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Promptly after primoinfection, HIV generates a pool of infected cells carrying

transcriptionally silent integrated proviral DNA, the HIV-1 reservoir. These cells are

not cleared by combined antiretroviral therapy (cART), and persist lifelong in treated

HIV-infected individuals. Defining clinical strategies to eradicate the HIV reservoir and

cure HIV-infected individuals is a major research field that requires a deep understanding

of the mechanisms of seeding, maintenance and destruction of latently infected cells.

Although CTL responses have been classically associated with the control of HIV

replication, and hence with the size of HIV reservoir, broadly neutralizing antibodies

(bNAbs) have emerged as new players in HIV cure strategies. Several reasons support

this potential role: (i) over the last years a number of bNAbs with high potency and

ability to cope with the extreme variability of HIV have been identified; (ii) antibodies

not only block HIV replication but mediate effector functions that may contribute to the

removal of infected cells and to boost immune responses against HIV; (iii) a series of new

technologies have allowed for the in vitro design of improved antibodies with increased

antiviral and effector functions. Recent studies in non-human primate models and in

HIV-infected individuals have shown that treatment with recombinant bNAbs isolated

from HIV-infected individuals is safe and may have a beneficial effect both on the seeding

of the HIV reservoir and on the inhibition of HIV replication. These promising data and the

development of antibody technology have paved the way for treating HIV infection with

engineered monoclonal antibodies with high potency of neutralization, wide coverage

of HIV diversity, extended plasma half-life in vivo and improved effector functions. The

exciting effects of these newly designed antibodies in vivo, either alone or in combination

with other cure strategies (latency reversing agents or therapeutic vaccines), open a new

hope in HIV eradication.
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HIV PERSISTENCE: THE SUCCESS AND THE FAILURE OR
ANTIRETROVIRAL THERAPY

HIV, as other retroviruses, requires integration of the proviral genome into host cells to allow for
transcription of viral genes and completion of the viral life cycle (1). Both events, integration and
further transcription of integrated proviral genomes are strongly dependent on the activation status
of target CD4+ T cells. Highly activated cells efficiently integrate and replicate HIV, while resting
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cells hardly support viral integration and show low or null
transcriptional activity (2). Therefore, upon infection, a pool of
latently infected cells bearing silent HIV proviral sequences, the
HIV reservoir, is formed either by the ability of HIV to overcome
integration restrictions in resting cells (3) or by the contraction of
immune responses that allows some HIV-infected activated cells
to return to a resting status, silencing viral transcription (4).

Current treatment of HIV infection, the combination
antiretroviral therapy (cART), is mostly based on an array
of inhibitors of several viral enzymes (reverse transcriptase,
protease or integrase) and is extremely effective at blocking
HIV replication, leading to a sustained suppression of plasma
viremia at least below the limit of detection of standard
assays (5). However, the persistence of the HIV reservoir
and its spontaneous activation rapidly resume viral replication
after treatment interruption. Recent data describing treatment
interruption of very early treated individuals (Fiebig I) shows
that the HIV reservoir is rapidly established after primoinfection
(6). Although the HIV reservoir is relatively small in size,
ranging from 1 to 100 latently infected cells per million of
CD4+ T cells, cells, it may encompass long-lived cells, such
as resting memory CD4+ T cells or macrophages (7, 8), The
main consequence of this fact is that the pool of latently
infected cells in treated HIV-infected individuals shows a slow
decay overtime. The half-life of the HIV reservoir has been
calculated in 3.75 years and therefore its natural eradication
would require 60 years of continuous cART treatment (2).
Several attempts to accelerate reservoir decay by combining
new and more potent drugs in optimal cART regimens have
shown some impact on viral and immune dynamics but failed
to show a positive effect on the HIV reservoir decay rate (9–
13). Consequently, HIV-infected individuals have to manage
life-long coexistence with HIV, with therapy, and with their
associated complications, such as chronic immune activation
and inflammation, and drug toxicities. Ultimately, these effects
may result in accelerated immunosenescence and aging (14) that
associates with higher incidence of co-morbidities and mortality
compared to non-infected individuals (8). Therefore, there is
an emergent interest in developing safe and affordable curative
strategies that would eliminate the need of lifelong therapy in
HIV-infected individuals, either by completely eradicating the
viral reservoir (sterilizing cure) or by empowering the immune
control of HIV-replication (functional cure).

DYNAMICS OF HIV RESERVOIR UNDER
cART: CLUES FOR CURE

The complete eradication of the pool of latently infected
cells in HIV-infected individuals has been approached from
molecular, pharmacological and immune perspectives. Molecular
approaches are based on sequence specific CRISPR-CAS-based
tools that may allow for the excision or reactivation of proviral
DNA from latently infected cells; however, their clinical efficacy
and potential off-target effects are not yet known (15). In
contrast, more classical pharmacological and immunological
strategies have reached human trials and have been tested in

FIGURE 1 | Mechanisms controlling HIV reservoir in treated HIV-infected

individuals. The HIV reservoir, the pool of HIV latently infected cells, is drained

by continuous stochastic activation leading to transient or stable transcription

of HIV provirus. Transient reactivation may allow a return to latent infection,

while stable reactivation will allow for presentation of viral peptides to HIV

specific CD8T cells, exposure of HIV Env on the surface of cells allowing NK

mediated ADCC. Both mechanisms will lead to the lysis of infected cells.

Reinfection of target cells by virions produced by reactivated cells is blocked by

cART. On the other hand, stimuli that promote cell proliferation in the absence

of viral transcription will increase the size of the reservoir (bottom right).

HIV-infected individuals. All these approaches are designed to
perturb the long-lived HIV reservoir (Figure 1). Although the
pool of latently infected cells is stable overtime, it is not static. On
the one hand, homeostatic control of T cells and inflammatory
environment may induce the proliferation of latently infected
cells (16, 17). When this proliferation occurs in the absence of
HIV transcription, it results in an increase in the HIV reservoir
size, this is the case of HIV-infected individuals treated with IL-
7 (18). Furthermore, clonal expansion of latently infected cells
driven by antigen specificity or specific integration sites has also
been described in HIV-infected individuals (19, 20).

On the other hand, HIV transcription in latently infected
cells can become spontaneously and stochastically activated by
different stimuli, also including specific antigens or nonspecific
inflammatory signals, that reverse epigenetic silencing of
HIV transcription (21). Once reactivated, cells will produce
viral particles whose infectivity will be blocked by cART
(Figure 1), and will expose viral antigens, both mature envelope
glycoproteins (Env) on the cell surface and viral peptides
presented by MHC will allow the immune system to recognize
the reactivated cell before a potential return to a resting
status or cytolysis mediated by cytopathic effects of HIV
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proteins (Figure 1). Immune recognition will accelerate the
lytic process either by HIV-specific CD8+ cytotoxic T cells
(CTL) or by CD16+ NK cells sensing antibodies bound
to Env (Figure 1). However, the extent of both CTL and
NK mediated cell lysis in HIV-infected individuals could be
incomplete. In the case of CTL, a broad and properly stimulated
response seems to be required to overcome the dominance
of escape mutations and the inherent resistance of reactivated
cells to CTL mediated killing (22–24). Regarding antibodies,
the main limitation is the lack of good-quality antibodies
against HIV Env and the potential perturbation of both B
and NK cell functions induced by HIV infection (25, 26).
Despite these limitations, indirect evidence link both CTL
and NK cell function to the reservoir size in HIV-infected
individuals (27–29).

Irrespective of the cytolytic mechanisms, the combination of
reactivation (kick) and lysis (kill) will result in a continuous
reduction of the HIV reservoir size. Therefore, kick-and-kill
strategies are paradigmatic in the purge of the HIV reservoir
(30). Optimization of kick is exploring a wide range of latency
reversing agents (LRA). Several compounds acting at different
levels of the control of HIV transcription, including histone
deacetylase (HDAC) inhibitors and Toll-like receptors (TLR)
agonists, have been tested in in vitro assays or in in vivo
animal models to screen them for potential use in humans
(31). Certainly, some of them have reached clinical trials in
HIV-infected individuals, such as the HDAC inhibitors valproic
acid, disulfiram, vorinostat, panobinostat, or romidepsin and
the protein kinase C modulator briostatin (32–38). These trials
yielded, at best, promising results in terms of HIV reactivation,
showing transient increases in cell associated HIV RNA levels;
however, no changes in HIV reservoir size were observed. Taken
together, these data suggest that a better killing step is necessary
to impact on the reservoir size. Thus, enabling the immune
system to rapidly kill kicked cells seems to be a necessary
step in cure strategies. Although, CTL based strategies, namely
therapeutic vaccination aimed at inducing new CTL specificities,
is an active field (39); antibody-based therapies have emerged
as a new and powerful tool (40). Some reasons that explain the
renewed interest in antibodies are the isolation of broad and
highly potent anti-HIV antibodies, the demonstration of their
safety and antiviral activity in vivo and the idea that antibodies
display immunomodulatory activities beyond the antiviral
activity.

ANTIBODIES, ANTIVIRAL AGENTS
BEYOND ART

Antibodies share with cART the capacity to block HIV
replication, in the case of antibodies by their ability to inhibit
HIV entry, also known as neutralizing activity. Direct antiviral
or neutralizing activity depends on the variable region of the
antibody that is defined by the N-terminal domains of the heavy
and light chains of the molecule (Figure 2). The HIV Env is the
sole viral protein exposed on virions and productively infected
cells and is therefore the target for HIV neutralizing antibodies

(41). Env is a heterotrimer of gp120 and gp41 subunits, with a
high structural complexity, sequence variation and plasticity (42,
43). Despite this, several potent and broad neutralizing antibodies
(bNAbs) have been identified that bind to relatively conserved
and functionally relevant regions of Env. These epitopes, called
vulnerability sites, are the CD4 binding site, the external V2 or
the V3 loops in gp120, the gp120/gp41 interface and the fusion
peptide or the membrane proximal external region (MPER) of
gp41 (Figure 2) (42, 44, 45).

Unlike cART, antibodies can be considered polyfunctional
molecules as they can mediate several antiviral functions
combining direct blockade of viral infectivity (neutralization)
and indirect immunological mechanisms (effector functions)
that require the recruitment and activation of immune cells,
such as NK cells or macrophages. Effector functions depend
on the interaction of the fragment crystallizable (Fc) region
of antibodies and specific Fc-Receptors (FcRs) differentially
expressed on the surface of immune cells. The Fc domain is
defined by the heavy chain of antibodies that also defines the
isotype (46). For the main antibody isotype, IgG, four subtypes
have been described, among them IgG1 and IgG3 are the most
active mediating effector functions in viral infections (47). In
this way, IgG1 and IgG3 can act as a “linker,” facilitating the
interaction between immune-effector cells and virions or infected
cells and promoting their elimination (Figure 2). Among the
functions assigned to the Fc portion of antibodies, complement-
mediated lysis, antibody-dependent cellular cytotoxicity (ADCC)
and Antibody-dependent phagocytosis (ADCP) are highlighted
because they are highly effective in killing and removing infected
cells, thereby contributing to antiviral functions. Importantly,
interactions of antigen bound antibodies with immune cells also
act as a danger signal and are part of the communication network
of the immune system to improve immune responses at the
local or systemic level. One of the most relevant examples is
the activation of conventional and plasmacitoid dendritic cells
(DC) by immunocomplexes (IC). Such IC recognition leads to
enhanced antigen uptake and presentation, allowing induction
of stronger humoral and cellular antiviral immune responses,
reviewed in (48).

Although Fc-mediated effector functions need for the
antibody to recognize the antigen on the surface of infected cells,
they are independent of the neutralizing potential. Therefore,
both neutralizing and non-neutralizing antibodies could be
effective mediating Fc-dependent antiviral functions. The best
example is provided by the RV144 trial (49). In this trial
involving more than 1,6000 individuals, a combination of
Env immunogens failed to elicit a strong cross-neutralizing
humoral response, but induced antibodies with ADCC activity
that correlated with protection in individuals showing low IgA
response (50, 51). Interestingly, Hessell et al. showed that the
protective role of the IgG1b12 against SHIV acquisition observed
in non-human primate (NHP) models was associated with the
Fc-FcR interaction but not with complement activation (52).
Therefore, these results suggested that the neutralizing capacity
of the antibody is not enough to confer protection against
HIV and probably the combination of both neutralization and
Fc-dependent effector function, such as ADCC or ADCP are
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FIGURE 2 | Main antibody features. Antibodies are glycosylated heterodimeric molecules showing a variable region in both light and heavy chains that determine

antigen binding. For bNAbs, antigen binding is located on the indicated vulnerability sites of the HIV Env glycoprotein formed by heterotrimers of gp120 (yellow) and

gp41 (red in the upper right panel). The crystallizable fragment of the antibodies (Fc) encompasses all constant regions and is responsible for the effector functions.

Different antibody subtypes show selective effector functions (color coded displayed in the middle right panel). Furthermore, the Fc region also regulates plasma

half-life of antibodies, as they are continuously recycled, degraded or transcytosed by endothelial cells through neonatal Fc receptors (FcRn, lower right panel). HIV

Env picture (http://www.rcsb.org/pdb/101/motm.do?momID=169) is from David S. Goodsell and the RCSB PDB under Creative Commons.

required. Accordingly, bNAbs whose Fc portion was modified
to increase binding to activating FcR showed an improved
protective capacity when they were assayed in humanized mice
models (53).

In addition to the effector functions described above, the Fc-
portion of IgGs is also responsible for the interaction with the
neonatal Fc receptor (FcRn) widely expressed on endothelial
cells. The interaction with this receptor plays a major role in
the control of the plasma half-life of antibodies by regulating
the acidic degradation of IgGs into the lysosome of endothelial
cells (54). The mechanism is based on the pH dependence
of the binding of antibodies to FcRn. Binding shows higher
affinity at pH 6, which is the endosomal pH, and low affinity
at neutral pH (extracellular). This fact enables antibodies taken
up by endothelial cells to remain bound to the FcRn and
recycle to the cell surface, avoiding the acidic degradation.
Once the antibody/FcRn complex reaches the extracellular
neutral pH compartment, antibodies are released. Importantly,
besides regulating plasma half-life, this recycling process also
modulates antibody transcytosis to tissues (55). Taking advantage
of this mechanism, a modified VRC01 antibody (VRC01-LS),
which showed an improved binding to the FcRn at pH = 6,
provided superior protective capacity than the wild type version
in rhesus macaques, not only by increasing its in vivo half-
life but also by reaching a higher concentration at mucosal
level (56).

Indirectly, antibodies might also contribute to improve the
CTL response against HIV-1. The treatment of rhesus macaques
with a combination of 3BNC117 and 10-1074 antibodies very
early after SHIV infection, helps to control the infection by a
mechanism in which CD8+T cells seem to be fundamental (57).
Nevertheless, it is possible that antibodies contribute to promote
the T cell response by improving the antigen presentation
capacity of DCs. As mentioned above, IC composed of
antibodies, virions and probably complement, can be efficiently
captured by DCs, via FcR, processed and presented to T cells,
improving the cellular response against viral antigens (48). This
process seems to be highly dependent on timing, since this effect
has not been observed when antibodies were administered before
infection or during the chronic phase, and, probably might also
depend on the neutralizing capacity and isotype of the antibody
used.

In summary, antibodies show a wide range of antiviral
activities that make them highly attractive as anti-HIV-1
agents. They can reduce viral load and kill infected cells
by recruiting and activating effector immune cells. Moreover,
they can be long-acting and can collaborate with the immune
system improving different mechanisms that can control HIV-1
infection. Considering that these mechanism depend on specific
regions within the antibody molecule, these regions can be
modified to improve the global activity, making antibodies more
potent or with a better in vivo pharmacokinetic profile. However,
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the contribution of antibodies to the removal of theHIV reservoir
is still poorly defined.

Isolation of bNAbs From HIV-Infected
Individuals: Selecting the Best Candidates
Probably the major limitation of antibodies in their continuous
race against HIV is the structural complexity and the
unprecedented variability of the HIV envelope glycoprotein
(41). Although the humoral response against HIV Env is strong,
most of anti-HIV Env antibodies fail to bind to complex trimeric
epitopes and those recognizing the trimer usually are strain
specific. Only a small proportion of anti-Env antibodies are
bNAbs, i.e., block a large number of Env variants (58).

The isolation of bNAbs to inform on vaccine design and
protective mechanisms has been a challenge over the last years.
Initial efforts identified the anti-CD4bs antibody IgGb12, the
anti-glycan 2G12 and the anti-MPER antibodies 2F5 and 4E10
as neutralizing antibodies. However, their potency was low (in
the microgram/ml range) and the breadth limited (59, 60). New
molecular and cellular screening technologies (61, 62) and large
efforts by several laboratories have extremely helped to identify
newer, broader, and more potent antibodies (40). Current bNAbs
target vulnerability sites of HIV Env, show antiviral activity
in the ng/ml range and cover a wide range of HIV isolates
from different clades. In general, anti-CD4bs antibodies, such as
VRC01, 3BNC117, VRC07, or N6 show intermediate potency and
high breadth (>80% of a panel of 200 isolates), being the N6
antibody almost panneutralizing (63–66). In contrast, antibodies
directed against the V2 loop, such as PG9 or PG16 (67), or
against the V3 loop, such as 10-1074 or PGT121 (68) show higher
potency but lower coverage, being able to neutralize roughly
a 60% of circulating HIV isolates. The case of the anti-MPER
antibody 10E8 is also relevant, it shows the widest coverage but
has a limited potency (65).

The excellent combination of potency and coverage of recently
isolated bNAbs have allowed for their clinical development.
Over the last years, VRC01, 10-1074, 3BNC117, VRC07 or their
combinations have reached clinical trials in humans (69–72),
opening the door for antibody-based therapies to treat and cure
HIV infection (40).

Engineered Antibodies
Despite the remarkable potency of bNAbs isolated from HIV-
infected individuals, they show several limitations to become
referent drugs in HIV treatment. Firstly, the number of
antibodies is still low and there is a need for more potent
antibodies particularly for some specificities, such as the
MPER or the new vulnerability sites. Secondly, the number of
isolates neutralized by some bNAbs is still low, and therefore
combination strategies should be envisaged, increasing the
development and production costs. For this reason, a wide
range of modifications have been made to naturally occurring
antibodies in order to increase their potency, coverage or
pharmacodynamics behavior (40). The technologies to modify
antibodies have grown as immunotherapies against several
human diseases, such as cancer or autoimmune diseases emerged
(73). Current technologies encompass modifications in the

variable or the Fc regions of antibodies to modulate their antigen
binding and their effector functions, respectively.

Several of those modifications have been applied to anti-HIV
bNAbs. Huang et al. designed an asymmetric bispecific antibody
containing the variable regions of an anti-CD4bs antibody and
the 10E8 anti-MPER bNAb. This construction showed almost
panneutralizing activity with a median IC50 of 2 ng/ml (74).
Similarly, Bournazos et al. designed a flexible bispecific IgG3
antibody containing the 3BNC117 and the PGT135 variable
regions (75). Other strategies involve the addition of specificities
at the C-terminal end of the IgG. In this regard, Gardner et al.
added a peptide that binds to the coreceptor binding site at
the end of a CD4-IgG1 fusion protein resulting in the molecule
eCD4-Ig that show also panneutralizing activity with a median
IC50 in the ng/ml range (76) and maintain ADCC activity
(77). Further modifications in antibody specificity involve the
addition of a second variable region to the antibody arms, if
this strategy is combined with an asymmetric chain assembly the
result is a trispecific antibody. Such a molecule has been recently
designed by combining the variable regions of the VRC01, the
PGDM1400, and the 10E8 antibodies yielding a highly active
and virtually panneutralizing molecule (78). Finally, increased
neutralizing activity can be also achieved by introducing small
modifications in the variable regions of antibodies; this is the
case of antibody VRC07-523, an antibody with improved profile
designed by computational bioinformatics, and structure-guided
design (64), or the antibody NIH45-46G54W that shows improved
neutralization than its wild type counterpart (79). All above
described engineered antibodies have been tested in animal
models with excellent prophylactic results.

Modifications to the Fc moiety of antibodies have been
also implemented into anti-HIV bNAbs. It is well known that
glycosylation of the Asn297 residue in IgG1 is required for
binding to CD16 andADCC activity, and that removal of a fucose
residue in the sugar chain increases binding to CD16 and ADCC
activity of 2G12 and PG9 antibodies (80, 81). Thesemodifications
have been also applied to newly designed multivalent antibodies
to improve ADCC-mediated removal of HIV-infected cells (82).
However, the most common modification of the Fc is related
to the binding to FcRn. Increasing the affinity of IgG for FcRn
at pH 6 reduces lysosomal degradation of IgG by endothelial
cells and extends IgG plasma half-life. For instance, the M428L
and the N434S mutations in Fc, conferring an improved binding
profile to the FcRn, have been introduced into the VRC01, the 10-
1074 and the 3BNC117 antibodies, resulting in increased in vivo
plasma half-life (83) and also reaching a higher concentration at
mucosal level (56).

Alternatively, the Fc portion of antibodies can be completely
removed. The resulting small molecules called dual-affinity
re-targeting proteins (DART) are composed of two antigen-
binding variable regions linked by a short sequence allowing the
recognition of two different antigens (84). When one specificity
is directed against the HIV Env and the other against CD16 or
CD3, the resulting molecules may serve as a linker between HIV-
infected cells and effector cells, NK or CTL, respectively (40).
These molecules, despite their short plasma half-life (85, 86) may
facilitate the removal of HIV-infected cells, exploiting the full
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TABLE 1 | Latest Human Clinical Trials Involving bNAbs.

Antibody(ies) Target

population

Endpoint Dosea References

2G12 + 2F5

+ 4E10

HIV infected

cART

interruption

VL rebound 30 mg/Kg

IV

(84)

VRC01 HIV infected

Untreated

VL decay Up to 40

mg/Kg

IV/SC

(68)

3BNC117
HIV infected

Untreated

VL decay Up to 30

mg/Kg

IV

(69)

10–1074 HIV infected

Untreated

VL decay Up to 30

mg/Kg

IV

(70)

VRC01LS HIV

uninfected

Safety Up to 40

mg/Kg

IV/SC

(91)

VRC07-

532LS

HIV

uninfected

Safety Up to 40

mg/Kg

IV/SC

(92)

10-1074 +

3BNC117

HIV

uninfected

untreated

Safety Up to 30

mg/Kg

IV

(93)

a IV, intravenous; SC, subcutaneous.

repertoire of CD8+ T cells, as antigen specificity is not provided
by the effector cell, but by the molecule.

ANTIBODIES IN HIV THERAPY AND THE
CONTROL OF HIV RESERVOIR

Immunotherapies using hyperimmune plasma were assessed in
HIV-infected individuals before cART development in early years
of HIV pandemics with disappointing results (87). Some years
later, the available recombinant antibodies at that moment, the
anti-glycan 2G12 and the anti-MPER 2F5 and 4E10 mAbs,
reached clinical trials. All antibodies were safe in HIV-infected
individuals (88, 89), although clinical effect was limited as shown
by Trkola et al (90). These authors used a combination of the
above-mentioned antibodies to treat HIV-infected individuals
undergoing interruption of cART (Table 1). The effect on viral
rebound was minimal, only observed in two of eight individuals
and evidenced a partial activity of the antibody 2G12 (90).
Despite the lack of clinical benefit, these trials demonstrated
that treatment with anti-HIV antibodies was safe and paved
the way for future treatments with newer and more potent
antibodies.

NHP Models
The isolation and development of bNAbs has mostly focused
on the prophylactic activity, generating a plethora of work
that demonstrates the efficacy of antibodies delivered as passive
infusions or though gene therapy to protect animals from
HIV acquisition, excellently reviewed in Pegu et al. (94). The
first clear evidence of a therapeutic activity of antibodies

came from humanized mice models (95). Klein et al. infected
immunodeficient mice humanized with human CD34+ cells
with the HIV isolate YU-2. Three weeks after infection
animals were treated with monotherapy with the antibodies
3BC176, PG16, NIH45-46G54W, PGT128, or 10–1074. The
effect of monotherapy on viral load (VL) was minimal, while
the combination of three antibodies had some effect and
the combination of all five antibodies achieved a sustained
reduction of VL. Thus, combinations of potent monoclonal
antibodies could effectively control HIV-1 replication at least in
mouse models. This observation was relevant as the efficacy of
antibodies against cell-to-cell HIV transmission, one of the most
efficient in vivomechanisms of HIV spread, was under discussion
at that time (91, 96–98).

Further evidence of therapeutic activity of antibodies came
from two different experiments in SHIV-infected Rhesus
macaques (63, 92). Barouch et al. demonstrated that PGT121
administration to SHIV SF162P3-infected Rhesus resulted in
a rapid decline of viral replication that was dependent on
the level of VL at baseline, and was sustained for those
animals with lower VL (92). Similarly, Shingai et al. treated
SHIV AD8-infected rhesus macaques with the anti CD4bs
antibody 3BNC117 or the anti-V3 antibody 10-1074 either as
monotherapy or in combination. In monotherapy, the 10-1074
antibody caused a transient (4–7 days) undetectability of VL
followed by virus rebound and appearance of mutations in the
virus that confer resistance to the antibody. When administered
together, 3BNC117 and 10–1074 induced a 3–5 weeks sustained
suppression of VL without evidence of emergence of resistant
viruses (63).

Despite these promising data, the effect of bNAbs on the
HIV reservoir is still elusive. Initial work on humanized mice
described an impact of bNAbs on HIV-infected cells by a
mechanism related to their Fc effector functions (53, 93, 99).
However, the most exciting results suggesting an effect of
antibodies on the HIV reservoir have been recently generated in
two papers demonstrating a clear long-term effect of antibody
treatment in NHP (57, 100). Borducchi et al. treated SHIV
SF162P3-infected rhesus 1 week after SHIV exposure with serial
doses of PG121 antibody, the LRA GS-9620 (a TLR7 agonist)
or a combination of both. Treatment was concomitant to cART,
and after immunotherapy, cART was maintained for more than
2 years. After cART interruption all control animal showed
rapid rebound of VL. TLR7 agonist monotherapy had a modest
effect on viral rebound, while antibody treatment and particularly
the combination of antibody and TLR7 agonist delayed or
prevented VL rebound in most animals. Interestingly, all animals
treated with combination therapy showed spontaneous control
of viremia after cART cessation (100). Similarly, Nishimura et
al treated SHIVAD8-EO infected Rhesus with a combination of
3BNC117 and 10-1074 bNAbs during acute infection. The effect
of the treatment was a long-lasting control of HIV replication
in roughly half of animals (six of thirteen) that seems to be
related to an enhanced CTL mediated control of viral replication
(57), suggesting a not yet defined immunomodulatory effect
of antibodies in the course of HIV infection, probably related
to the enhancement of immune responses by ICs captured by
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DCs reported in other viral infections (48) Although, these
experimental designs are hard to replicate in humans due to
the very early therapy schedule, these results show for the first
time the potential of bNAb immunotherapy in HIV cure (either
sterilizing or functional).

Human Trials
The progresses in bNAb-based therapy in humans are slow due to
regulatory constraints. However, besides early trials using first-
generation antibodies (90), several second-generation bNAbs
have reached human clinical trials in passive administration
assays. A summary of the most recent trials is shown in
Table 1. The anti-CD4bs antibodies VRC01, VRC07-532LS, and
3BNC117 and the anti-V3 loop antibody 10-1074 were tested
in HIV uninfected individuals demonstrating to be safe and
well tolerated (101). Pharmacokinetics was variable among the
different antibodies tested, showing a plasma half-life close
to 15 days, as expected for a therapeutic IgG. Interestingly,
the VRC01LS antibody, a derivative of VRC01 containing the
M428L and the N434S mutations in the Fc showed increase
plasma half-life (71 ± 18 days) and was also safe in a Phase I
trial (102). Similar results have been reported for the VRC07-
532LS antibody containing a similar set of mutations in the
Fc and showing also an extended half-life of 33 ± 18 days
(103). Furthermore, combination of 3BNC117 and 10–1074 does
not seem to alter their individual pharmacokinetics or safety
profile (104).

VRC01, 3BNC117 and 10-1074 antibodies have been
also tested in untreated HIV-infected individuals (69–71).
The behavior of all antibodies was similar, showing the
weaknesses and strengths of antibody monotherapy. Treatment
led to a reduction of VL in most of individuals (ranging
from a 1.1 to 1.8 logs) with more sustained suppression
in individuals with lower baseline viremia. However, in
some patients the antibody had no effect on VL, due
to the presence of viral variants that were insensitive to
neutralization activity (resistant viruses). Interestingly,
most individuals that transiently reduced VL showed in the
rebounded virus mutations conferring reduced sensitivity to
the therapeutic antibody, suggesting rapid development of
HIV resistance (69–71). Furthermore, due to active antigen
removal, the plasma half-life of antibodies was shorter
than in HIV uninfected individuals (69–71). In addition
to these expected data, antibody treatment also revealed
further relevant information. The passively administered
antibody 3BNC177 altered the kinetics of HIV-1 suppression
in infected individuals, suggesting an active effect of the
antibody on infected cell clearance. Consistent with data
from animal models, the mechanism would require Fcγ
receptor engagement (105). Moreover, this antibody also
seems to significantly improve neutralizing responses to tier
2 viruses in most study participants, suggesting beneficial
immunomodulatory properties as described in other animal
models (48). In contrast, treatment with VRC01 antibody
had no impact on the size of HIV reservoirs in cART treated
HIV-infected individuals at least 4 weeks after two antibody
infusions (69).

ANTIBODIES IN PREVENTION
STRATEGIES: TARGETING SEXUAL AND
VERTICAL TRANSMISSION

Besides the potential role in cure intervention, bNAbs may
also be useful in preventative strategies further contributing to
control and eradicate the HIV pandemic. Complementing the
therapeutic use of antibodies, human trials have been started
to determine the efficacy of the antibody VRC01 in protecting
HIV uninfected individuals at risk of HIV acquisition. A large
study in men who have sex with men (MSM) in US and women
in Africa (the AMP study) is currently conducted (106, 107) to
test antibody-mediated protection of sexual HIV transmission.
However, one of the most attractive fields for the prophylactic use
of antibodies is mother to child transmission (MTCT), excellently
reviewed in (108).

The evolution of the prophylactic use of antibodies has
paralleled the therapeutic application. Pioneer work involved
purified immunoglobulins from HIV serum to block MTCT
by treating HIV-1-infected pregnant women showing safety
but a complete lack of efficacy (109, 110). Additional studies
confirmed these early result (111). Again, the isolation of second-
generation bNAbs, along with the recent data obtained in NHP
and humans, has renewed the interest on the use of nNAbs
to block MTCT. Although there is profuse information on the
excellent prophylactic activity of bNAbs in adult uninfected
rhesus macaques challenged with HIV (94), specific studies on
animal models ofMTCT aremore recent. Hessell et al. inoculated
orally 1-month-old rhesus macaques with SHIV and treated
them subcutaneously with VRC07 and PGT121 1 day after virus
exposure. All treated animals showed no SHIV or anti-SHIV T
cell responses in blood or tissues at necropsy, and importantly no
virus emerged after CD8T cell depletion (112), suggesting that
early passive immunotherapy can eliminate early viral foci and
thereby prevent the establishment of viral reservoirs in newborns.

These preclinical data have fostered the clinical use of bNAbs
in prevention of MTCT in the hallmark the International
Maternal/Adolescent AIDS Clinical Trials Network (IMPAACT).
Indeed, the P1112 study is currently ongoing and evaluates the
safety and PK analysis of the antibody VRC01 in HIV-exposed
newborns and will also include the VRC01-LS in one of the arms
(113). Moreover, the 2008 study is also being conducted; this
is Phase I/II study that uses VRC01 in combination with cART
to analyze the effect on the clearance of HIV-1-infected cells
in infants. The data from both studies will inform on potential
benefits of antibodies to reduce MTCT and the possibility to
expand bNAb-based eradication strategies to infants.

FUTURE CLINICAL PERSPECTIVES AND
REMARKS

Preliminary data on the therapeutic use of bNAbs isolated
from HIV-infected individuals suggests a strong potential in
HIV cure strategies. However, their clinical use is limited
by the availability of antibodies, the antiviral potency and
the preexisting resistances. To overcome these limitations, a
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large array of synthetic multifunctional antibodies with higher
potency, breadth of neutralization and tailored effector functions
(including CTL mediated killing) are under development to feed
the pipeline of antibody-based therapies and to improve our
current arsenal of anti-HIV drugs. It should be noted that those
newly designed antibodies show a potency equivalent to the
most active antiretroviral (IC50 in the pM range), offer minimal
natural resistance (and given their multifunctional mechanism
of action an anticipated high genetic barrier) and a wide range
of immunological effect, most of them not yet completely
understood.

The clinical setting for antibody treatment is also an open
field. A reduction of the HIV reservor by passive antibody
administration to chronic HIV-infected individuals would
be desirable, but could be incomplete. Despite preliminary
promising data, bNAbs will probably require combination with
LRAs or therapeutic vaccines to eradicate HIV. Early treatment
is probably a more promising scenario. Replicating excellent
data obtained by early treatment of NHP in humans would
speed the implementation of this type of therapies. Although
implementation in adults is complex due to the challenging
detection of early infection, a promising future is envisaged in
MTCT settings. New technologies will also help bNAb therapy.

Passive administration can be replaced by gene therapy using
Adeno-Associated Viruses (AAV), a strategy that has provided
excellent results in NHP and that is currently being tested in
humans (76, 114–116).
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