three independent healthy donors and cultured with
IL-2 for 16 or 96h under hypoxic (1% O;) or normoxic
(20% O) conditions. mRNA was individually hybridized to
human Affymetrix HG-U133 plus 2.0 GeneChips, obtaining
three biological replicates for each experimental condition. Raw
data were processed as described in the section Materials and
Methods. We used GSEA to determine the enrichment of the
published C2.CGP gene set collection (44) in the 16 and 96h
transcriptomes of hypoxic NK cells (Hy-NK) as compared to
their normoxic counterparts. We selected 25 gene sets using
“hypoxia” and “hypoxia-inducible factor (HIF)” as keywords (see

section Materials and Methods for details). The list of gene
sets, their normalized enrichment score (NES), false discovery
rate g-values (FDR g-val), and nominal p-values (NOM p-val)
are reported in Table 1. Among selected gene sets, 20 were
significantly enriched in both Hy-NK cell transcriptomes (p
< 0.05; FDR g < 0.05), 1 and 3 additional gene sets were
specifically enriched in the 16h (upregulated) and the 96h
(downregulated) hypoxic transcriptomes, respectively, and only
1 gene set (upregulated) was not significantly enriched at either
time points. Representative 16 and 96h plots showing clear
enrichment of the gene sets at the top or the bottom of the
ranked list are presented in Figure 1A for a visual inspection
of the GSEA results (46). These data demonstrate that gene
expression changes in Hy-NK cells follow a consensus hypoxia
transcriptional profile.

Gene transcriptional activation by hypoxia is mediated
primarily by HIF, a heterodimer of a constitutive HIF-1f subunit
and an O;-sensitive a-subunit (HIF-1la or HIF-2a) (32, 34).
Interestingly, some of the selected gene sets were from cells
undergoing HIF-1a or HIF-2a silencing (46). The reported sets
of down- or up-regulated genes were found inversely enriched in
the Hy-NK cell transcriptomes (Table 1—gene sets 1, 2, 19, 20—
and Figure 1B), suggesting that HIF-1a and HIF-2a and their
target genes could play an important role in NK cell response to
hypoxia.

Leading Edge Analysis (LEA) applied to the significantly
enriched gene sets allowed to define the subsets of hypoxia-
related genes with the highest impact on the enrichment
score (referred to as the leading edge subset) at 16 or 96h
(Figure S1). These subsets include genes involved in glycolysis,
gluconeogenesis, and glucose transport (ALDOA, ALDOC,
ENOI, ENO2, GAPDH, GPI, HK1, HK2, LDHA, PDK1, PGKI,
SLC2A1, TPI1), non-glycolytic metabolism and ion transport
(P4HA1, P4HA2, PAM, VLDLR), apoptosis, stress response,
and proliferation (BNIP3, BNIP3L, CCNG2, DDIT3, EGLNI,
EGLN3, NDRG1), transcription and signaling activity (FOSL2,
JAK2, JUN, MXI1, SOCS2). These results extend to Hy-NK
cells the expression of a large cluster of hypoxia-related genes
previously identified in other cell types, including tumor and
immune cells (32, 34, 47-49).

Functional Assessment of Genes

Modulated by Hypoxia in NK Cells

To identify novel genes affected by hypoxia in NK cells, we
performed differential expression analysis of microarray data.
We filtered transcripts for a differential expression of at least
2-fold changes and a p < 0.05. Using these selection criteria,
we identified a total of 1,474 transcripts that were significantly
modulated under hypoxic vs. normoxic conditions, with
expression changes ranging from 106-fold upregulation to 25-
fold downregulation (Table S1). The majority of differentially-
expressed transcripts were identified as unique genes named in
the GenBank™, whereas the remaining transcripts were either
unnamed expressed sequence tags or hypothetical. As shown
by the Venn diagram in Figure 2A, 355 transcripts were up-
[179] or down-[176] regulated at both time points, whereas 374
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TABLE 1 | Hypoxia- and HIF-related gene sets enriched in the 16 and 96 h hy-NK cell transcriptomes.

GSEA term? 16 h up 96 h up

Size® NES® FDR g-vald Nomp-val®  Size NES FDR g-val Nom p-val
ELVIDGE_HIF1A_TARGETS_DN 69 3.26 <0.001 <0.001 69 2.98 <0.001 <0.001
ELVIDGE_HIF1A_AND_HIF2A_TARGETS_DN 75 3.17 <0.001 <0.001 75 2.96 <0.001 <0.001
MENSE_HYPOXIA_UP 75 3.16 <0.001 <0.001 75 2.70 <0.001 <0.001
ELVIDGE_HYPOXIA_UP 130 3.06 <0.001 <0.001 130 2.78 <0.001 <0.001
ELVIDGE_HYPOXIA_BY_DMOG_UP 102 3.03 <0.001 <0.001 102 2.85 <0.001 <0.001
FARDIN_HYPOXIA_11 25 2.92 <0.001 <0.001 25 2.75 <0.001 <0.001
SEMENZA_HIF1_TARGETS 28 2.70 <0.001 <0.001 28 2.09 0.003 <0.001
LEONARD_HYPOXIA 33 2.67 <0.001 <0.001 33 2.55 <0.001 <0.001
KIM_HYPOXIA 18 2.62 <0.001 <0.001 18 2.02 0.005 <0.001
HARRIS_HYPOXIA 63 2.60 <0.001 <0.001 63 1.91 0.018 <0.001
GROSS_HIF1A_TARGETS_DN 17 2.59 <0.001 <0.001 17 1.75 0.064 0.006
WINTER_HYPOXIA_METAGENE 184 2.55 <0.001 <0.001 184 2.21 <0.001 <0.001
QI_HYPOXIA 107 2.47 <0.001 <0.001 107 2.01 0.005 <0.001
MANALO_HYPOXIA_UP 163 2.34 <0.001 <0.001 163 2.63 <0.001 <0.001
GROSS_HYPOXIA_VIA_ELK3_AND_HIF1A_UP 108 2.15 0.001 <0.001 108 1.96 0.01 <0.001
GROSS_HYPOXIA_VIA_ELK3_DN 125 1.62 0.1934 0.000 125 1.18 0.5 1
GSEA term 16h down 96h down

Size NES FDR g-val Nom p-val Size NES FDR g-val Nom p-val

MANALO_HYPOXIA_DN 236 -3.20 <0.001 <0.001 236 -3.34 <0.001 <0.001
ELVIDGE_HYPOXIA_DN 123 —2.84 <0.001 <0.001 123 —2.14 <0.001 <0.001
ELVIDGE_HIF1A_TARGETS_UP 56 —2.71 <0.001 <0.001 56 —1.88 0.003 <0.001
ELVIDGE_HIF1A_AND_HIF2A_TARGETS_UP 37 —2.62 <0.001 <0.001 37 —2.00 <0.001 <0.001
ELVIDGE_HYPOXIA_BY_DMOG_DN 49 —2.42 <0.001 <0.001 49 -2.12 <0.001 <0.001
GROSS_HYPOXIA_VIA_HIFTA_UP 60 -2.11 <0.001 <0.001 60 —1.81 0.007 <0.001
GROSS_HYPOXIA_VIA_ELK3_AND_HIF1A_DN 77 —1.57 0.0678 0.0051 7 —1.87 0.003 <0.001
GROSS_HYPOXIA_VIA_ELK3_UP 166 —1.43 0.1474 0.0118 166 —2.28 <0.001 <0.001
GROSS_HYPOXIA_VIA_ELK3_ONLY_DN 37 —1.85 0.004 <0.001

Microarray analysis was carried out on NK cells from 3 different donors cultured under normoxic (20% O2) and hypoxic (1% O2) conditions for 16 and 96 h. Differentially expressed
transcripts were ranked by level of hypoxia-mediated up- or down-regulation. The ranked gene lists were then compared with published gene sets for hypoxia-regulated genes or for
genes previously shown to be HIF targets in other cell types by GSEA.

aGene sets enriched in the GSEA analysis. Gene sets belonged to the C2.CGP collection of the MSigDB and were selected using the keywords “hypoxia” and “HIF" and filtering out
those having <15 probe sets and more than 250 probe sets. “Up” indicates genes enriched in the hypoxia transcriptomes (i.e., up-regulated in hypoxic NK cells); "down" indicates
genes enriched in the normoxia transcriptomes (i.e., down-regulated in hypoxic NK cells).

bRelative number of probe sets in the gene sets.

¢Normalized enrichment score of the gene sets. Gene sets are listed in decreasing order of NES.

9FDR q-value of the false discovery rate. Values <0.05 are considered acceptable.

eNOM p-value of the normalized enrichment score. Values <0.05 are considered significant.

(139 induced and 235 repressed) and 745 (334 induced and
411 repressed) transcripts were specifically modulated at 16 or
96 h, respectively. These results provide the first indication that
Hy-NK cell signature varies with the duration of exposure to
hypoxia.

To gain insights into the biological processes modulated by
hypoxia, we carried out a Gene Ontology (GO) enrichment
analysis on the lists of up- and down-regulated transcripts.
We identified 28 biological processes containing a statistically
significant enrichment of hypoxia-modulated genes (HMGs)
(Figure 2B). Most processes were represented at both time
points, although with variable HMG enrichment. Metabolism
and biosynthesis resulted as the most enriched processes (in
both up- and down-regulated genes), followed by response

to stimulus. Additionally, Hy-NK cell transcriptional
profile was related to regulation of apoptosis, and response
to stress, but also to cell proliferation, signaling, and
chromatine/chromosome  organization. Certain processes,
including regulation of gene transcription and expression, and
cell differentiation, were selectively enriched in upregulated
genes, whereas processes related to cell cycle, cellular
component organization, and DNA replication and repair
were exclusively enriched in downregulated genes at both
time-points.

Importantly, different immune-related processes, including
immune  system  development/response,  hemopoiesis,
leukocyte activation and differentiation, angiogenesis,
regulation of cell motility and communication, and
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FIGURE 1 | Gene Set Enrichment Analysis (GSEA) Plots for representative hypoxia- or HIF1a/2a-related gene sets in Hy-NK cell transcriptomes. The transcripts
identified by microarray analysis in NK cells were ranked by level of hypoxia-mediated up- or down-regulation. The ranked gene lists were then compared by GSEA
with previously published gene sets for hypoxia-regulated genes or for genes previously shown to be HIF targets in other cell types. (A) GSEA plots of representative
sets of up- or down-regulated genes from cells exposed to hypoxia (ELVIDGE_HYPOXIA_UP or _DN, respectively). (B) GSEA plots of representative sets of up- or
down-regulated genes from cells undergoing HIF-1a and HIF-2a silencing (Elvidge_HIF1A_and_HIF2A_TARGETS_UP or _DN, respectively). Note that in the case
HIF1a/2a-silencing the sets of up- or down-regulated genes resulted inversely enriched in the Hy-NK cell transcriptomes. The enrichment score is calculated by
walking down a list of genes ranked by their correlation with the phenotype, increasing a running-sum statistic when a gene in that gene set is encountered (each
black vertical line underneath the enrichment plot) and decreasing it when a gene that isn’t in the gene set is encountered. The enrichment score is the maximum
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immune effector processes, were enriched in a statistically

significant percentage of HMGs, suggesting regulatory
effects of hypoxia on NK cell-mediated immune
responses.

Characterization of Cytokine/Chemokine
and Receptor Gene Modulation in Hy-NK

Cells

As the effect of hypoxia on the NK cell capability of killing
target cells has been previously assessed (39), we focused our
analysis on genes involved in immunoregulation and migration.
The evaluation of immune-related gene clusters highlighted by
GO analysis led to the identification of 43 HMGs coding for
cytokines and chemokines, their receptors, and/or associated
signaling molecules (Table 2). Some of these genes (26) were
rapidly modulated by hypoxia (at 16h time-point), while the
remaining genes (17) were modulated after longer exposure
(96 h).

Compared to their normoxic counterparts, Hy-NK cells
showed increased expression of genes coding for molecules with
a primary role in angiogenesis (VEGFA, VEGFB, ADM, SPP1,
FGF11) and promotion of inflammation or lymphocye cytotoxic
responses (SPP1, SPP2, VEGETNFRSF11A and 12A, IGFBP2,
FGFBP2, PTAFR), but also in apoptosis inhibition (IGFIR,

TNFRSF10D, 11A, and 12A), tumor progression (IGFBP2,
SPP1, MIE, PDGFD, TGFB2, FGF11), and immunosuppression
(MIF and TGFP2) (34, 37, 48, 50-55). On the other hand,
hypoxia inhibited mRNAs coding for cytokines and/or receptors
mainly involved in anti-tumor and anti-viral immune responses
including IFNy, IFI30, IFI44, IL-17RC, ILIRL1, and various
components of the tumor necrosis factor (TNF) superfamily,
such as TNFa, LTA, LTB,TNFSF10,11,14, and TNFRSF18 (55—
63). The only exception was represented by the inhibition of
mRNA coding for LIE a pleiotropic factor involved in the
regulation of inflammation.

The Hy-NK transcriptome was also characterized by the
differential modulation of genes coding for chemokines and
chemokine receptors (11, 15). Specifically, we observed hypoxia-
dependent upregulation of the mRNA for CXCL8 (which also
has proangiogenic properties) (11, 37, 52), and downregulation of
mRNAs for CXCL10, CCL3, and XCL1 (9, 11, 52, 64). Regarding
the chemokine receptors known to be important for NK cell
migratory activity mRNAs coding for CXCR4 and CX3CRI1
were selectively up-regulated, whereas those coding for CXCR1,
CCRI1, CCR5, and CXCR3 were downregulated.

Microarray results were validated by qRT-PCR analysis of a
subset of HMGs (17 belonging to the 16 h transcriptome and 9 to
the 96 h transcriptome). As shown in Figure 3 and Table 2 there
was almost full concordance between qRT-PCR and Affymetrix

Frontiers in Immunology | www.frontiersin.org

October 2018 | Volume 9 | Article 2358


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Parodi et al.

Hypoxia Effects on Human NK

B 4
4

Down 41 |

16h 96h

B Down-regulated Up-regulated

[ Metabolic Process ™ m——

]

=
"

| BiosynteticProcess

I Regulation of Transcription

I Response to Stimulus

I CatabolicProcess

| Regulation of Apoptosis

I Regulation of Cell Proliferation

I Chromatin/Chromosome Organization

lIIHH Ii

| Regulation of Signaling

I Responseto Stress

=
—a

I Immune System D pmentR

| Hemopoiesis

| Leukocyte Activation

[ ceticyce

[ Leukocyte Differentiation

I Regulation of Gene Expression

I Organ Development

I Regulation of Cell Differentiation

I Angiogenesis

it

| Regulation of Cell Motity

I CellularcomponemOrganization=

| DNA Replication

Il

I Macromolecular Complex Assembly =

I DNA Repair q

I Protein Translation, Folding, Modification

I Regulation of Cell Communication I
T W16h
I Cytoskeleton Organization M 96h
I Immune Effector Process 1
-60 -40 -20 0 20 40 60
Percentage of genes

FIGURE 2 | Identification of genes significantly modulated by hypoxia in NK
cells by differential expression analysis. (A) Graphical representation of
transcripts differentially expressed in hypoxic vs. normoxic NK cells. The gene
expression profile of NK cells isolated from 3 different donors and exposed to
hypoxia for 16 h (top) or 96 h (bottom) was analyzed by microarray analysis, as
described in the section Materials and Methods. The Venn diagram depicts the
number of transcripts exhibiting >2 fold up- or down-regulation in hypoxic vs.
normoxic cells at the two time points. About 24% of differentially expressed
transcripts are common to the 16 and 96 h transcriptomes.

(Continued)

FIGURE 2 | (B) Functional assessment of hypoxia-responsive genes by GO
enrichment analysis. Unique genes showing at least 2-fold change in
expression levels between Hy-NK and NK cells were clustered into different
biological processes using the DAVID GO enrichment analysis. Based on this
classification scheme, genes were placed in more than one biological process
if more than one function of the encoded protein was established. The y-axis
shows the GO terms. The x-axis shows the percentage of genes within each
process relative to the total amount of genes belonging to that process: bars
on the right of the y axis represent upregulated genes; bars on the left of the y
axis represent downregulated genes. The blue columns represent genes
modulated at 16 h whereas the red column represent genes modulated at 96 h.

data with respect to the direction of the expression changes, with
the only exception of CX3CR1 whose upregulation by hypoxia
was not confirmed by qRT-PCR. For about half of validated
genes, the extent of modulation was also comparable to that
shown by microarray data, whereas it was higher for nine genes
and lower for three genes. Such discrepancies, however, are
consistent with previous findings showing that these techniques
can often differently estimate the extent of gene regulation
(42, 48).

A literature survey indicated that some of the HMGs in NK
cells were targeted by hypoxia in different cell types including
T lymphocytes (49), primary monocytes (48), monocyte-derived
macrophages (MDMs) (38, 65, 66), immature (i)DCs (67-70),
and mature (m)DCs (37, 68) (Table2). In particular, MIF-
and VEGFA-coding genes were upregulated by hypoxia in
all the immune cell types analyzed, ADM and SPP1 were
increased in the innate immune cells, while CXCL8 and CXCR4
upregulation was reported in T cells and in some mononuclear
phagocyte populations. Other genes were variably modulated
depending on the analyzed cell type. To our knowledge, a
consistent part of the cytokine/chemokine- and receptor-coding
genes identified in Hy-NK cells have not been reported to
be modulated by hypoxia in other immune cell populations
analyzed.

Taken together, these data indicate that hypoxia can induce
a specific cytokine/chemokine and receptor gene signature in
NK cells with possible functional consequences. To assess this
possibility, we proceeded with the overall evaluation of the
effects of hypoxia on NK cell immune-regulatory and migratory
functions.

Effects of Hypoxia on NK Cell-Mediated

Release of Chemokines And Cytokines

To assess the effect of hypoxia on cytokine/chemokine release,
PB-NK cells were freshly isolated from additional donors and
cultured in the presence of IL-2 under hypoxic or normoxic
conditions. After 20 h, supernatants were collected and analyzed
by multiplex immunoassay for the content of IFNy, TNFa,
CCL3, GM-CSE CCL5, CXCL8, VEGE and MIF (Figure 4),
namely those factors that are typically released by NK cells
(6, 12) and/or that were shown to be transcriptionally affected
in microarray analysis (Table 2). As shown in Figure 4A, upon
exposure to IL-2 NK cells released low levels of different factors,
including IFNy, CCL3, GM-CSE, CCL5, and MIF. Under hypoxic

Frontiers in Immunology | www.frontiersin.org

October 2018 | Volume 9 | Article 2358


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Hypoxia Effects on Human NK

Parodi et al.

(penunuoD)

L-491 Aq Anoixojo1ho
pue juswdojerap (90 YN JO uoleinbes seyeipaul {eAnNs
|90 Buroueyus Aq wusbe onoidode-liue ue se suopouny

Jo1daoal | J01oe}

/ / / / / ¥'c 110308} YIMOIB oxjI-ulnsul Jo Joydeoal Ayuie YbiH  uimoub sxji-uinsu d1491 G/8000 AN
PO Jequiewl
sisoydode |[8d peonpul-iyyL UO 8|0l Aoygiyul ‘Alurepadns
ue sAeld {(1vd.L) puebl Buonpul-sisoidode pareji-4NL J0}da081 10108} (PdIvdD)
(2€) / an / dn / G’z Joloydeda Ajwepedns 10}deosi-4N1 BU} JO JBqUIB)N  SISOI08U Jownl 0 4SHANL 0¥8€00 N
sploe Ane} Jo exeidn Buyjonuoo ABojoisAyd
O Ul PAAJOAUL S| PUE S[ESSOA POO|] JO UOIIBUIO) g Jo1oe}
ay} seyeinbal ¢ | -ujidoinau pue | Jojdaoal 4H3A 40} YmmoUb [ellsyiopus
/ / / / / 2’ pueby ‘Ajwey J01oe) UimolB 493A/HDAd Y} JO JaquIsiy JenOseA g493A 2/€€00 AN
SJaoued Jo sadA} Auew uj uoljezielselow
90 Jowin} ur sajo. Juepodwl sAejd (g Bul Ul ‘S|[e0 MN
Buipnjoul ‘s|jeo onslodoyewsy Jo Bujwoy pue uopualel
JOJ [eonHO fuoielBiw pue Aljiow |99 Jo Joleinbas 1 Jo1dedas (Jnow
(89 29 'S9 ‘€9 ‘oF ‘S) an / dan dn an 7'e Aod ! |-10308) POALIBP-||90 [BLUIOAS BU} JO 103808y O-X-0) BUMOWaYD Y4OX0O /9%€00 AN
asuodsal Alojyewiuuejul
oy} JO Jojelpaw Jofew pue Jojoe} ojuebolbue (8-
jusjod Y0308} BuneAioe pue opoejowsyd (Iydoinau 9 pueb| (jnow
(£9-99 ‘€9 '9¥ ‘.€) an an dn dn / 67 € SB Suojoun; :AjiLie) aUBOWBYO-E 8U} JO JaCUIBIN O-X-O) duBbowayd 8710X0 ¥85000 AN
sa1L00ydwA| | pue ‘seyfoouow ‘D3
1o} AlAiOE onoelIoWeyd pue Ayoeded aAIssype O3 Yim
pamopus ‘peaids pue ‘uoissaiboid ‘YimolBs Jowny pue (unuodosisQ)
Aunwiw | 8dAy Jo uoneAloe ayy Ul ajod [eanlo e shkeld  uieiosdoydsoyd NdO
(99 ‘g7 *2€) / an an an an 9'LL ueoidoydsoyd Xuyew sejn|jeoe.ixe/auMolfo oidosjoe]d pelei0es /kddS 8000100 NN
apndad Aloyenbes [euooUNH}NW E SB SIOB {[0U0D
uoleIN2JIO Uj suowloy e se uoiouny Aew ‘Ajiwey epnded
ulAwre/(d4g ) epnded parejai-sush uIuONOed/UIuOYOED
(99 ‘€9 ‘s¥) / an an an an 6¢ch aus 0} sBuojeq yey} Joyeliposen epnded ousbolBuy  ulinNpewouaIpyY nav ¥ZHL00 AN
UOITeA}OB,/JUSNINIOBI
120 onAoouow seyowold ‘sisoydode jo
Iyul pue uonesBiw pue uolrelsyjoid ‘eanins D3 Jo
UOolEINWIIS BIA SISausBoNoseA pue sisausBolbue Bulap V/ J010B}
ul 8|04 [e1ued e sAeld {(D3) 180 [eleyiopus Joy usbonw ymolb [ellpyiopus
(69 '29-59 ‘€9 ‘Ov ‘G ‘/€) an an an an an 1'8¢ ‘Ajiurey 10308} UIMOIB 4HIA/HDAd U} JO JaquIBiN Jejnose/ V493N 6£5201L00 NN
uolyelsyljoid pue UONBAIOE [|80-1
0} SeINQLIUOD ‘§|[80 JoWN} UO 108ys Aoreinwins ymmolb
Sey {S8NsSs|} OJul UOIe|NDJIO 8Y} WU} S49)| JO Jopodsuely 2 ueyoid
B se suopouny ‘sisoydode pue ‘uoielbiul ‘uolyesapoid Buipuiqg Jo10e)
/ / / / / L'HL 190 BuIj013U00 Yiomisu Aloyeinbe e Jo Jeguisiy  Upmoub axji-unsu [4<ISEQ]| /65000 AN
pajenbai-dn
yol
Sjledo 1 sOQqu soa! Nan sapfoouop
§obueyn |[oquiAs
saoual9)ey «Ul pajeinpo plo4 1onpoud auab jo (s)uonouny uiepy aweN |In4 auan VNY bas joy

"VS|[90 YN “SA MN-H Ul $101d8da. Jisy} PUE S8UoWBYd/SauMoIfo Bulpoous seush jo uoissaidxe aAleRy | g 319V.L

October 2018 | Volume 9 | Article 2358

Frontiers in Immunology | www.frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Hypoxia Effects on Human NK

Parodi et al.

(penupuo)

(99 ‘g9 ‘9 ‘ov ‘G ‘/€) an dan

uononpoid z LI
ul pue sjjed MN Aq Bulsy onoidode Jowny ul ojo. e sheid
‘anssi ploydwi| Jo Juswidoeasp Ul PaAJOAU isasuodsal

AJoyewiweyu Jo Jadnpul {UOBULIO) JaWi0I818Yy

ybnouyy 8oeuns (|80 ayi 01 eyde-uixoloydwiA|

sJoyoue ‘Ajlwey 4N 8yl Jo uplold sueiquiswi || odAL
S[Ek]

MNAQ Bulpy onoidode Jowny ul 8joJ e sheid ‘juswdoersp
Buunp uonewlo) ueblo ploydwA| Arepuooses

Ul PaAJOAUL ‘sasuodsal [eliAlue pue ‘Alojeinuunsounuiw
‘AojelIWE Ul SejeIpaLU {B18Qg-UXO10ydWwA|

(€ Joquuswi

‘Aurepadns 4N 1)
©1aq uxojoydwAT

(1 Jequuswi

‘Aurepadns 4N 1)

UM SJawinioselay swiioy ‘Ajiwuey 4N L eyl Jo Jequisiy eydpe uxoioyduwiA

uoljezielselow pue
‘uoissalbo.d Jowny ‘siseusBoouUO Ul PaAjOAU ‘sisoldode
JO uoljeinBas ayy Ul 8jos & oAy ABwW ‘[eAINNS OJ

pue asuodses sunwiwl [|99 | JO uolreinBal 8y} Ul POAJOAU
{UOITeAIIOB PUB UOITBIUSISHIP 1SB[O08]SO U0} J0J0B)

J2°0 Aoy e se suoiouny ‘AjiLue) 8UMOIAO 4N L 8U} JO Jequusiy

20BlBIUI [E]8}-[EUISIEW BU} Je 80UBIs|0}
aUNWILI Ul PBAJOAU (9DUBISI0) suNwiLl aAldepe pue
Juswdojenep Bai] sejowo.d ‘uolyellweul SNOSUEIND Ul
9|0 Aojyewlwejul-liue Aoy e sAejd (uoISIeAuo9 [ellpyyde
0} [eWAYoUSSaW JO JojeinBal {UoeRUSISHIP |90 [euoinau
pue oislodolewsy PIoRAW JO UoRONPUI 8Y} Ul PBAJOAUI
‘sueblo pue sedA} |90 snoueA uo s1oaye oidosoleld
sAe|dsIp {SeuUM0IAD JO Ajlwe) 97| 8Ul JO Jaquusi

Joydaoas zoN Bunenbes-umop

AQ s||90 Jowny JsuleBe AJOIX010140 (|80 MN pue

Aynow sbeydoioew Jo JoNgIyul Ajunwiwl Jowniiue pue
sisoidode pajeipaw-g6d Jo Jossalddns ‘siseusbolbue
Jouin} pue ‘siseiselow ‘uonelbiw ‘uorrelsyjod (90

| | Jequiswi
‘Alurepadns
(pueby) Joyoey
SISOI08U Jown|

(103084
uonenuaieyip
olBJsuloyo)
Jojoey Aoyqyul
elueMnaT

Jojoe}

Jowiny 4o Jsjowoid ‘uoewwe Ul pue uofrenBaiountuwl AIoygiyul uoleibiu

Ul s108ye a|dinw yum auoifo oidosoleld

10308} UoIssaiboid Jowny

e se Ajjoalip 10e Aew ‘suopouny OnA| Jivyy Jo uoissaiddns
pue sjje0 N pue | (+)8d0 i uoissaidxe ZOMN
Joydeoaiounwiwl BuiyeAloe sy} Jo uonenbal-umop

8y} Jo} 8|qisuodsal {ymolB |[eo-] Juspuadep g-umnajielul

abeydo.oey

4

10 s108Y8 aAIssalddns sey (sesuodsas sunwiwil Jownue e1eq ‘Uoioe) yimoid

€2 UIM SeIepelul ‘SBUBOIAD JO AIUE) §45)] BU JO JeqUIBIN

Buiwiojsuel |

(e4s4ND a1 F 17200 NN

(14SIND VLT 026SHLO0 AN

(MNVY)
LI4SINL  €710Z8007 AN

ElR| 60£200 AN
paie|nbas-umoq

dIN G100 NN

cg491  6SSELHI00 AN

S||I90 L soqu

saouaIaey

1onpo.d auab jo (s)uonouny utey

SWeN |Ind

|oqwiAs
ausy VNY bas joy

penuiuoD | g 31avVL

October 2018 | Volume 9 | Article 2358

Frontiers in Immunology | www.frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Hypoxia Effects on Human NK

Parodi et al.

(penunuoD)

S9)IS JOWN} Je uonualal pue ‘quawinioa) ‘Bujwiud

|90 J030BYe SeseaIoUl (S|190 | +8QD Jo Buiwud O pue
180 YN PeleAilO. pue uoisuedxa,/uolieAloe YN Ul 8joi
[eonuo e sAeld sisordode |90 Jowny s1ebbly ‘uonelsyjoid

|90 1 serenwiis ‘snuiasediay AQ UORO8 Ul O} JUaLIe1ep 7] Joquiew
B SE puk s|[80 ploydwiA| Jo} J010e) AI01eNWINS00 & Sk ‘Aiurepadns
suoiouUNy (S|[990 [ewols pue onalodorewsy Uo Yy pue (pueby) Jo10e} UHSM)
(S9 ‘9 ‘a¥) umoq / dn / dn €70 ¥14SHANL 0} spulq ‘Ajiwiey puebll 4N L U} JO JequIsjN  sIsososuJoWn]  #E4SANL 7+OZLL AN
Auaoe

[eJIAlUE pue ONAI01AD ||80 N Ul 8j0) B sAed ‘uoneoldal
AIH SHAIyUI ‘SIXeIoWSYO [[80 MN PUB ‘OQ 8inreww; ‘(9o

| peleAloe ‘elAoououl seonpul ‘sesuodsal Aorewiwelul € pueb| (now (eL-dIN)

(€9 ‘9v ‘2€) an an / an / €70 Ul 901 e shed Ajiuejgns euposyo-eiad 8y} JO Jequisy  O-0) suiowsyd €100 /7100100 AN

9OUE|[IBAINS BuUNWIWI
Jowin} pue ‘edue)lsisal ulnsul ‘sesessip sunwiuioine
Ul payeolidwi ‘uoneinBeod pue ‘wsijogesw pidi| ‘sisoiosu
‘sisojdode ‘uoieAloe pue ‘uolelbiw ‘uolreliuaiayip
‘uonesaljoid (|80 sunwiw Bulpnjoul sessaoo.d [eolBojoiq

[eJonss Jo uonenBal eyl ul peAjoAul ‘Ajiuiepiadns 4N &yl eyde-io1oe; (24S4NL)
(29 ‘€9 ‘or ‘g¥) umoQ / umoqQ dn dan g0 0} sBuojeq yeu aunjo}ko Aoyewieyuiod [eUOROUNINPN  SISOJ08U Jown| VANL 765000 N
Juswdoenep

1180 LY pue uoireAnoe 710 pelelpsw-MN 4o} [eonuo
‘sabeydoioew Jo JojeAoe uelod {Ayoiusbounwiwi Jowny
sejowoid ‘seipedoid onoydode-oid pue ‘eapessloid-nue
‘ojusbolbue-nue “AioyenbBaiounwiwl ‘eliaue
(69) umoQ / / / / 6e0 UHM pamopus ‘Ajiue) uoiepsiul || 9dA} 8U3 JO JOCUIBN BLIWED ‘UoieLisiu| ONHI 619000 AN

uopouN} N Jo uonenpow ‘sefeydoloew Jo
UOIJBAIOE ‘UONIBAIIOB-09 |[80-MN ‘S92 (Beil) | Aloreinbal
1O UORIqIYuI ‘s|je0-] 1010848 JO UolieAloe YBnoay) siowny
puUe Uoo8jul 0} 8suodses sejenueod pue asessip 1soy
-sA-Yelb pue sesuodsal Aoyewie)jul/auniwioine Jo

Juswidoensp ayy ul sejedioiped sO3 pue se1kooydwAl-L (H11D) 81 Jequisw

pe1eAlOE Usamiaq suooeIaiul Joy Juepoduwll ‘senssiy ‘Alwepadns
[eseyduad ul eAinins 81A00ydwiAl-| Serenpow ‘8L 4S4NL J03da081 J030B)
(2€) / an / / / 8¢0 spuig ‘Aliwepadns 101deoai-4N L 8U} JO JOqUISIN  SISOI0BU JOWN].  814SHANL G600 AN
Boul

JO Uoljesausb pue 80UBIS|0}-}|8S JO JUBWIYSIARISS DIWAU}
seje|nBal {AJAIZOE OIX0J0JA0 payeIpaw-OJ ‘UOeA}oe
pue uoielbiw |90 | seonpul ‘sasuodsal sunwill

adAl- Ly pue Aojyewwepul ul suoioun; ‘sesuodse. (unoeyoydwiAT)

AJoyewuwelul pue snoposjul Bulnp sjed 1SN PUe ‘SN | puedy| (Jow
(26) / dn / / / ve'0 ‘L Aqpeonpoid Ajiueians subowsyo-0 8yl o Jsquisiy ) suowsyd  (OVLY) 10X S66200° AN
Slled 1 sOQqu soa! Nan sapfoouo
§obueyn |[oquiAs
EELIEYETEN | +Ul pajeinpo pio4 1onpoud auab jo (s)uonouny uiepy aweN |In4 auan VN4 bas joy

penuiuo) | g 31avL

October 2018 | Volume 9 | Article 2358

10

Frontiers in Immunology | www.frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Hypoxia Effects on Human NK

Parodi et al.

(penupuoD)
UOIeAlOB,/USYINIOSI
|92 onAoouow seyowold ‘sisoydode Jo
uoniqIyul pue uolelBiw pue uoljessyjoid ‘[eanns OF Jo
UOIFEINWIS BIA SISaUaBOoNOseA pue sissusBolbue Bulaup V J010B}
Ul 8joJ [esjueo e sAed {(D3) (199 [elleyiopus 4o} usBoyuw Yimols [eleyiopus
(L9-G9 ‘€9 ‘O ‘G¥ ‘L€) an an dn dn dn TL “Aliwey 10306} Umoib 493A/4D0d 8Ul JO JeguuBin Je|nosen V493N 6£520L00° N
oloJ Aorewiwepul-oid eQIve
e yum auab juspuadep-geddes4N ‘Aliwepedns ‘g uieloidoydsoyd
/ / / / / A ueIsho ey Jo Jequusw uieloidoydsoyd pejesoes poleses ¢dds 776900 AN

apnded AioyeinBal reuonounyNu € se s}oe {0Jju0o

UOIIENDID Ul SUOWIOY B Se uoiouny Aew ‘Ajiwey spided

ulAwe/(dyoD) epidad payejel-aush UjU0}O[Ed,/ujuo)O[ed
(99 ‘€9 ‘1) / dan dn dn dan z6 ey} 0} sbuojeq yey} Joyefiposen epndad olusboiBuy  uljinpaLIousIpY Nav 721100 AN
pajenbas-dn

Y 96
AJIAIOE JOWNJIUE (|80 YN S8oUB|US {SJoUN} Ojul
UoIEINWINOOE PUB |Ng 8y} Ul Bupolge |90 YN serowoid
‘uofeBi 110BJ0WBYD puk ‘sebueyd [e1e]eMs01Ad
‘uolreAiloe uubeul seonpul f| L1OXD PUB ‘OLTOXD € J01dedas (jnow
/ / / / / 050 '610XO 40} Aunnosies yum Joydeoas pajdnoo-uieloid 5 O-X-0) suowsyd €4dOX0 705100 AN
uolssaldxe a|nosjow Uoiseype
10 Jojeinpow ‘siseusBolbue o JojgIyul ‘uoielBiw [|90-]
puUE N ‘Se1400U0W JO J8onpul (s108ye oidonoreid yum

pemopue auowsyd 8|qRNPU-BNH| (HOXO J0idedss O pueb) (how 1-d))
/9 / / dn / / 0G°0 8Y} 10} pUeD]| :Ajiueigns suowsyo-eydye au} 40 JaguIB|N O-X-0) uiowsy) 0L10X0 G9G1L00 AN
AIH Buipnjout

‘snuin oldoJi-ebeydoloew Joy J0ydeoal-09 AlIAloe |01k
190 MN SeouByUS ‘SIOWN} PUE UOIEWIWEUI JO SBYIS 0}
S[[90 YN POALIBP-AFG JO JUSLIIINIOS) S8yeIpaW ‘SUOIHPUOD
[ea1bojoisAyd Jepun uoleNoIIo pue uoljelayljod
199 YN i 8joJ € sheld 18700 Pue ‘G100 ¥100 ‘€100 G Joidedas (jrow
(89-99 'v9 ‘o ‘S) an an an umoq umoQ 67'0  spulg A} Joidessl supowsyo-.Ieqg 8U} JO JequiBlN  O-0) duiowsyd S400 62,5000 AN
AYAIOE D1103AD S|[90 MN SOsealou] {Says Jowny
pue AlojewiWejul 0} S|j80 MN PeAUSP-IAg JO JUsWiNIoal
PUE SUOIIPUOD DIE}ISOBWIOY Japun |Ng ayi Ul Bumolgesy
190 N selelpaw gz 100 Pue ‘2700 ‘G100 ‘€100 | Joydedar (ow
(Sp) / / / / umoQ 61°0 spulq Ajiue; 10}de08. BUINOWSYORISY 8U} JO JSqUIBN  O-0) BUOWSYD 1400 S62L00 N
SOYS AoTeulwe|ul 0} JUSWHNIOA) pue
suolpuUod [eslbojoisAyd Jepun (AF) MOLBUW BUOq By}
Ul Bupolge.) (190 MN Selelipaw {g10XD o Joidedas Ayuie | Joydeoal (jnow
/ / / / / Sy'0  YBly Ajwey Joydeoss pajdnoo-uisloid-5) 8y} JO JeguIBiN O-X-0) suowsy) LHOXO 7€9000 AN

SjIed 1L sOQqu soqQ! WA sajhoouopy
§abueyn |oqwiAs
saoualsjey «Ul pajeinpopy piod 19npoud auab jo (s)uonouny urepy aweN [Ind auen VN4 bes joy

penujuoD | g 31avVL

October 2018 | Volume 9 | Article 2358

11

Frontiers in Immunology | www.frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Hypoxia Effects on Human NK

Parodi et al.

(penupuoD)

seseasIp
auNwiwIoINe olWelsAs pue Aorewiwepul jo siseusboyred
U} Ul 8j04 e sheld (Bulppowlal anss)) pue uoiewiuIe|ul
Jo Jorepaw ‘skemyyed Buireubis My-Meld Pue gy-dAN

V21 Jequiewl
‘Alwepsadns
J03da081 J030B)

(IMvamL)

(S9) / / dn / G2 8y} Jo Jojenioe :Ajuepadns 10)deoai-4N1 8Y} JO JeqUBIN  SISOIoBU JowN| Vg L4SHANL 6£9910 AN
UOIBAIIOB PUE UOIEIUSIBHIP 1SE[008)SO
JO JoYeIpaul [eljuasse ‘UoioBIaIUI O/ JO Jojeinbes Bl | Joquiew
‘Remyred Piv-Meld @yl Jo Jorennoe ‘susiold Ajwey ‘Awepadns
(4vy.) 40108} pajeoosse J01daoal-4N | SNOLEBA YIM J0)deoal J01oe) MNVY)
(S9) / / umog / 9'¢  10EmeUI UeD Ajiwepiadns 10}de08I-4NL U} JO JOQqUIBIAl  SIS0I0BU JOWNL V| L4ASHANL 6£8£00 AN
uolyessyjosd pue ‘eanns ‘quswidoensp Joydeoai
/ / / / 8'¢c e1A00ydWIA| | Joj [enuesss 1/ euinajielUl Jo Jojdeosy / upnspsul SVl G81200 N
(Pe1IvdLD)
p Ol Jequiaw
sisoydode ‘Alurepadns
190 paoNpUI-TIvY.L Ul 804 Aoyaiyul ue sheid vyl J0)dedal 1010’}
/ / / / 0'¢  JoJoydeoal Ajiwepadns 10idedal-4N L 8Y} JO Joquisl  SISOI08uU Jown] A0 F4SHANL 0¥8200 AN
A0IX010140 pue Juswdojensp
99 MN J0 uonowoid yuspuadep- | -49)| sereipawl {eAnNs
|90 Buroueyus Aq yusbe onojdode-ljue ue se suopouny  Joydeoal | Jo1oe}
/ / / / L' 11030B} UIMOIB exfil-ulnsul Jo Joydeoes Apue YbiH  yimoib ex-ulnsul d1491 G/8000 N
"sessao0id
[e2160|01q [BJoASS Ul PaAjoAUl Allwepadns eleq-49) | V|| edAy
/ / / / 3] 8} JO SIqIBW BJe YOIUM ‘SUINIOE JO J0Jdeoay 10jdeoal v UINOY VZHAOY 919100 AN
uolssaiddnsounuwiwl U PaAjOAUL 88s$800.d AlojeluwEjul
pUE ‘SISOqUIOJIY} [BLioe Hooys olides ‘euwyise
‘ABusyie ul payeolduwl ‘uononpold auoWBYO/AUM0IAD
puUE ‘uonelBiu 81400¥Na| ‘UOOBIIUOD
o[osnW Yloowss ‘Ayjow ||990 Jo Joyenbal {suoiouny J0)deoal 1010’}
/ / / / g'e oidosjoleld yum Jojoey Buipeaioe-jejered 1oy Jojdedey  Bueaioe-jefeleld d4vid €8€L0L00 NN
uoljesayijoid pue UoneAloe [|80-|
0} S8INQIUOD S|[80 JoWN] UO 108ye Aloyenuins ymoib
SBY SeNssl} OJul UOITEINOIID 8} WOJ} SH9)| JO Jopodsuel} 2 uiejoud
B Se suopouny 'sisoydode pue ‘uone.Bbiw ‘uoljesajoid Buipulq 103108}
/ / / / 8'q 190 Bulj03U00 iomisu Aoyeinbei e Jo Jeguisiy  Uimoib exjil-unsu [4<ISED| /65000 AN
suolouny oluabowny pue ‘olusbolbueoid‘eAnins | | Jojoey
/ / / / 09 190 ‘OuaBoyw yim Ajiurej 494 ey} Jo JeguiejN  Yimoid ise|coiqi4 L1494 Zhv00 AN
osuodsal Alojewiwejul
2} Jo Jojelpaw Jofew pue Jojoe} ojusBolbue (8-
jusl0d 40108} BuneAloE puE onoelIoWaYd Iydolinau 9 puebi| (jnow
(£9-G9 ‘€9 ‘oF ‘/€) an an dan dn ¥'9 € Se suojoun; ‘Ajlue) suMowsyo-e 8} JO JaqUIsN O-X-0) suibowsayd 810X0 85000 N
SjIed 1L sOQqu soqQ! WA sapfoouop
§abueyn |oqwiAs
saoualsjey «Ul pajeinpopy piod 19npoud auab jo (s)uonouny urepy aweN [Ind auen VN4 bes joy

penujuoD | g 31avVL

12 October 2018 | Volume 9 | Article 2358

Frontiers in Immunology | www.frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Hypoxia Effects on Human NK

Parodi et al.

(penunuoD)

SelIAlO. BAljelsyjoidiUe PUE [BAAIUE Bleg/eydie

uoJapIBUl JO Jojelpaul ‘sausb s|qronpul-uoiapeiul | 8dAy 1 uiejold
92°0 O Ajiwey oy} JO JequuBW ‘UIR}0Id PEYRIDOSSE-BINANICIIN PEONPUI-UOISHBIUI idl 7' L7900 AN
S||92 HN woly uoionpoid BN4| SereAioe
{sasuodsal sunwiwl gyl pue |yl yioq sajowoud gg-T)| | &|l-01da08l ("ee-1)
/ / / / 9¢'0 10} Joydeoel Ajiey Joidessal | unepsIul 8U} JO JOqUIBIA | uMnepelul F1d 1 958€00 AN
uopezielseiswl pue
‘uoissalBo.d Jowny ‘siseusBoouO Ul paAjoAUl ‘sisoldode
JO uonenBal ey} ul 8|0) B aABY Aew {[EAMNS DO || Jequiewl
pue asuodses sunwiwl [|99 | JO uolrenBal 8y} Ul POAJOAUI ‘Aurepadns
{UONEAI}OE PUE UOITEIIUSISHID ISE[008]SO J0} J0}OB) (pueby) Jo10e) (TMINVY)
/ / / / 12'0 Aoy e se suonouny iAjiue) 8UMOIKO N L B} JO Jequisly  SISO0eU Jown| LE4SANL £'10/800 AN
S|[80 MN
AQ uoneioas BN4| S8oUBYUS (S8SBaSIP aUNWILWIOINE pue
Alojewiwejul Jo uoissalboud ay) Ul peyeoldwl sesuodsel
aseyd a1noe pue ‘Bulippousl aNssi} ‘Ayunwiull 8xeuul
‘asuUaJep 1S0Y Ul PAAJOAUL {SBUMOIAD Alojewiweluioid
42171 pUe V2 E-T1 YI0Q O suoidun ey} selelpaul 0 Joydeoel
/ / / / 6+0 VdZ LT Yum Xejdwiod g/ L -8yl Jo Jusuodwod L upnapeiu] odZIl 09v€SH AN
90BUBIUI [E]9}-[EUISIEW S} Je 80UBIS|0}
aUNUILI Ul PAAJOAU {80UEBIS|0) sunwilll aAldepe pue
1uswidoensp Bai] sejowold ‘uoljewLEul SNOSUEIND Ul
9|0 Aoyewiluejjul-nue A e shejd ‘uoisieAuod [eljeynds (103084
0] [eWAyoUsSsaW Jo JojeinBal ‘uolenuaiagip |90 [euocinau uonenualeyip
pue onslodoyewsy PIojeAW JO UOIKONPUL SU} Ul PAAJOAUL olf18ulloyo)
‘sueBlo pue sadA} (|90 snoueA uo sioaye oidosjoleld  Joyoe) Aloygiyul
/ / / / JAN0) she(dsip {sau0IA0 JO AjiLiey 9| BU} JO JSqUIBI BlusXNeT 4M 60€200 N
pajenbas-umoq
Agunwiw pajelpawl-a1400ydwiA| O1X010140 2 ueroud
Ul panoAUl pue sa1AooydwiA| O1X010140 AQ pa1eIoes Buipuiq 40108}
/ / / / 2z Aennosies Awey uioid Bupuid 494 8U3 JO Jeguisiy - Uimoib ise|qoiqid 2dg494 0S61€0 AN
(1LNT) uolisuel) [ewAyoussaw-feleynde 0} seiNgLuoo
‘uonelBiw abeydoloew/81A00uoW pUE SBNIAIOE
9se8)0JdOoj[EloW XL1EW S8ienwis Lojoe) ojusbolbue  q Jojoe) Yimols
/ / / / 'z pue olusbuown;-oid Jusiod Ajiwe) 4H0d BU} JO SIS PaALBp J99¥eld a4oad GELEE0 NN
110EX0
Buisseidxa s|je0 Jowny 1surebe A}0x030140 (199 MN
Ul POAJOAUL 192100 PUB L 1DEXD AQ pelelpawl asessip | Joydeosai
JO SeYIs 0} uoleJBiw pue ‘g woly ssaibe ‘uoissype (1now D-ex-0)
(G9 ‘av) / dn / dn ¥'C 1190 YN Ul 8jo1 e sheid 1| 1DEXD/BUB[BIORI JO} J0)deday aupjowayd LHO®XO LGP LL00 N
sjIed 1L sOqu soqQ! Nanw sapfoouop
§abueyy [oquwiAs
EERIEYETENE] LUl pajeinpo\ plod4 1onpo.d auab jo (s)uonouny ule aweN |In4 auan VNY bas jay

panunuoy | 2 31avL

13 October 2018 | Volume 9 | Article 2358

Frontiers in Immunology | www.frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Hypoxia Effects on Human NK

Parodi et al.

"BIXOQAL 0} posodxe S|jed | pue ‘sjjed diLpUep einjew pue aimeww ‘sebeydoioew paaLep-e1foouow ‘sepfoouow Ul paurlqo Aisnoineid erep yum sinsel AeLieoojw jo Uosuedwo)
“umoys e.e ploj-z< Aq pereinpowumop/dn seuss) ‘(SpuewLIeaxe 8aiy) JO (e8] UOISs8Idxs JO uBsWw) se|duies dXouLIoU puB JXOdAY usemiaq seauslayip PO} JO Oljel Se passaidxe aue S)Nsaks

Aq pejepien esoy ebueyo pjoj Aq pesp.o a1e dnolb yors Ul seusr) aush yors o) PaLjoads a.e (aseai0ap PIoj-G 0> ‘@Sealoul PIoj-Z<) enfeA abueyo pjoj 8y} pue ‘SUoRouny ueww Jonpoid ausb ayj Jo uoidIoSep JoLq B ‘aweu |iny e
J0qUIAS BUBD UOWILLOD B 18qUINU UOISS8o0E YUBGOUSE) Y/ "SPOYIS) PUB S[ELIBIEI UOIOSS 8y} Ul PGLOSEP SB Pajonpuod SEM SUOHPUOD [BIUBLLLIBAXS OM] 8} USBMIBY SeousIayp Uoissa.dxe aush Jo sisAreue epesedwoy suojeredsid

‘pauILBpUN 818 HOd-1HbD

Juepuadepul saiy) wodj paynd YNY 8yl uo sisAieue Aeweoioiw Aq Ajpuspusdepul 1no paliied usy} sem Buiyold uoissa.dxe aush pue ‘Y 96 pue 9| 10) SUORIPUOD (20O %) JIXOAAY pue (Z0 %0Z) JIXOWLIOU J8pun painiind 81em Sjjad MN

90UE||loAINS BUNWILLI
JOWIN} PUE SUORO3UI [eJIA 0} 8suodses sunuiull Ul 8|0) e

sAe|d {suolouny Jojoege-sunwiwi pue Aloye|nBalounuul

‘anssasddnsounwiw ul peredldwl (Ayaioe

[EPIOLIOWINY (|90 MN Ul 8|Nd3|0WU J0108ye Ue Sk djoJ e skeld

‘e osedseo pue ‘g asedsed ‘MYNI/SMdVIN JO UOleAloe

Buriebbuy s|jeo Jown) pue pauliojsuel) ul sisoydode

s20Npul ‘Ajlwepedns J0ydedal 4N JO siequew

(ov ‘at) umoQ / / / umoQ 61°0 lesenes 0} spulq :Ajie) puebi| 4N 8U} JO JaguIsiN
AIH Buipnjou

‘snuiA oldoJi-eBeydoloew oy J0ydeoal-09 AlIAloe ONj01A0

90 MN SeOUBYUS ‘Siowin} pue UOIFEWIWIEUI JO SOYS 0}

S[[90 YN PoALBP-AF 4O JUBLIINIOS) SayeIpaWl ‘SUOI}IPUOD

[ea1bojoisAyd Jepun uoiE|NaIIo pue uoljelsyjold

199 MN Ul 8jos & shefd 18700 pue ‘§100 ‘#7100 ‘€100

01 Jequisw
‘Alurepadns
(pueby) 10108y
SIS0JO8U Jown|.

G Joydaoal (Jnow

(IvyD)
0+4SANL 018800 AN

(89-99 ‘v9 ‘ov ‘S¥) an an dn  umoQ umod vy'0  Spuig ‘Ajiwiey Jojdeoas suioweyo-ejaq ey} Jo Jaquisly  O-0) Suowsyo G400 625000 AN
‘suabljue

Bulurejuod-puoq spynsip woly sedoyds paioLIsal-|| 0g uiejoud

SSEe|0 OHIA JO 19sgns e Jo uoliejusesald uebiue seoueyus  o|gionpul-ewwes
60  :eSBjoNPal [OlU)} [BLIOSOSA| 8|qIoNpUI-UoISeIUI-BLILIES) ‘Uoiapisul oeldl 7'2£€900 AN

Sjled L sOqu soa! NanW sajhoouopy
§abueyn |[oquwiAs

EELIEYETEN | «Ul pajeinpo plo4 1onpoud auab jo (s)uonouny uiepy aweN |In4 auen VNY bas joy

penuRuog | g 319vL

14 October 2018 | Volume 9 | Article 2358

Frontiers in Immunology | www.frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Parodi et al. Hypoxia Effects on Human NK

A 25 B 5 .
20 20 A
'| -
8" o 15 -
e o0
g0 g
S 2 10 4
= 5 o
3 5 54
= 0 - =)
= o .
-5 1
-5 4
-10 -
P D P $ > \Q N & Q. -10 -
LW & g 9 P FS
& %d- é‘gz%g ‘5 é‘% Q% g o "\-' Q@(},é QP‘%@\\}(‘ /&,,’C%QC%
R\ ,@ &
Cytokines/ Chemokines Receptors Cytokines/ Chemokines  Receptors
FIGURE 3 | gRT-PCR validation of genes selected from the microarray profile. Total RNA from the NK cell preparations analyzed by microarray was subjected to
gRT-PCR for the expression of a subset of genes randomly selected from those up- or down-modulated at 16 h (A) or 96 h (B). Expression changes were evaluated in
relation to the values obtained for three reference genes, as detailed in the section Materials and Methods. Results are expressed as fold-changes (Hy-NK relative to
NK cells) and represent the mean of three determinations for each transcript. Positive values indicate that the mRNA levels of a specific gene was up-regulated,
whereas negative values indicate that the transcript was down-regulated. Genes are ordered by fold-change within each group.

conditions, release of IFNy, CCL3, GM-CSE, and CCL5 was  IL-15+IL-18, while it has no significant effects on NK cells
decreased (although differences reached statistical significance  exposed to IL-124IL-18.
only for CCL3 and GM-CSF). Since IL-2 has typically limited i .
direct effects on cytokine release while it primes NK cells to Effect of Hypoxia on Chemokine Receptor
respond to other stimuli, we assessed the effect of hypoxiaon NK  Expression
cells cultured for 20h with IL-2 and stimulated for further 6h  We next assessed whether hypoxia could modulate chemokine
with PMA + Ionomycin (PMA+IONO). As shown in Figure 4B,  receptor expression on NK cell surface. To this end, freshly
an inhibitory effect on CCL3 and (slightly) on GM-CSF release isolated PB-NK cells were cultured in the presence of IL-2 under
was induced by hypoxia also on PMA+IONO-stimulated NK  hypoxic or normoxic conditions and analyzed by flow cytometry
cells. for the expression of CCR5, CCR7, CCR1, CX3CR1, CXCR1,
We next assessed the effect of hypoxia on NK cells CXCR4, and CXCR3 immediately after isolation or after 24,
cultured with other classical NK-activating stimuli, such as 48, or 96h of culture. Upon exposure to IL-2 (under normoxic
the monokines, IL-12, IL-15, and IL-18. In particular, we set  conditions), NK cells progressively down-regulated expression of
monokine combinations known to potently stimulate NK  CXCRI1, up-regulated that of CXCR3 and (transiently) that of
cell cytokine secretion (i.e, IL-12+IL-18, and IL-15+IL-18).  CXCR4, while they minimally modified the expression of CCR5,
As shown in Figure 4C, NK cells cultured in the presence of  CCR1, and CX3CRI1. Hypoxia further significantly increased the
IL-12 + IL-18 for 20h released into the culture supernatant  up-regulation of CXCR4 expression, slightly decreased CCR5
very high amounts of IFNy and moderate to low amounts of  expression, while it did not substantially modify the expression
CCL3, GM-CSE TNFa, and CCL5. Hypoxia did not modify  trend of CCR1, CX3CR1, CXCRI, and CXCR3 (Figures 5A,C).
significantly NK cell ability to release cytokines in response The analysis of CCR7 on the whole PB-NK cell population
to IL-12+IL-18, although a trend toward inhibition was  didn’t give meaningful data, as CCR7 expression is generally
observed for CCL3, GM-CSE and TNFa release. Compared  confined to the small fraction of CD56PHight cells (12, 17)
to IL-124+IL-18, IL-154+IL-18 stimulation induced lower  (Figures5A,C). On the other hand, CD56*"8" NK cells showed
release of IFNy and TNFa and higher secreted levels of  progressive decrease of CCR7 expression during culture with IL-
CCL3, GM-CSE and CCL5 under normoxic conditions 2. Hypoxia significantly reversed such effect sustaining CCR7
(Figure 4D). Exposure to hypoxic conditions resulted in the  expression on CD56""8" cells (Figures 5B,C). Remarkably, a
significant inhibition of IFNy, TNFa, CCL3, GM-CSE and CCL5  careful analysis of such NK cell subset revealed that also CXCR4
release. expression could be sustained by hypoxia in CD56P"8M cells
We conclude from these data that hypoxia can differently  (Figures 5B,C).
affect cytokine/chemokine release depending on the type of
stimulus. Specifically, it can modulate the release of only a few  Effects of Hypoxia on NK Cell Chemotaxis
cytokines/chemokines in NK cells cultured in the presence of  Experiments were then carried out to assess whether hypoxia-
IL-2 or IL-24+PMA+IONO, exert a more general inhibition  induced changes of CCR7 and CXCR4 expression could affect
of cytokine/chemokine secretion on NK cells exposed to  specific chemotactic activity of NK cells. To this end, NK
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FIGURE 4 | Cytokine/chemokine release capability of NK cells exposed to hypoxia or normoxia. Cell-free supernatants from NK cells cultured in the presence of IL-2
(A), IL-2 and PMA+ionomycin (B), IL-12+IL-18 (C), IL-15+IL-18 (D) under normoxic (white columns) or hypoxic (gray columns) conditions were analyzed for 8
cytokine/chemokine content using the MAGPIX® System. Results are expressed as ng/ml and are the mean + SEM of 5 independent experiments. In (A,C,D), the
cells were cultured for 20 h in the presence of the indicated stimulating cytokines, in (B), the cells were cultured for 26 h in the presence of IL-2 with the addition of
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cells cultured under normoxic or hypoxic conditions for 24,
48, and 96 h were analyzed in classical migration assays using
CCL19, CCL21 (CCR7 ligands) and CXCL12 (CXCR4 ligand) as
chemoattractants.

Given the peculiar distribution of CCR7 within the PB NK
cells, we analyzed whether CCL19 or CCL21 could induce
the preferential migration of the CD56"8MCD16%™/™e8 cell
subset, resulting in the enrichment of such population within
migrated cells. Before performing this analysis, we evaluated
by FACS whether the percentage of CD56Pi8htCD16dim/neg
cells could be modified over time under hypoxic or normoxic
culture conditions. As shown in Figure 6A the percentage
of CD568"t cells slightly decreased during culture under
normoxic conditions, while hypoxia preserved such a population
at the 24 and 48h time points. This observation suggests that
hypoxia could contribute to increase the absolute number of
migrated CD56"8" cells by preserving them over time. In
order to selectively evaluate the effect of hypoxia on specific
chemotactic properties of the cells, the chemotactic response to
chemokines was calculated as ratio of the CD56*" 8" CD16%™/n¢8
cell percentages within cells migrated to specific chemokines

or spontaneously. Among NK cells that have been cultured
under normoxic conditions for 24 h, CD56"8"t cells were able
to migrate in response to both chemokines and enrich the
population of migrated cells. However, this ability progressively
disappeared at later culture time points. By contrast, Hy-NK cells
gave rise to higher enrichment of CD56"8t cells within cells that
migrated in response to CCL19/21 and maintained this capability
over time (Figures 6B,C).

The analysis of CXCR4-dependent chemotaxis indicated
that, overall, NK cells exposed to hypoxia were responsive to
CXCL12 more than NK cells cultured under normoxic conditions
(Figure 6D). Remarkably, this difference was more pronounced
when considering the CD56°"8" cell subset. Indeed, “hypoxic”
(but not “normoxic”) NK cells gave rise to enrichment of the
CD56P1ight cells within cells migrated to CXCL12 (Figures 6E,F).
These results were in line with the observation that under
hypoxia all CD56P"i8M cells expressed CXCR4 at high levels while
CD56%™ NK cells included a variable fraction of CXCR4neg cells
(Figure 5C).

Overall, these data demonstrate that hypoxia can sustain
CXCR4- and CCR7-dependent chemotactic response of NK cells

Frontiers in Immunology | www.frontiersin.org

16

October 2018 | Volume 9 | Article 2358


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Parodi et al. Hypoxia Effects on Human NK

A
25 2. 2. BRI
2 2

IR

24h 48h 24h 48h 96h

|

NN

23

M FL Ratio

o

C
ie:
' ~0h
2 N
2 L 24h
H
[1-]
a N
)
L 48 h
H
N
>~ 96 h
I
CCRS CCR7 CCR1 CX,CR1 CXCR1 CXCR4 CXCR3

FIGURE 5 | Effects of hypoxia on NK cell chemokine receptor expression. Freshly isolated PB-NK cells were cultured in the presence of IL-2 for 24, 48, or 96 h under
normoxic or hypoxic conditions and then analyzed by flow cytometry for surface expression of the indicated receptors. (A,B) The ratio between the MFI observed at
the indicated culture time points and that at tO (i.e., on freshly isolated cells) is reported for each receptor. Horizontal dotted lines indicate no changes. White and gray
bars are referred to NK cells cultured under normoxic or hypoxic conditions, respectively. Data are the mean + SEM of 5 independent experiments. In (B) data on
CDsePright gated cells are reported for CCR7 and CXCR4 expression. (C) FACS profiles of a representative donor are shown. * p < 0.05.

Frontiers in Immunology | www.frontiersin.org 17 October 2018 | Volume 9 | Article 2358


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Parodi et al.

Hypoxia Effects on Human NK

A CD5&6sridt cells pre-migration
125
) =
zggﬂm
£s
g2
8§
e
=
24h 96 h
CCR7-mediated Chemotaxis CXCR4-mediated Chemotaxis
B D _
et E 600 x|
] S s00
€, 5 3
$9 4 o e *
= E’ r&1 % § 300 ,&. Lo
gg 3 ey K
] 200
;: T 2 k 100
82
[=] < ]
o o = CXCL1ZINCXCHZueXCr12
CCL19 CCL21 CCL19 CCL21 CCL19 CCL21 24h “48h 96h
[§ v ) [N v )\ v J E o
24h 48 h 96 h 25 L
E g2 i —~n
[} ~
c = gts
z” S 10
fz
g8 os
8
CXCL12 CXCL12 CXCL12
L J L J L ¥ J
>24h 24 h 48 h Qéh
F CTR  CXCL12
<
o ® |
>~24h
Ere (o=
2 \ .
a > 48 h R
o BN . Q
®
) =
a > 48 h
O | Qi Oy
>~ 96 h j @ f N
Q@ = EESEN ]
S i >96 h
' @ @ H & O
I / v\_:f@ .
- S

CD16

FIGURE 6 | Effect of hypoxia on chemotaxis of PB-NK cells and their CD56PMgNt/CD569M subset to CXCL12, CCL19, CCL21. PB-NK cells were cultured in the
presence of IL-2 for 24, 48, or 96 h under normoxic or hypoxic conditions and analyzed by FACS for the combined expression of CD56 and CD16 markers in order to
assess the percentage of the CD56PMINtCD169M/Neg cells before migration (A). Cells were then assessed for chemotaxis to the indicated chemokines under
normoxic conditions for 2 h. Migrated cells were collected from the lower migration chamber compartments and counted or analyzed by FACS for the combined

(Continued)

Frontiers in Immunology | www.frontiersin.org

18

October 2018 | Volume 9 | Article 2358


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Parodi et al.

Hypoxia Effects on Human NK

FIGURE 6 | expression of CD56 and CD16 markers. The specific chemotactic response of CD56PM9MCD169M/Ned NK cells to CCL19, CCL21 (B), and CXCL12 (E)
was assessed as enrichment of this cell subset within migrated cells. The enrichment was calculated as fold increase of the CDs6Prigtcpadim/neg gl percentage
within cells migrated to specific chemokines as compared to the CDs6Prightcp1adim/neg o) percentage within spontaneously migrated cells (see section Materials
and Methods for details). (C,F) Representative experiments showing the enrichment of CD56PMINCD169M/Me9 NK cells within cells migrated in response to CCL19,
CCL21 (C) or CXCL12 (F) as compared to cells that spontaneously migrated in the lower compartment in the absence of stimuli (CTR). (D) Specific chemotactic
response to CXCL12 of the whole PB-NK cell population cultured under normoxic or hypoxic conditions. In (B,D,E) white and gray bars indicate data from NK cells
cultured under normoxic or hypoxic conditions, respectively and represent the mean + SEM of 6 independent experiments. * p < 0.05, ** p < 0.01.

to specific chemokines, such as CXCL12, CCL19, or CCL21,
and favor the recruitment of CD56P"8h cells, suggesting that a
hypoxic environment may influence the extent and the nature of
the NK cell infiltrate in different types of tumors.

DISCUSSION

In the present study we analyze the global effects of hypoxia on
NK cells, which are among the most potent immune effectors
available to the host for the control of tumor development
and progression (1, 2, 6). We first provide the transcriptional
overview of the response of IL-2-primed NK cells to short-term
(16h) and prolonged (96h) hypoxia, demonstrating that Hy-
NK cells are functionally reprogrammed through the differential
expression of a large number of genes implicated in various
aspects of NK cell biology, including immunoregulation and
migration. Then, we document hypoxia influence on the
chemotactic properties of specific NK cell subsets and on NK cell
ability to release cytokines and chemokines, providing important
clues on the effective role of the O, tension in determining the
composition and the function of the NK cell infiltrate in tumor
lesions.

So far, one transcriptional study describing how hypoxia
could influence the cytokine-mediated activation of NK cells
has been done for IL-15, while no data were available on IL-
2, although this factor represents the most known and studied
priming cytokine for NK cells. As assessed by GSEA, gene
expression changes observed upon NK cell exposure to 1% O,
conditions follow a consensus hypoxia transcriptional profile.
Several hypoxia-related and HIF-1o/HIF-2a target gene sets
defined in previous studies are, in fact, significantly enriched in
both the 16 and the 96 h Hy-NK transcriptomes. Moreover, we
find enrichment of genes involved in glycolysis, gluconeogenesis,
glucose transport, non-glycolytic metabolism, and ion transport,
which is a common feature of hypoxic cells of different type,
origin, and functional state being essential to compensate for the
inhibition of oxidative metabolism and the malfunctioning of
0O;-dependent enzymes occurring under conditions of reduced
oxygenation (32, 34, 47-49).

GO clustering of HMGs in NK cells indicates that hypoxia
can modulate several biological processes and suggests that NK
cells reaching hypoxic tumor areas may deeply change their
mode to respond to stimuli or exert their functions. Processes
related to metabolism and biosynthesis, response to stimuli,
regulation of apoptosis and response to stress, cell proliferation,
and signaling appear to be all affected by hypoxia suggesting
that NK cells may modulate a wide range of functions in a
hypoxic environment. In particular, the coordinated enrichment

of down- or up-regulated genes in specific processes, such
as cell cycle, DNA replication and repair, cellular component
organization, regulation of gene transcription and expression,
indicates that NK cells can moderate their biosynthetic and
proliferative capabilities in response to decreased O, tension.

Noteworthily, among HMGs we identified a significant
cluster of immune-related genes, 43 of which coding for
cytokines, chemokines, and their receptors. Several of these
cytokine/chemokine-coding genes have not been previously
reported to be affected by hypoxia in NK cells, although
some of them are known from the literature to be modulated
in other immune cells either exposed to short-term hypoxia
(typically 8-24h) (48, 49, 65, 66, 70, 71) or generated under
conditions of long-term hypoxia (37, 38, 47, 67-69). On the
other hand, some genes appear to be modulated uniquely in
NK cells, as they have never been characterized in terms of
responsiveness to hypoxia in other immune cells. These findings
indicate that hypoxia regulates the expression of genes coding for
cytokines/chemokines on different immune cell populations, but
it can also activate a distinct transcriptional profile in NK cells.

The data on immune-related HMGs give some hints on
how NK cells may be functionally skewed in a hypoxic
microenvironment. The early downregulation of genes coding
for IFNy and for several members of the TNF family, such
as TNFa, LTA, LTB, TNFSF14, TNFSF10, and TNFSF11, is of
particular interest given the role of these molecules in triggering
tumor immunogenicity, decreasing tumor proliferation and
angiogenesis, and favoring apoptotic tumor cell killing. Likewise,
the downregulation of genes coding for TNFRSF18 and IL1RLI
may be crucial, as these molecules act by enhancing IFNy
secretion and potentiating NK cell expansion and response
to tumors (62, 63). Consistently, hypoxia also induces the
up-regulation of genes coding for important proangiogenic,
protumorigenic, prometastatic, and/or immune suppressive
factors, namely VEGFA,B, SPP1,2, CXCL8, MIF, TGFp2, and
PDGEFD (11, 34, 37, 48, 50-54). Finally, it is remarkable the
modulation of genes coding for chemokines and chemokine
receptors.

Collectively, our gene expression analysis suggests a major
effect of hypoxia on the immunomodulatory functions and
the chemotactic properties of NK cells. These aspects are not
trivial, as the nature and the function of the NK cell infiltrate
at the tumor site, as well as the tissue distribution of specific
NK cell subsets, can influence the prognosis of different tumor
types (11, 12, 28, 29). For this reason we decided to investigate
in detail the effect of hypoxia on these specific functions of
NK cells: cytokine/chemokine release and migration to specific
stimuli.
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Multiplex ELISA analysis of NK cell culture supernatants
partly confirmed the indications obtained by the gene chip
analysis, showing that, indeed, hypoxia can limit the ability of
NK cells to release different factors involved in the host response
to the tumor, such as IFNy, TNFa, GM-CSF, CCL3, and CCL5.
These factors are endowed with antitumor activity and/or can
induce recruitment, differentiation, proliferation, and activation
of APCs, Thl lymphocytes, and NK cells (9, 11, 72, 73). Hypoxia
appears to variably affect cytokine release, depending on the type
of NK cell stimulation. Indeed, its inhibitory effect is particularly
evident on NK cells exposed to the monokine combination, IL-15
+ IL-18, while it does not reach statistical significance in case of
IL-12 + IL18 stimulation. We couldn’t find any transcriptional
modulation of genes coding for IL-12, IL-15, IL-18, or IL-
2 receptor subunits, suggesting that the differential effect of
hypoxia on the various stimuli may involve other mechanisms
such as the interference with specific signaling pathways.

That hypoxia could differentially modulate NK cells under
different monokine stimuli is important both because stimulatory
monokines can be released by immune cells in inflamed tissues
and also in view of the recent lines of research aimed at the
definition of effective monokine combinations in NK-based
immunotherapy (2, 17, 74). Notably, the hypoxia-related factors
CXCL8, VEGE, and MIF were not (or poorly) released by both
“normoxic” and “hypoxic” NK cells, although they were induced
by hypoxia at the mRNA level. This discrepancy suggests that
target-specific translational regulation (49, 67) can shape NK cell
response to hypoxia, giving rise to unique functional profiles.
The fact that hypoxia fails to induce CXCL8, VEGE, and MIF
secretion by NK cells has also been reported in a recent study
by Velasquez et al. (41). In that study, however, in contrast to
our present data, exposure to hypoxia could induce little, but
significant, secretion of CCL3, CCL4, and CCL5. The discrepancy
between our and their results may probably be ascribed to the
different experimental protocols used, in particular with regard
to the priming cytokines (IL-2, IL-12+IL-18, or IL-15+IL-18 in
our study vs. IL-15 alone in that of Velasquez) and the time and
duration of priming (the whole 20 h culture period in our study
vs. the final 6 h culture in the Velasquez study).

Evaluation of chemokine receptor surface expression reveals
that hypoxia can significantly increase the expression of CXCR4
receptor on a large fraction of PB-NK cells, suggesting that
changes in the levels of O, tension within tissues may
significantly influence NK cell trafficking (11). The CXCL12-
CXCR4 axis represents one of the mechanisms responsible
for tumor spread, driven by pro-metastatic CXCR4+4 tumor
cells. In addition, CXCL12 expressed by Tumor Associated
Fibroblasts (TAF) and tumor cells has been demonstrated to play
an important role in favoring tumor growth and progression
in primary lesions. Thus, sustained CXCR4 expression in NK
cells may be important for reaching and infiltrating certain
metastatic niches (for example in the bones) and also primary
tumors. In this context, in a model of NKp46-targeted HIFla
KO mice, it has been recently shown that NK cells can reach
hypoxic tumor tissues, influence angiogenesis, tumor growth,
and metastasis spread in a HIFla-dependent fashion (75).
Remarkably, our data indicate that, in humans, hypoxia can

differently affect two functionally distinct NK cell subsets. We
observed that hypoxia-induced CXCR4 up-regulation involved
the whole CD56°"8h* NK cell population, while it affected only
a fraction (even if large) of CD569™ cells. Accordingly, hypoxic
NK cells that migrated to CXCL12 showed an enrichment of such
CD56"8" cell subset. Along this line, hypoxia also increased
CCR7 expression on CD56"8" cells, enhancing their selective
migration in response to CCL19 and CCL21. The CCL19/21-
CCR7 axis drives metastatic spread to Lymph Nodes but also
promotes homing of specific leukocyte subsets. In addition, the
CCL21-CCR7 interaction may be effective at the tumor site
(76, 77). Overall, our data suggest that hypoxia can intervene
in the recruitment of specific NK cell subsets at the site of both
primary tumor and metastasis and offer new hints to explain
the relative high frequencies of poorly cytotoxic CD56P"8M cells
observed within the NK cell infiltrate of several tumors (29—
31). Of course these findings, although suggestive, must be
considered within the rich network of factors that regulates
lymphocyte trafficking in different tumor sites. As an example,
it has been recently described the complex correlation between
the chemokine receptor pattern of different T lymphocyte subsets
and the control of metastasis in specific sites (78). Also NK cells
can respond to multiple chemokines that can be variably released
in different tumor sites. In this context, it is worth-noting that
NK cells can amplify their recruitment at the tumor site by killing
tumor cells and inducing release of chemiotactic HMGBL1 (79).

Various escape mechanisms induced by the tumor hypoxic
environment have been documented in the last years, most
relying on the suppression of different immune cell types,
others involving the editing of the tumor cell targets or the
tumor microenvironment (23, 33, 38, 47, 80-85). However, only
few studies were focused on NK cells. This report represents
the first comprehensive transcriptome analysis of human Hy-
NK cells, which defines a wide array of hypoxia-modulated
immunological genes. Remarkably, our study also describes
how hypoxia can influence the type and function of NK
cells reaching hypoxic tissues, thus providing new elements
useful to design improved NK cell-based immunotherapeutic
strategies.
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