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During the last 10 years, a population of clonally expanded T cells that take up permanent

residence in non-lymphoid tissues has been identified. The localization of these tissue

resident memory (TRM) cells allows them to rapidly respond at the site of antigen

exposure, making them an attractive therapeutic target for various immune interventions.

Although most studies have focused on understanding the biology underlying CD8

TRMs, CD4T cells actually far outnumber CD8T cells in barrier tissues such as lung and

skin. Depending on the immune context, CD4 TRM can contribute to immune protection,

pathology, or tissue remodeling. Although the ability of CD4T cells to differentiate

into heterogeneous effector and memory subsets has been well-established, how this

heterogeneity manifests within the TRM compartment and within different tissues is just

beginning to be elucidated. In this review we will discuss our current understanding

of how CD4 TRMs are generated and maintained as well as a potential role for CD4

TRM plasticity in mediating the balance between beneficial and pathogenic immune

responses.
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INTRODUCTION

Following activation, CD4+ T cells have the remarkable ability to differentiate into many different
types of effectors. This diversity is required for the generation of effector T cells that are adapted to a
particular immune context, as well as the development of long-lived and protective memory T cells.
Compared to naïve T cells, memory CD4+ T cells are present at higher numbers, exhibit distinct
trafficking behaviors, and generally have more rapid effector function following reinfection (1).
Nevertheless, it is unclear how memory CD4T cells positively versus negatively impact secondary
immune responses. In the case of influenza vaccination, memory CD4T cells have been shown to
recognize conserved viral glycoproteins and may be able to provide cross-protective (heterotypic)
protection to multiple influenza strains (2). This is in contrast to vaccine elicited antibodies
which are directed against highly mutable viral proteins, resulting in the need for new vaccine
formulations every year (3). On the other hand, memory CD4+ T cells are generally considered to
be a barrier to transplantation tolerance and were recently reported to induce immune pathology in
a mouse model of chronic viral infection (4, 5). The capacity of CD4 memory T cells to orchestrate
divergent immune outcomes is in part related to their heterogeneity. Distinct types of effector T
cells have been shown to give rise to apparently committed memory T cell lineages (6, 7). However,
the stability and plasticity of these memory T cell subsets as well as their full impact on secondary
immune responses are not yet understood.
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FIGURE 1 | CD4 and CD8 TRM cells identified in mice and humans share

many features (green box). More work remains to understand the distinct

molecular programs that define these subsets.

More recently, an additional population of memory T cells
localized within barrier tissues has been identified (8, 9). Due to
their non-circulating status, these tissue resident memory (TRM)
cells are uniquely poised to respond to antigen and execute
immediate effector functions. While most studies have focused
on understanding the cellular requirements and transcriptional
basis of CD8 TRM differentiation, our understanding of CD4
TRM biology is less advanced. This review will highlight
specific cellular and molecular requirements for CD4 TRM
generation and survival within distinct organs, and in response
to different pathogens or immune contexts. Since many of the
phenotypic characteristics of CD4 TRM are shared with CD8
TRM cells, and are extensively reviewed elsewhere, we will focus
our discussion on what sets CD4 TRM cells apart (Figure 1).
Although much of this review focuses on findings generated
in mouse models of infection or autoimmunity, we specifically
highlight important observations made on human CD4 TRM
throughout the manuscript.

The persistence of memory CD4T cells in tissues has long
been appreciated. In general, CD4 memory T cells appear
to preferentially accumulate in mucosal tissues where they
outnumber CD8 memory T cells (10, 11). Early work by the
Jenkins lab showed that antigen and LPS led to CD4T cell
expansion and migration into tissues including lung, liver, gut,
and salivary gland (12). Using whole mouse body imaging to
quantify CD4 memory T cells, the authors demonstrated long-
term survival of these cells in the tissue as well as their ability to
rapidly produce IFNγ following recall activation. The residence
status of CD4 TRM cells has been confirmed using parabiosis
experiments (13). Similar to CD8 TRM cells, CD4 TRMs are
protected from intravascular antibody staining and persist after
treatment with FTY720, a sphingosine-1-phosphate receptor

1 (S1PR1) antagonist that prevents lymphocyte egress from
lymphoid organs (14, 15). Phenotypically, CD4 TRM express
constitutively high levels of PD1 and CD69 (13, 15, 16). CD69
is initially upregulated on activated T cells during priming by
antigen presenting cells in the draining lymph node, after which it
is downregulated, enabling S1PR1 mediated exit from lymphoid
organs (17). T cells then enter the blood circulation en route to
the site of inflammation, directed by upregulation of chemokines
and adhesion markers as well as homing receptors that are
imprinted during T cell interactions with antigen presenting cells
in the lymph node (18, 19). Once in the tissue, TRM precursors
begin to re-express CD69, although the signals mediating this
upregulation are unclear. CD69 can be induced by signals
through the T cell receptor (TCR), inflammatory cytokines such
as IFNα, and oxygen availability; the independent contribution of
these signals to CD4 TRM induction and maintenance is not yet
known (20–22). A recent study demonstrated that human CD4
TRM cells isolated from distinct peripheral tissues express high
levels of CD69 and are transcriptionally distinct from CD69–
CD4T cells (16). Human CD4 TRM cells share strong homology
to mouse TRM cells, with increased expression of genes involved
with TCR signaling, adhesion, and cytokines (23, 24).

CD4 TRM GENERATION: CYTOKINE AND
ANTIGEN REQUIREMENTS

The common gamma-chain cytokines IL-2, IL-15, and IL-7 have
well-established and fundamental roles in CD4T cell biology
(25). While IL-2 drives the initial expansion of activated CD4T
cell effectors, sustained IL-2 signals repress gene programs
required for circulating/lymphoid CD4 memory T cell fate (26,
27). In contrast, IL-2 receptor mediated signals are essential
for the generation of CD4 TRM cells. In both a Th1 model of
viral pulmonary infection as well as a Th2 model of allergic
asthma, the absence of IL-2R signaling on activated CD4T cells
resulted in their failure of these T cells to migrate into the
lung and establish residence (28, 29). In agreement with these
findings, work by the Swain group showed that late antigen
recognition by CD4T cells results in autocrine IL-2 production
that supports the maintenance of CD4 TRM cells in the lung
following influenza infection (30). An IL-2 independent pathway
for CD4 TRM generation has also been identified in influenza
infection (31). In this case, IL-15 was required during the
priming phase of T cell activation, while late IL-15 signals were
unnecessary for long-term CD4 TRM survival. This is in contrast
to CD8 TRM cells in the skin and lung which depend on IL-
15 for both their generation and maintenance (32). IL-7 signals
are essential for the maintenance of both naïve and lymphoid
homing CD4 memory cells (33). Lung TRM cells generated
after influenza infection express higher levels of IL-7R compared
to circulating effectors, and treatment with Fc-fused IL-7 can
promote recruitment of circulating CD4T cells into the lungs
where they acquire a TRM-like phenotype and contribute to
secondary immune responses (34). Consistent with this, IL-7R
blockade in a Th2 allergy model led to decreased numbers of
airway resident CD4T cells (35). Further, in a skin model of
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contact hypersensitivity where IL-7 was specifically ablated in
the skin, CD4 TRM cells failed to persist long term (36). These
data indicate an important role for IL-7 signaling in either the
recruitment or survival of CD4 TRM.

In addition to cytokines, antigen recognition by the TCR is
required for CD4T cell diversification into effector and memory
subsets. The role of antigen in CD4 TRMmaintenance, however,
is less clear (37). Transfer of lung derived CD4 TRM cells into
naïve recipients demonstrates the ability of these cells to home
back to the lungs and survive in an antigen independent manner
(13, 38). Consistent with this, CD4 TRMgenerated after influenza
infection do not express Nur77 at late phases of infection,
suggesting that they are no longer receiving TCR mediated
signals (39). However, these latter data were generated using
TCR transgenic OT-II cells which under some settings have been
shown to undergo less heterogeneous differentiation compared to
polyclonal CD4T cells (40). Indeed, distinct CD4T cell receptor
clonotypes were recently described to be associated with distinct
states of T cell activation following tuberculosis infection or
within the tumor microenvironment, suggesting that access to
antigen can regulate the extent of T cell heterogeneity (41, 42).
It is interesting to note that Nur77 expression is reportedly
increased in CD8 TRM cells and is required for long-term TRM
survival in multiple tissues (43, 44). Although the survival of
Nur77 deficient CD4 TRM cells has not yet been assessed, it is
likely that depending on the tissue, intercellular interactions or
infection context, CD4 TRM cells are differentially dependent on
antigen and T cell receptor signaling.

B CELL REQUIREMENTS FOR CD4 TRM
CELLS: RELATIONSHIP TO TFH CELLS?

T cell interactions with B cells constitute another important
aspect of CD4 TRM biology. In peripheral CD4T cells, B cell
interactions with T cells lead to upregulation of the transcription
factor Bcl6, which in turn supports the differentiation of follicular
helper (TFH) and memory T cells (45). TFH cells are a lymphoid
resident population that share many phenotypic and molecular
similarities with TRM cells, including high expression of CD69,
PD1, ICOS, and P2X7R and a dependency on downregulation
of KLF2 and S1PR1 for their induction (23, 46–49). Although
these similarities suggest that B cells might be important
for CD4 TRM generation, B cell deficiency led to enhanced
Th2 TRM generation and maintenance in a house dust mite
allergy model (28). Similarly, Mycobacterium tuberculosis (Mtb)
infection resulted in the generation and maintenance of CD4
TRM in a B cell independent manner (38). In this case, however,
CD4 TRM cell survival required T cell intrinsic expression
of Bcl6 and ongoing signals through ICOS, both of which
are also required to maintain TFH cells at late phases of
immune responses in secondary lymphoid organs (50). The
authors hypothesized that T cell interactions with ICOS-ligand
expressing dendritic cells might be responsible for maintaining
CD4 TRM cells. Highlighting the divergent role of B cells in CD4
TRM generation, another report showed that intranasal LCMV
infection in the absence of B cells led to impaired Th1 TRM

cell survival, despite enhanced initial recruitment of CD4T cells
to the lung (29). Although Bcl6 expression was not explicitly
addressed in this model, it is interesting to note that in peripheral
CD4T cells, high levels of T-bet can impair the ability of Bcl6
to repress its target genes (51). Consistent with this idea, high
levels of T-bet are associated with decreased generation of both
CD4 and CD8 TRM (52, 53). Using a neonatal infection model,
the Farber group showed that the susceptibility of infants to
respiratory infections is a result of increased T-bet expression in
effector T cells which impairs the ability of these cells to stabilize
the TRM phenotype (52).

TRM LOCATIONS AND INTERCELLULAR
INTERACTIONS

CD4 TRM cells are often observed in cell clusters or ectopic
lymphoid structures. The cellular content of these clusters can
differ depending on the tissue and cytokine context. Several
reports indicate that the presence or absence of these clusters
can play a role in CD4 TRM mediated recall responses,
protection from host pathology during chronic infection and
tissue remodeling or repair during pathogen clearance. In this
section we will overview the various tissues where CD4 TRM
cells have been identified and discuss the potential of intercellular
interactions to modulate local immunity.

Skin
The skin is a barrier tissue home to a large proportion of the
memory T cells in the body. Unlike CD8 TRM cells which
localize in the epithelium, CD4T cells are primarily found in
the dermis where they demonstrate more motile behavior than
their CD8 TRM counterparts (54). Using mice that express the
photoconvertible molecule Kaede, a majority of CD4T cells
present in the skin were found to be in equilibrium with the
circulation at steady state (55). CD69 expression on these CD4T
cells decreased as they trafficked to the draining lymph node,
highlighting the infidelity of CD69 as a marker for CD4 tissue
residency (55, 56). Following infection with herpes simplex virus
or contact sensitization to induce local inflammation, IFNγ

producing CD4T cells increased in the skin and clustered around
hair follicles in association with CCL5 producing CD11b and
CD8T cells (55). Depletion of CD8T cells led to disruption of
these clusters and impaired survival of skin CD4 TRM. The
authors noted that the hair follicle is a rich site for chemokine
and cytokine production as well as a major site of commensal
colonization, both of which might play a role in facilitating the
maintenance of immune cell clustering and reactivation of CD4
TRM cells. Skin CD4 TRM have also been identified following
Leishmania major infection (57, 58). In this case, re-challenge at
distal sites from the original infection results in rapid production
of IFNγ and recruitment of inflammatorymonocytes in a CXCR3
dependent manner. In addition to Th1 TRM cells, Th17 TRM
cells have been identified in the skin following infection with
Candida albicans (59). Although the primary IL-17 producing
population in the skin at earlier time points is comprised of γδ T
cells, CD4 αβ T cells recruited at later time points localize in the
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papillary dermis and upregulate expression of CD69 and CD103.
CD103 is a relatively robust marker for CD8 TRM identification,
but it is less uniformly expressed on CD4 TRM cells, and may
represent a distinct subset that arises in a more limited number
of tissues, possibly dependent on environmental TGFβ (60, 61).
The skin is also home to resident regulatory T cells which may
play a role in the pathogenesis of psoriasis, characterized by the
development of TRM dependent skin lesions (62). In this case,
CD4 regulatory TRM cells expand and produce low levels of IL-
17. Here it is noteworthy that psoriasis can be treated with some
success by IL-17 blockade, although the precise mechanism for
this has not yet been resolved (63).

Female Reproductive Tract
The female reproductive tract is a prime location for sexually
transmitted as well as opportunistic infections, suggesting an
important role for CD4T cells in this tissue. Using a model of
genital herpes, the Iwasaki group demonstrated the presence of
CD4 TRM localized in clusters with CD11c+ MHC-II+ cells
that are disconnected from the circulation (64). These CD4
TRM cells provide superior protection compared to circulating
memory cells and are maintained by local interactions with
macrophages. In this model, T cell stimulation by macrophages
results in T cell production of IFNγ, leading to CCL5 expression
by macrophages, thus creating a positive feedback loop for cell
clustering. Protection upon re-challenge is also mediated by
CD4T cell production of IFNγ, which acts on stromal cells
to prevent viral replication and spread. Although the role of
antigen in this system is unclear, a prime and pull immunization
strategy where antigen is administered subcutaneously followed
by a one-time application of chemokines to the genital mucosa
showed that local chemokines are sufficient to recruit but not
maintain CD4 TRM (65). It was also reported that CD4 TRM
may be reactivated by uninfected local dendritic cells and B cells
that acquire antigen from infected epithelial cells (66). Neither
dendritic cells nor B cells alone were required for CD4 TRM
recall, but depletion of both populations resulted in loss of
protection.

Intestines
The intestinal mucosa is a unique barrier tissue that comes
into contact with food and environmental antigens as well as
commensals and infectious pathogens. Th17 TRM cells specific
for segmented filamentous bacteria, a commensal microbe, have
been identified in the lamina propria of mice (67). Human
Th17 TRM cells that express the C-type lectin-like receptor
CD161 have also been identified in the lamina propria of
patients experiencing Crohn’s disease (68). These cells can be
activated to release IL-17 and IFNγ in response to inflammation
induced IL-23, which further potentiates their colitogenic
potential. Given that pathogenic and protective Th17 cells are
regulated by the same environmental cytokines, it is likely
that the distinct make-up of the microbiota plays a role in
regulating heterogeneity within the gut CD4 TRM compartment.
Commensals have also been shown to induce the formation of
resident regulatory T cells that produce high amounts of TGFβ
which promotes local tolerance (69, 70). In addition, a recent

report shows an important contribution by TFH cells residing
within Peyer’s patches of the gut to maintaining intestinal health
(71). Peyer’s patches are lymphoid tissue comprised of immune
cell sensors that are constantly exposed to luminal antigens and
gut bacteria (72). Although the circulating status of these TFH
cells has not been addressed, non-circulating TRM cells with
high expression of CD69, similar to constitutive expression of
CD69 on TFH cells, have been identified in other secondary
lymphoid organs (73). Similar to CD8 TRM cells, TFH cells
express high levels of the purinergic receptor P2X7R; ATP
mediated signals through P2X7R are required to maintain the
balance of commensals in this organ (48). In the absence of
P2X7R signals, TFH cells expand, providing excessive help to
germinal center B cells, ultimately resulting in excessive IgA
production and dysregulation of local commensal populations.
CD4 TRM cells in the gut can also be induced by oral infection
with Listeria monocytogenes (74). Th1 TRMs generated in this
model accumulate in the lamina propria and epithelium, and
are maintained in an IL-15 independent manner. Th2 TRM
cells can also be identified in the lamina propria and peritoneal
cavity after infection with Heligmosomoides polygyrus (75). Re-
challenge infection results in TCR dependent production of IL-4,
IL-5, and IL-13, although TRM cells in the peritoneal cavity are
additionally able to produce cytokines in response to IL-33 and
IL-7 signals alone.

Lungs
The lung is a highly vascularized barrier tissue in constant
contact with a variety of airborne microbes and environmental
pollutants. Infection or inflammation in the lung results in the
formation of ectopic lymphoid tissue called inducible bronchus-
associated lymphoid tissue (iBALT) (76). Similar to secondary
lymphoid tissue, iBALT is characterized by compartmentalized B
and T cell areas, follicular dendritic cells, antigen presenting cells,
high endothelial venules, stromal cells and limited chemokine
networks (77). It is likely that the cellular composition of iBALT
plays a role in mediating the balance between protection and
pathology in the lung, and may provide a niche for CD4 TRM
cell survival.

Respiratory infections such as influenza induce the generation
Th1 TRM cells that can be recalled to produce IFNγ and provide
protection against heterotypic infections (60, 78). Th1 TRM cells
express high levels of the integrins CD11a and VLA-1 (α1β1), the
latter of which is required for Th1 TRM generation and survival
following recall infection (13, 79). Two recent reports have
described a transcriptional signature for Th1 TRM cells isolated
from human lung (16, 61). Although Th1 TRM cells were sorted
according to either CD69 or CD103 expression, both reports
show a strong homology of Th1 TRM cells with CD8 TRM cells
described inmice. In addition, CD4+CD103+ TRM cells express
high levels of IL-21 receptor, TGFβ and genes associated with
Notch signaling. After stimulation with anti-CD3/28 in vitro,
these lung CD4 TRM demonstrated polyfunctional cytokine
production, suggesting heterogeneity within this population. It
should be noted, however, that as is normally the case with CD4T
cell cytokine production, ∼50 percent of CD4 TRM cells did
not produce any cytokines, suggesting heterogeneity in terms of
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CD4T cell subset or activation state within this compartment.
Th1 TRM cells are also generated after chronic infection with
tuberculosis and are characterized by high expression of CXCR3
and low expression of KLRG1 (38, 80, 81). Adoptively transferred
Th1 TRM cells migrate back to the lung parenchyma where they
mediate superiorMtb control but produce less IFNγ compared to
CD4 memory T cells in the vasculature. Both influenza and Mtb
infection also induce the formation of sustained iBALT. In the
case of influenza infection, the presence of iBALT is correlated
with accelerated secondary CD4T cell responses, suggesting that
iBALT might provide a survival niche for Th1 TRM (76, 82).
The presence of iBALT also plays a role in sustained neutralizing
antibody production, indicating a role for ongoing interactions
between CD4 TRM and B cells to support resident or memory
B cell persistence. Given that the glycoproteins expressed on the
surface of influenza are highly variable from year to year, the
presence of neutralizing antibodies might not be expected to
provide sufficient protection following recall infection. However,
since CD4 andCD8T cells typically recognize conserved epitopes
from internal viral proteins, it is possible that prior exposure to
influenza results in the accumulation of TRM cells capable of
providing cross strain protection (2, 3). Here the maintenance of
CD4 TRM cells within immune cell clusters and/or iBALT would
provide a starting point for rapid renewal of secondary germinal
center responses. Although the specifics of this scenario must still
be addressed, a recent retrospective study found that the number
of prior influenza exposures can be linked to demographic
susceptibility to re-infection, and is associated with conserved
antigen epitopes recognized by CD8T cells (83).

In the case of chronic Mtb infection, iBALT induced by
chronic Mtb infection is formed within the granuloma, which
is essential for preventing pathogen dissemination (84). iBALT
formation is associated with protective immune responses during
latent tuberculosis in humans as well as macaque and mouse
models of Mtb infection (85). A central component of iBALT
in this model is the presence of CXCR5+ CD4T cells which
are initially recruited during the effector phase of infection.
Although CXCR5 expression is required for T cell localization
within the lung parenchyma and for the long-term persistence
of these TRM cells, it is not yet clear how these TRM cells
mediate protective immunity. One possibility is that CD4 TRM
cells produce cytokines to recruit, organize, or maintain the local
immune cell repertoire. If this is the case, it will be particularly
important to examine how heterogeneity or division of labor
within the CD4 TRM compartment might contribute to distinct
aspects of local immunity. For example, do CXCR5+ CD4 TRM
cells promote ongoing humoral immunity during Mtb infection?
Although the role of antibodies in tuberculosis immunity has
been controversial, recent work demonstrates distinct antibody
qualities associated with latent vs. active infection (86). It will
be interesting to determine whether CD4T cell help to B cells
plays a role in these observations. Another important question is
how do CXCR5+ CD4 TRM cells relate to CXCR5- TRM cells
or to CD4 TRM cells with the potential to produce IFNγ? One
possibility is that CXCR5+ CD4 TRMs can be further recalled
to differentiate into IFNγ effectors, similar to the differentiation
potential of lymphoid CXCR5+ CD4 memory T cells (50, 87). In

this case, CD4 TRMs would self-renew to maintain the presence
of long-lived protective memory cells, while simultaneously
differentiating into effectors to promote pathogen containment
or clearance.

Aside from infections that induce type 1 interferon responses,
excessive inflammatory responses in the lung can lead to
pathogenic tissue remodeling such as observed in asthma, a
chronic inflammatory lung disease triggered by sensitization to
inhaled allergens (88). In both asthmatic patients as well as
animal models of the disease, Th2 memory T cells generated
during inflammatory outbreaks are thought to contribute to
pathogenesis (28, 89, 90). Memory Th2 cells are maintained
within iBALT, and are supported by Thy1+ IL7 producing
lymphatic endothelial cells that express IL-33, CCL21, and
CCL19 (91). In agreement with this, iBALT formation is also
observed in patients with chronic obstructive pulmonary disease
and excessive Th2 TRM responses associated with lung fibrosis
(92, 93). Using a mouse model of allergy induced asthma,
a recent report identified two distinct populations of tissue
resident ST2+ Th2T cells in the lung: one subset produces
IL-5 to recruit eosinophils; the other produces amphiregulin,
which programs the induction of inflammatory eosinophils
ultimately leading to lung fibrosis (93). Amphiregulin production
by regulatory TRM cells was also shown to prevent excessive host
pathology following influenza infection, by inducing epithelium
proliferation and repair after viral clearance (94). Here, the
local production of pro-inflammatory cytokines IL-18 and IL-
33 induced amphiregulin production by ST2+ Tregs, to promote
tissue repair in a TCR independent manner. In these cases of both
Th2 lung fibrosis and post influenza tissue repair, amphiregulin
production by distinct TRM subsets promotes distinct types
of local immunity. These findings highlight the importance
of understanding how heterogeneity within the CD4 TRM
compartment impacts the outcome of local immune responses.

CD4 VS. CD8 TRM CELLS, MOUSE VS.
HUMAN TRM CELLS: WHERE DO WE
STAND?

As discussed above, most studies have focused on identifying
phenotypic and molecular characteristics that discriminate CD8
TRM from circulating or lymphoid homing CD8 memory T
cells. CD4 TRM studies have largely been placed within the
context of these CD8 TRM findings, with the consensus being
that the two cell types have much in common. A recent report
by Farber and colleagues identified a core transcription signature
shared by both CD4 and CD8 TRMs isolated from human
organs (16). This signature, which was also largely shared with
mouse TRM cells, included adhesion molecules such as CD103
and CD49a, chemokine receptors such as CXCR6 and CX3CR1,
and genes known to be involved in dampening or inhibiting
T cell responses, including PD1, DUSP6 and IL-10. On the
other hand, CD4 TRM cells exhibited more clonal diversity
compared to CD8 TRM, which likely reflects their underlying
heterogeneity. In support of this, dimension reduction of RNAseq
data revealed a broader spread of CD4 TRM cells compared
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to the tight grouping of CD8 TRM cells across the multiple
tissues examined. These data are also consistent with a study that
examined traffickingmarkers and cytokine production by human
CD4T cells distributed across several different lymphoid and
non-lymphoid tissues at steady state (95). Using mass cytometry,
the authors dissected CD4 TRM heterogeneity in terms of
tissue specific expression of homing markers, along with the
identification of distinct phenotypic and functional (in terms
of cytokine production) CD4T cell clusters within individual
tissues. These studies underscore the complexity of CD4 TRM
cell biology and lay the groundwork for applying more recently
developed single cell technologies to the exploration of CD4 TRM
cell heterogeneity.

Another important consideration is how closely the
observations made in mouse models correlate with human
TRM cell biology. It is important to note that a majority of
mouse studies have examined antigen specific CD4T cell
responses, while most human studies have focused on a broader
characterization of TRM cells. While many similarities exist,
there are also some discrepancies, although whether these
differences are a result of mouse-to-human comparison or
CD4-to-CD8 comparison is unclear. For example, mouse CD8
TRM generated after LCMV infection express high levels of the
transcription factor Hobit. Although Hobit could be identified in
circulating human cytolytic CD4T cells, it was not significantly
upregulated in human TRM cells isolated from liver, gut, or
skin (16). On the other hand, another study looking at CD103+
CD4 TRM cells isolated from human lung found increased
mRNA expression of Hobit, although protein was not expressed
(61). Importantly, in this latter study, CD103 was observed
on ∼10% of CD4 TRM cells isolated from the human lung,
which is in contrast to mouse models either at steady state or
after infection (61). Here the authors also identified a prevalent
Notch signature in human CD4 TRM cells. Although the role
of Notch signaling has not yet been addressed in mouse CD4
TRM cells, it was previously reported to be highly expressed in
human CD8 TRM cells and is also required for the maintenance
of mouse CD8 TRM cells (96, 97). Given the importance of
Notch signaling in the survival of circulating memory CD4T
cells (98, 99), it seems likely that Notch would also play a
role in CD4 TRM cells. Going forward, it will be important
to connect observations in mouse models, which yield greater
flexibility in terms of immune manipulation and organ harvest,
with the valuable observations being made in human tissues.
In addition, it will be essential to determine whether a minor
subset of circulating TRM or pre-TRM cells can be identified,
particularly after oral, intranasal or topical immunization
leading to TRM induction. The identification of such cells

would greatly aid the comparison of mouse and human TRM
studies.

CONCLUDING REMARKS

CD4 TRM cells localized within barrier tissues are poised to
provide immediate protection from re-challenge infection. In
some cases, however, the long-term survival of CD4 TRM cells

within inflammatory or autoimmune contexts can lead to host
immunopathology. Understanding the cellular requirements and
transcriptional basis underlying the acquisition and maintenance
of CD4 TRMphenotype, function and heterogeneity is crucial for
identifying ways in which CD4 TRM cells could be targeted for
human health. One impediment to the detailed characterization
of CD4 TRM cells is that the processing steps for isolation of
TRM cells result in extremely poor cell recovery and the potential
to bias against certain cell subsets (100). However, recent
advances in multiplexed single cell imaging and single cell RNA
transcriptomics in combination with TCR repertoire analysis
will greatly assist in dissecting the relationship of CD4 TRM
heterogeneity to cell activation state, function, and intercellular
interactions (42, 101). It will additionally be important to
examine how CD4 TRM cells respond to re-stimulation, whether
they can self-renew, and whether or not they exhibit fate
plasticity. Along these lines, secondary effector CD4T cells
responding to influenza in the lung contain both Th17 and
TFH subsets, neither of which are present during primary
infection (102). It will be of great value to determine whether
such cells arise from distinct CD4 TRM precursors or whether
they are newly generated in lymphoid organs. Understanding
CD4 TRM flexibility during chronic infection or within the
tumor microenvironment will also be important for assessing the
potential of vaccines to target these populations.
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