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CD1d-restricted Natural Killer T (NKT) cells are regarded as sentinels of tissue integrity

by sensing local cell stress and damage. This occurs via recognition of CD1d-restricted

lipid antigens, generated by stress-related metabolic changes, and stimulation by

inflammatory cytokines, such as IL-12 and IL-18. Increasing evidence suggest that

this occurs mainly upon NKT cell interaction with CD1d-expressing cells of the

Mononuclear Phagocytic System, i.e., monocytes, macrophages and DCs, which patrol

parenchymatous organs and mucosae to maintain tissue homeostasis and immune

surveillance. In this review, we discuss critical examples of this crosstalk, presenting the

known underlying mechanisms and their effects on both cell types and the environment,

and suggest that the interaction with CD1d-expressing mononuclear phagocytes in

tissues is the fundamental job of NKT cells.
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INTRODUCTION

Natural Killer T (NKT) cells are a subset of T lymphocytes with innate-like functions characterized
by the ability of recognizing lipid antigens presented by the major histocompatibility complex
(MHC)-related molecule CD1d (1). NKT cells can be divided into two groups according on their
TCR usage. Type I or invariant (i)NKT cells express a TCR made by the invariant rearrangement
Vα14-Jα18 (TRAV11–TRAJ18) in mice, and the orthologous Vα24-Jα18 (TRAV10–TRAJ18) in
humans, paired with diverse β-chains that utilize a restricted set of Vβ genes (2, 3). Type II NKT
cells express different, yet poorly diverse, TCRs other than the semi-invariant Vα14/Vα24 one
(4, 5).This review will focus on iNKT cells, the most represented and best characterized subset.

iNKT cells are endowed with a constitutive (i.e., innate) effector-memory phenotype: unlike
mainstream MHC-restricted T cells, they rapidly produce large amounts of inflammatory and
regulatory cytokines and chemokines upon activation without prior antigen sensitization (6, 7).
This innate reactivity, together with their primary localization in tissues, makes iNKT cells effective
sentinels of tissue integrity. Mouse and human iNKT cells have been found in lung, intestinal
and urogenital mucosae, skin, fat, parenchymatous organs, as well as secondary lymphoid organs.
There, they respond to two main types of stimuli, resulting from cell damage and inflammation
induced upon pathological processes, namely: (i). signaling from pro-inflammatory cytokines,
particularly IL-12 and IL-18 (8, 9); (ii). recognition of microbial or autologous (self) agonist
lipids presented by CD1d, which derive from infecting pathogens and from biosynthetic pathways
upregulated by stress in immune cells, respectively (10–15). A critical aspect of this function,
supported by increasing body of evidence, seems to be represented by the highly regulated crosstalk

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02375
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02375&domain=pdf&date_stamp=2018-10-12
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cortesi.filippo@hsr.it
mailto:casorati.giulia@hsr.it
mailto:dellabona.paolo@hsr.it
https://doi.org/10.3389/fimmu.2018.02375
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02375/full
http://loop.frontiersin.org/people/579758/overview
http://loop.frontiersin.org/people/592946/overview
http://loop.frontiersin.org/people/194267/overview
http://loop.frontiersin.org/people/236942/overview


Cortesi et al. iNKT Cells in Tissue Homeostasis

between iNKT cells and a broad range of CD1d-expressing
cell populations of the mononuclear phagocyte system (MPS),
represented by monocytes, macrophages, and DCs (10, 14–19).
Owed to its extensive diversity and plasticity, the MPS plays
essential functions in the organism, including tissue maintenance
and healing, innate immune responses and pathogen clearance,
and the induction of adaptive immune responses (20–22).
Importantly, the cells of the MPS express CD1d in mice and
humans and are strategically positioned in tissues to sense stress
and convey it to iNKT cells to coordinate a rapid reaction against
it. Through these bidirectional interactions with MPS, iNKT cells
rapidly modulate the local microenvironment for an immediate
tissue reaction, concurrently helping the induction of subsequent
adaptive immune responses. In this review, we propose that
the interaction with CD1d-expressing MPS in tissues is the
fundamental job of iNKT cells, and we will provide examples of
the pathophysiological relevance of such interplay.

MECHANISTIC ASPECTS OF THE

INKT-MYELOID CELL CROSSTALK

The relevance of the interplay between iNKT cells and MPS
populations can be defined as not univocal and linear (19),
but dependent on several factors that can impact the reciprocal
cell regulation in vivo such as: (i) the strength of cognate
antigen/iTCR signal, co-stimulation and the maturation state
of the mononuclear phagocytic cell; (ii) the iNKT cell subset
involved in the interaction; (iii) the physiological vs. pathological
status of the host. In this review, we add the tissue context as
a fourth factor that has acquired relevance in recent years, as
accumulating evidences are highlighting the importance of a fine-
regulated crosstalk between iNKT cells and CD1d-expressing
MPS in tissues for the biology of these cells.

The iNKT cell subsets involved in the interaction with MPS
cells and the tissue context are strongly interconnected. Different
tissues contain distinct composition of resident iNKT cell subsets,
at least in mice (23–26). Based on the differential expression of
three key transcription factors (PLZF, Tbet, RORγt) involved in
the determination of specific effector phenotypes, mouse iNKT
cells acquire TH1- (NKT1, PLZFlow, Tbet+, RORγt−), TH2-
(NKT2, PLZFhigh, Tbet−, RORγt−), and TH17-like (NKT17,
PLZFint, Tbetlow, RORγthigh) cytokine profiles already upon
thymic development. Recent reports suggest that this subsets
definition for iNKT cells may not entirely represent the whole
spectrum of effector functions displayed by these cells, as their
effective cytokine production can sometimes deviate from the
one expected from their transcription factor profile (27, 28).
This suggests both that iNKT cells may undergo some sort
of post-selection functional tuning, and the need for a more
comprehensive phenotypical and functional analysis to define
their effector profiles. Nevertheless, each known iNKT cell
subset egresses from the thymus to survey different peripheral
compartments. In C57BL/6 mice, NKT1 cells comprise the
>95% of all hepatic iNKT cells, and are also predominant in
the prostate, while NKT2 and NKT17 (29) are highly enriched
in the intestine and lung mucosae, respectively. In secondary

lymphoid organs, NKT1 and some NKT2 cells are contained in
the spleen, while LNs harbor NKT1, low NKT2, and expanded
NKT17 cells, with the notable exception of mesenteric LNs
and Peyer’s Patches, in which iNKT2 represent up to 40% of
iNKT cells (24, 30). The adipose tissue contains a distinct IL-
10 producing regulatory iNKT cell subset (NKT10) (25), which
lacks PLZF but express the transcription factor E4BP4, and whose
thymic vs. peripheral differentiation is currently unknown (31,
32). The relative frequency and tissue distribution of the iNKT
cell subsets varies substantially between different mouse strains,
likely correlating with the different dominant types of effector
responses classically observed in each strain (24). iNKT cells are
sessile cells that exhibit remarkable tissue-residency and limited
recirculation, with the notable exception of those cells found
in the peripheral blood (23, 25). Together, these characteristics
confer iNKT cells a fundamental role in the tissue homeostasis
and immune architecture: based on their main cytokine profiles
they display in different tissues, iNKT cells modulate in different
directions the effector response of the mononuclear phagocytic
cells they interact with (33).

The pathophysiological status of the host can also influence
iNKT cell distribution and subset balance, which may directly
reflect on their communication with the MPS. For instance the
relative composition of NKT1, NKT2, and NKT17 cells in a
given tissue may be altered from physiology to pathology, as
observed in prostate cancer progression (26), or in adipose tissue
in lean and obese subjects (34, 35), impacting the quality of the
resulting effector functions. This is an intriguing observation,
which points to unanticipated effector plasticity and/or ability to
migrate into different tissues of iNKT cells that would be relevant
to understand.

A parallel aspect impinging substantially on the iNKT-
myeloid cell crosstalk is represented by the functional
plasticity characterizing the cells of the MPS, particularly
monocytes/macrophages, which directly impact the
pathophysiological status of the host. Indeed, monocytes
are able to differentiate throughout a broad spectrum of effector
phenotypes ranging from strongly pro-inflammatory and
tissue damaging, to anti-inflammatory and tissue repairing
profiles. For macrophages, this complex functional spectrum
has been (over)simplified in the widely recognized paradigm of
pro-inflammatory M1 and anti-inflammatory M2 populations,
mirroring the TH1 and TH2 states of T cells (36), which
represent the two functional extremes of the spectrum (37, 38).
In vivo, however, macrophages appear often to exhibit mixed
phenotypes, with a variable M1/M2 balance, which are modulate
by the combination of molecular and cellular signals contained
in the local microenvironment, implying a remarkable functional
plasticity of this cell population (39).

The interplay between iNKT cells and MPS cells is mutual
and embraces different aspects. iNKT cells depend for their
functional education on CD1d+ mononuclear phagocytes (40,
41). At the same time, the maturation and polarization of DCs
and monocytes is promoted by iNKT cells (42, 43). Several
mechanisms could underlie this interplay, including CD1d
engagement (44), cytokine production (45), CD40 ligation (46,
47), purinergic signaling (48, 49). iNKT cell-dependent signaling
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cues indeed direct the acquisition of either pro-inflammatory
or anti-inflammatory effector phenotypes of myeloid cells (50–
53). Based the above considerations, the outcome of the
interconnections between iNKT cells and MPS cells in specific
anatomical sites can thus be quite different.

SECONDARY LYMPHOID ORGANS

iNKT cell distribution in secondary lymphoid organs allows
them to exert their “adjuvant” functions for both innate and
adaptive immune response, culminating in the non-cognate or
cognate help to B cell responses (54–58). In popliteal LNs at
steady state, endogenous iNKT cells localize in the interfollicular
region and medulla, but not in the T-cell-rich paracortex (59),
whereas adoptively transferred iNKT cells are found in the
paracortex (60), possibly reflecting the different methods used
to detect the cells in situ. In the steady state spleen, both
autochthonous and adoptively transferred iNKT cells are found
widely distributed throughout the parenchyma, including B and
T follicles in the white pulp, the marginal zone (MZ) and the
red pulp (56, 61). This iNKT cell distribution at is substantially
modified upon antigen-dependent activation. In the popliteal
LNs, upon immunization of mice with particulated antigens
formulated with the strong lipid agonist αGalCer, the adoptively
transferred iNKT cells rapidly move from the paracortex to
contact CD169+ macrophage lining the subcapsular sinus,
which express CD1d and can present lymph-borne soluble
antigens, resulting in a strong iNKT cell activation and secreting
copious amounts of helper cytokines (60). In the spleen, the
injection of soluble antigen formulated with αGalCer, or of
pathogenic bacteria containing stimulatory glycolipids, results in
the massive accumulation, within 8 h from administration, of
splenic iNKT cells in the MZ, where the cells are activated upon
contacting CD1d+DCs, and possibly also macrophages (61, 62).
This iNKT cell re-distribution in secondary lymphoid organs
as several functionally relevant consequences for the immune
response: (1). It leads to the contact-dependent maturation of
macrophages, which can limit potential pathogen spreading in
secondary lymphoid organs, and of DCs, which relocate to
T cell zones and promote downstream adaptive T and B cell
responses, resulting in the so-called non-cognate iNKT cell
help (42, 55, 59–62); (2). It elicits the secretion of copious
amount of different helper cytokines by iNKT cells, which can
stimulate innate and adaptive immune effectors throughout
the LN and splenic parenchyma (60, 61); (3). It results in
the acquisition of a follicular helper effector phenotype by
iNKT cells (iNKTFH: Bcl6highCXCR5highPD-1high) (57, 63, 64),
which can ultimately enter into the B cell follicles and help
CD1d-expressing B cells presenting the same lipid antigen,
providing the cognate iNKT cell help (56, 57, 65). In fact,
although the interaction with CD1d-expressing B cells is
fundamental to sustain the full iNKTFH cell differentiation
and functions (56), the upregulation of the follicular helper
molecules by iNKT cells requires the recognition, in first place,
of CD1d-expressing myelomonocytic APCs (56), most likely
DCs (61), but possibly also CD169+ macrophages (60, 62).

Interestingly, a recent study has gained new mechanistic insight
into the critical role of the interaction between LN-resident
CD1d+CD169+ macrophages and endogenous iNKT cells for
the delivery of non-cognate help to B cells, activated in the
course of influenza virus infection (28). Indeed, as early as
3 days upon influenza virus infection, iNKT cells are found
in contact with “stressed” CD1d+CD169+ macrophages of the
subcapsular sinus, in analogy with the results obtained by
injecting particulated Ags containing αGalCer. There, iNKT
cells become activated by CD169+ macrophages via CD1d-
cognate Ag stimulation and secretion of IL-18, without acquiring
iNKTFH phenotype. This activation, in turn, induces rapid
iNKT cell migration at the B cell follicular border and the
secretion of copious IL-4, which is critical for the early phase
of germinal center formation and anti-viral antibody responses.
Expression of CD1d on macrophages, but not on B cells, is
required to elicit IL-4 production by iNKT cells, and mice
lacking macrophages or IL-4 develop fewer germinal centers
and less influenza specific IgG1 than wild-type mice (28). It is
intriguing that IL-18 release by sinus-lining LN macrophages,
induced upon inflammasome-depending pathways activated
by pathogen-related innate signals, can also elicit the rapid
secretion of protective IFNγ by a network of innate and innate-
like effectors that include iNKT cells, which are strategically
prepositioned for pathogen sensing in secondary lymphoid
organ (59).

Collectively, these evidences support a critical role for the
iNKT/MPS cell axis in the lymphoid system to rapidly sense
infections and damage, and immediately react by promoting local
and systemic innate and adaptive immune responses.

THE LIVER

iNKT cells are the prominent T cell subset in the mouse liver,
accounting for up to 30% of T lymphocytes. They are also
present in the human liver, though at a 30 times lower frequency;
nevertheless, both mouse and human hepatic iNKT cells
undergo quantitative and qualitative dynamic changes in chronic
inflammation/infections or cancer, suggesting active involvement
in the pathological processes affecting the organ (66–68). iNKT
cells crawl under basal conditions in liver sinusoids and arrest
upon stimulation by cognate antigen recognition, or exposure
to inflammatory cytokines IL-12 and/or IL-18 (69–71). The liver
contains a rich monocytic/macrophage component, comprising
Kupffer cells, which are self-maintaining, tissue-resident
phagocytes originating from embryonic yolk sac, and monocyte-
derived macrophages. Kupffer cells and macrophages adjust
their phenotypes in response to local signals, which determine
their ability to worsen or end liver injury. Both mononuclear
phagocyte types express CD1d and can interact with liver iNKT
cells, resulting in such functional reprogramming. A paradigm
of this function has been highlighted by a recent study using
a model of focal hepatic sterile thermal injury assessed by
intravital microscopy, revealing that iNKT cells stop and are
activated by IL-12, IL-18, and the recognition of self-stress
lipid(s) presented by CD1d-expressing CCR2highLy6Chigh
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inflammatory monocytes migrating into the injured area.
Interestingly, the self-lipid(s)+cytokine stimulation results in
iNKT cell production of IL-4, but not IFN-γ, which promotes the
transition from inflammatory to reparative (CCR2lowLy6Clow

CX3CR1high) monocytes, ultimately leading to the healing of
the injury by collagen deposition, wound revascularization
and hepatocyte proliferation (53). Interestingly, human iNKT
cells extracted from chronic HBV or HCV infected cirrhotic
livers exhibit an IL-4high/IFNγlow effector profile skewing,
compared to iNKT cells from non-chronic viral infections
(72). This is consistent with a pro-fibrotic and tissue repair
activity that, in the context of a sustained liver injury, can
lead to a pathological form of tissue regeneration. However,
in mice, there are also examples of potent IFNγ production by
iNKT cells elicited by Kupffer cells during Borrelia burgdorferi
liver infections (71), or upon provoked inflammation and
autoimmunity, which promotes M1 polarization of the attracted
peritoneal macrophages and, in these cases, sustains tissue
damage (73, 74). It is possible that the opposite effector responses
dominated by IL-4 or IFNγ observed in sterile vs. infectious
inflammation may be related also to the different antigenic
potency of self vs. bacterial lipid antigens that activate hepatic
iNKT cells. Hence, the iNKT cell/MPS crosstalk in the liver is
multifaceted depending on the underlying pathological situation,
the inflammatory cell type involved, and the weak vs. strong
antigen stimulation. All these parameters, collectively, can lead to
either tissue repair or damage through the reciprocal modulation
of both iNKT cell and macrophage effector functions, even
though liver resident iNKT cells are essentially all NKT1
at start. This observation suggests the possibility that the
effector profile of liver iNKT cells may change in different
pathological situation. As already discussed above, because
iNKT cell are reported to be sessile and functionally rigid, an
interesting question is whether, under pathological stimuli,
liver iNKT cells may either be replaced by newly recruited
ones that are endowed with different effector profiles, or
undergo functional reprogramming in the organ, implying an
unexpected functional plasticity that may apply also to other
organs.

THE PERITONEUM AND OMENTUM

The peritoneum forms a unique microenvironment, which
is formed by a thin mesenchymal membrane that lines the
abdominal cavity and surrounds the visceral organs. The
omentum is a large apron-like peritoneal fold that connects
the spleen, pancreas, stomach and transverse colon (75), which
encloses adipocytes and specialized compact structures (“milky
spots”) containing macrophages, DCs, B cells, T cells and mast
cells (76). The omental adipocytes expand in obesity, linking
the omentum to the adipose tissue and the metabolic control
(see below). The peritoneum is an active immune site, in which
both branches of the immune system contribute to maintain
homeostasis (77). In the murine peritoneum, iNKT cells are
present in sizable quantity (78), while the human omentum is
highly enriched in iNKT cells, at least 10 time more than any

other human organ analyzed (34). Evidences suggest a close
interplay between iNKT cells and the abundant population of
CD1d+ macrophages found within the peritoneal membrane.
iNKT cells negatively correlated with mouse survival in a model
of abdominal sepsis (79, 80), while induction of abdominal sepsis
in the peritoneum of iNKT cell-deficient (Jα18−/−) mice results
in the reduction of Ly6Clow anti-inflammatory macrophages
and decreased mortality compared to WT. The critical interplay
between peritoneal iNKT cells and macrophages is further
illustrated by a model of acute sterile inflammation, in which
peritoneal macrophages phagocyte neutrophils (efferocytosis)
leading to CD1d upregulation and IL-4 secretion. This process
activates iNKT cells to produce large amounts of IL-4 that,
in concert with the macrophage cytokine, sustains the M2-
like polarization and the resolution of the inflammation (81).
In vivo, peritoneal CD4+ iNKT cells are the major producers
of IL-4 (81), suggesting the possibility that peritoneal iNKT
cells are either NKT2, or acquire NKT2 phenotype upon
stimulation.

THE ADIPOSE TISSUE

The immune system contained in adipose tissue (AT) is unique.
Sizable quantities of innate-like T cells reside in the omentum
and visceral AT of mice and humans (34, 82). Here, iNKT cells
primarily interact with CD1d-expressing macrophages (83) and
adipocytes (84) to maintain non-inflammatory conditions. In
fact, the AT is a sophisticated sensor of metabolic alterations
induced by dietary stimuli, and the status of AT-resident
macrophages is of great importance for the physiological
metabolic control at this site: pathological metabolic alterations
associated with obesity results in profound modification of AT-
macrophages, inducing pro-inflammatory (M1-like) functions
and a consequent increase in local inflammation and insulin
resistance (35, 85). Regulatory iNKT10 cells are selectively
enriched in the AT and rapidly respond to stimulatory lipids
presented by CD1d+ macrophages, or adipocytes, by secreting
IL-4 that restrains M1 and promotes M2 polarization (25, 35,
83, 85, 86). However, a prolonged dysmetabolic state provokes
down-regulation of CD1d on AT-M2 cells and their switch
to an M1-like phenotype that, in turn, leads also to a pro-
inflammatory shift of local iNKT cells (83, 87, 88), again
suggesting a plasticity due to the migration of iNKT1 cells
from other sites or a functional differentiation of local cells.
The presence of iNKT cells in the AT, which is conserved
between mouse and human, is crucial for the formation
of fat-associated lymphoid clusters (FALC). FALC are non-
capsulated structures in the adipose tissue that collect TH2-
skewed immune cells, most notably ILC2 (89), which direct the
polarization of B1 cells, eosinophils and M2 macrophages (90)
in order to maintain the homeostasis in the tissue. FALC are
absent in CD1d−/− mice, while they can be induced following
iNKT cell adoptive transfer in Rag2−/−, suggesting the critical
dependency of these structures on iNKT cells (91). Under
peritoneal inflammation, the activation of iNKT cells increases
the formation of FALC, indirectly inducing the recruitment of
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beneficial anti-inflammatory myeloid cells and the resolution of
inflammation.

THE GASTRO-INTESTINAL SYSTEM

In mice, under homeostatic conditions, gut infiltrating iNKT
cells (small intestine and lamina propria) are NKT1 (>90%)
or NKT17 (<10%) (92). NKT2 are barely detectable in the
intestinal epithelium, although they represent up to 40% of
iNKT cells of the mesenteric lymph node (LN) and of those
infiltrating Peyer’s Patches (24). The accumulation of iNKT cells
in the small intestine and mesenteric LN has been confirmed
also in humans (30). Intestinal macrophages maintain gut
homeostasis through the clearance of enteric pathogens and the
enforcement of the tolerance to food and microbiota antigens
via the production of IL-10 (93, 94). Recent evidences point
out that a heterogeneous CD11c+ myeloid population, which
includes both DCs and macrophages, stimulate iNKT cells in
the gastro-intestinal system (92), resulting in the control of
the intestinal bacteria composition and compartmentalization,
regulation of the IgA repertoire and induction of regulatory T
cells within the gut. The recognition of microbial lipid products
is pivotal for the physiology of intestinal iNKT cells (95–97).
In this context, α-glycolipids that are recognized from iNKT
cells can originate from the commensal flora (98, 99), or from
the diet (100). Upon CD11c+ myeloid cell-activation, NKT17
and NKT2 cells in the mesenteric LN undergo rapid activation
and expansion, suggesting a pathogenic role for these cells in
ulcerative colitis (101).

THE LUNGS

In the steady state, the mouse lung contains iNKT cells that
distribute predominantly in the vasculature, with a minority
residing in the interstitium, which are belong to clearly
distinct functional subsets. Whereas the majority of the lung-
associated vasculature cells are NKT1, the lung interstitium
contains the highest frequency of NKT17 in C57BL6 mice
(>50%) (24, 102), which is consistent with their involvement
in pathogen surveillance. Barrier epithelia (e.g., lungs, colon,
skin, LN) produce elevated quantitates of IL-7 (103) which
drives NKT17 survival and maintenance (104), thus creating
a microenvironment favorable for the accumulation of these
effector cells. The clearance of inhaled pathogen is the main
feature of lung-resident (alveolar) macrophages (51). The iNKT
cell-macrophages axis is once again critical in this context. In a
model of viral-induced chronic airway inflammation, iNKT cells
are directly recruiting and activating macrophages toward an
anti-inflammatory, tissue remodeling M2-state (105). Increased
amounts of iNKT cells and of IL-13 producing macrophages have
been detected not only in mice, but also in patients with chronic
obstructive pulmonary disease (COPD) (105, 106), supporting
the involvement of the iNKT cell/macrophage crosstalk in the
lung pathophysiology.

iNKT cells react also to a number of pathogens involved
in airway infections, including Sphingomonas capsulata (107),

Mycobacterium tuberculosis (108), Pseudomonas aeruginosa (109,
110), Streptococcus pneumoniae (111) and Influenza A virus
(112, 113), via involvement of local mononuclear phagocytic
cells, particularly macrophages. During M. tuberculosis infection
in mice, iNKT cells are activated upon interaction with
macrophages presentingmycobacterium-specific lipids (108) and
help controlling the bacterial load via GM-CSF production
(114), which may promote an inflammatory response that
ultimately leads to bacterial clearance. A similar mechanism
has been identified for P. aeruginosa, where iNKT cells
stimulate increased phagocytic clearance of the bacteria in
the lung by alveolar macrophages (109). Interestingly, in this
context, iNKT cells have a stronger effect in controlling P.
aeruginosa in BALB/c compared to C57BL6 mice (110). This
difference can be explained by the different iNKT cell subsets
that infiltrate the lungs of the two strains, as BALB/c mice
contain an higher frequency of NKT1 subset compared to
C57BL6 (24, 115). In the case of S. Pneumonia infection,
intravital microscopy reveals that interstitial DCs present
microbial glycolipids to the few adjacent iNKT cells, resulting
in the neutrophil recruitment and CCL17 production. This
promotes further iNKT cell migration from vasculature into
acutely inflamed lung interstitium, where they assist DC
activation and clearance of infection (116). This mechanism
for acute inflammation seems conserved also in humans,
as suggested by the human iNKT cell ability to drive in
vitro the release inflammatory lipid mediators by monocyte-
derived DCs, which can promote neutrophil recruitment and
activation (48).

In addition to controlling bacterial infections, iNKT cells
were also active in containing pulmonary infection influenza A
virus. In this context, iNKT cells orchestrate anti-viral NK and
CD8+ T cell responses (113, 117–119). iNKT cells promote virus
control also by promoting differentiation into functional APC of
lung-infiltrating immature myeloid derived cells, through CD40
engagement and CD1d cognate recognition (17), or by reducing
pathogenic inflammatory monocytes (Ly6ChighLy6G−) via direct
lysis (112), which correlates with better influenza outcome in
iNKT cell-sufficient compared to insufficient mice.

THE TUMOR MICROENVIRONMENT

Cancer cells are embedded in the tumor microenvironment
(TME), a complex and active milieu in which transformed and
non-transformed cells dynamically interact in evolving networks
that are continuously rearranged (120). The composition of
the TME impinges heavily on the success of cancer therapy,
and many studies underline the importance of targeting both
the tumor and the supporting stroma for an effective and
complete clearance of the malignancy (121). A substantial
fraction of immune infiltrate of the TME is composed by
tumor associated macrophages (TAMs) (122), which can
encompass a spectrum of activation states largely affecting
tumor progression, dissemination and response to therapy (36).
Different stimuli present in the microenvironment can also
rapidly trigger a number of diverse functions in macrophages,
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which range from the activation of potent pro-inflammatoryM1-
like responses, to the coordination of M2-like tissue remodeling
and immunosuppression.

Despite their low numbers, iNKT cells are also components
of the immune infiltrate present in both mouse and human
tumors (26, 78, 123–125). Indeed, a growing body of evidences
lends support to a critical role for these cells in modulating
myelomonocytic cells in the tumor microenvironment. M1-
oriented TAMs are generally beneficial for the control of
tumors because by exerting critical functions such as antigen
presentation, production of inflammatory cytokines and
inhibition of angiogenesis (126, 127). By contrast, M2-like
TAMs are detrimental, because they exert tumor-supporting,
pro-angiogenic, pro-metastatic, and immunosuppressive
activities (128). The first hints of iNKT cells interplay with
TAMs come from the observation that these cells can kill in
a CD1d-dependent manner transferred human macrophages
infiltrating a xenograft model of human neuroblastoma in NOD/
SCID/IL-2Rγ-null (NSG) mice (129). The importance of the
iNKT cell-TAM crosstalk is further strengthen in the same
model, by showing that iNKT cells are recruited into tumor in
a CCL20-dependent manner, but inhibited in their anti-tumor
activity by macrophage-induced hypoxia (125). In the recent
years, this dual relationship has been investigated more in detail.
By using a mouse model of oncogene-induced pancreatic cancer,
iNKT cells have been shown to have a preferential activity
on M2-like macrophages, which are increased in CD1d−/−

pancreatic cancers (130). iNKT cells delay also the onset and
organ infiltration of a mouse model of chronic lymphocytic
leukemia (CLL), and their counts in blood independently
predicts disease stability in CLL patients (78). iNKT cells
remodel the supporting niche of CLL by controlling CD1d-
expressing, patient-derived M2-like macrophage population,
termed nurse-like cells (NLCs), which sustain leukemia cell
survival (78, 131). The unique mechanism by which iNKT
cells selectively modulate different subset of TAMs has been
recently elucidated in a model of autochthonous prostate
cancer (26). In this model, the presence of iNKT cells causally
associates with the selective reduction of M2-like TAMs in
the tumor microenvironment, leading to the control of tumor
progression. Human prostate cancer aggressiveness correlates
with reduced intra-tumoral iNKT cells and increased M2
macrophages, underscoring the clinical significance of this
crosstalk (26). This selective restriction of M2 TAMs depends
on the combinatorial engagement of CD40 and Fas on the
surface of macrophages by tumor-infiltrating iNKT cells.
Although both molecules are expressed to similar levels on
either M1 or M2 TAM populations, the CD40L-CD40 pathway
supported the survival only of the M1 population, likely by
antagonizing the apoptotic death driven by Fas signaling. By
contrast, CD40 expression does not protect M2 TAMs form
FAS-dependent killing, suggesting a differential CD40 signaling
between M1 and M2 macrophages. Remarkably, the ability
to selectively eliminating pro-tumor M2 macrophages seems,
thus far, unique to iNKT cells. Interestingly, however, a mouse
transgenic model of colon adenocarcinoma represents an
exception to this general mechanism. Here, iNKT cells support

pre-malignant progression by suppressing TH1 responses, and
promoting suppressive Treg and M2-polarization of TAMs,
leading to increased intestinal adenomatous polyps formation
(132). The dichotomous iNKT cell response in the two mouse
tumor models may be related to changes undergoing in the
different TMEs. In both healthy prostate and intestine tissues,
the NKT1 and NKT17 are mostly represented. However, as
tumor progresses, iNKT cells infiltrating intestinal polyps start
to produce IL-10, while those in the prostate cancer setting
remained TH1-oriented.

On the basis of the described evidences, it is tempting to
speculate that tumor-infiltrating iNKT cells lead the immune
reprogramming of the local TME by acting primarily on the
MPS. This remodeling activity in the tumor context appears
critically determined by the specific effector profile exhibited
by iNKT cells in the target tissue in physiological conditions,
before the development of the malignancy. It will be important
to investigate such relationship in different cancers, particularly
human ones, given also the interest to define possible different
tissue resident iNKT cell subsets, as well as to harness these cells
for cancer immunotherapy that exploits their unique potential to
reprogram the tumor microenvironment.

CHALLENGES AND FUTURE DIRECTIONS

Increasing evidence underscore the relevance of the iNKT
cell/mononuclear phagocyte crosstalk in many different tissues,
whichmay contribute to the induction, or the resolution, of tissue
damage depending on the local effector phenotype exhibited
by the two cell types interacting in the specific tissue. To this
respect, iNKT cells are widely located in, non-lymphoid tissues
in homeostatic conditions, at least in mice, which include (but
are not limited to) the central nervous system (133), kidney (134,
135), eye (136), placenta (137), pancreas (138), and prostate (26).
In all these sites, iNKT cells have the possibility of interacting,
or have been suggested to interact, with tissue-resident MPS
cells. However, the result of this crosstalk has not yet fully
elucidated. In some cases, iNKT cells and resident mononuclear
phagocytic cells show complementary functions. During acute
kidney injury, iNKT cells alleviate the induced damages in
different models (135, 139–141). Interestingly, these pathological
conditions are highly dependent on renal macrophages, that
switch between M1 and M2 phenotype during the acute or the
tissue-repair phase (142), or on immature DCs (135), suggesting
a link with NKT1 or NKT2 cells. In the eye, iNKT cells
contribute to the natural tolerance occurring at this site (136) by
cross-talking with T cells, neutrophils and macrophages (143).
During reproduction, iNKT cells are present in the placenta,
the interface between the mother and the fetus (144), and play
role in orchestrating the immune response during infections
occurring during pregnancy (145). Considering that iNKT cells
consistently infiltrate the placenta also in healthy pregnancies
(137), it is reasonable to hypothesize that their role is not
limited to pathological conditions but they constantly support
the reproduction process, for instance maintaining the status of
tolerance induced by IL-10 producing macrophages (146). In the
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pancreas, iNKT cells promote an innate response against LCMV,
by enhancing the local recruitment of pDCs and stimulating
their production of anti-viral type I IFNs via OX40-OX40L
interaction (138). However, CD1d expression by pDCs is not
required for this interaction, suggesting a different, yet undefined,
mechanism from those described in other tissues. Given the
long standing implication of iNKT cells in the control of Type
1 Diabetes, it would be interesting to assess whether and by
what mechanisms these cells may modulate MPS cells in the
pancreas (147).

Some of the signals controlling the meeting between the two
cell types have been defined, however this remains an open area
to explore. Mouse and human iNKT cells express chemokine
receptor pattern typical of trafficking toward inflammation sites
(148–151) which overlaps at least in part with that of monocytes,
supporting a cooperative engagement at inflammatory sites.
Indeed, it has been shown that following B. burgdorferi infection
Kupffer cells induce CXCR3-dependent clustering of iNKT cells
(71), while CXCR6 drives homeostatic iNKT localization in
liver sinusoids (69). A final big gap in knowledge concerns
details on the presence of different iNKT cell subsets in
different human tissues and their possible interaction with
MPS cells. Correlative studies suggest undergoing crosstalk
between the two cell types also in human tissues, although
direct evidence is substantially lacking. A more precise definition
of these mechanisms, focusing in particular on the human

system in physiology and pathology, should drive future
studies.

CONCLUDING REMARKS

The crosstalk between iNKT cells and cells of the MPS has a
critical role in both physiological and pathological conditions.
The outcome of this interaction is highly dependent on the
tissue where it occurs and can be either beneficial or detrimental
for the host. Harnessing this crosstalk has potential therapeutic
relevance in different pathologies, from cancer to infections,
chronic inflammatory diseases or metabolic disorders, as well as
to improve vaccine formulation.
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