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In 2009, the H1N1 swine flu pandemic highlighted the vulnerability of pregnant women

to influenza viral infection. Pregnant women infected with influenza A virus were at

increased risk of hospitalization and severe acute respiratory distress syndrome (ARDS),

which is associated with high mortality, while their newborns had an increased risk of

pre-term birth or low birth weight. Pregnant women have a unique immunological profile

modulated by the sex hormones required to maintain pregnancy, namely progesterone

and estrogens. The role of these hormones in coordinating maternal immunotolerance in

uterine tissue and cellular subsets has been well researched; however, these hormones

have wide-ranging effects outside the uterus in modulating the immune response to

disease. In this review, we compile research findings in the clinic and in animal models

that elaborate on the unique features of H1N1 influenza A viral pathogenesis during

pregnancy, the crosstalk between innate immune signaling and hormonal regulation

during pregnancy, and the role of pregnancy hormones in modulating cellular responses

to influenza A viral infection at mid-gestation. We highlight the ways in which lung

architecture and function is stressed by pregnancy, increasing baseline inflammation

prior to infection. We demonstrate that infection disrupts progesterone production

and upregulates inflammatory mediators, such as cyclooxygenase-2 (COX-2) and

prostaglandins, resulting in pre-term labor and spontaneous abortions. Lastly, we profile

the ways in which pregnancy alters innate and adaptive cellular immune responses to

H1N1 influenza viral infection, and the ways in which these protect fetal development at

the expense of effective long-term immune memory. Thus, we highlight advancements

in the field of reproductive immunology in response to viral infection and illustrate how

that knowledge might be used to develop more effective post-infection therapies and

vaccination strategies.
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INTRODUCTION

Influenza viruses are segmented, negative-stranded enveloped RNA viruses that cause respiratory
infections, fever, malaise, coughing, and mucus production. Influenza viruses are divided into A, B,
C, and D types; while all A, B, and C can be infectious in humans with influenza A viruses (IAVs)
causing the most widespread disease, influenza D virus is not known to infection humans (1, 2).
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Influenza A viruses are further classified by the antigenicity of
their surface proteins hemagglutinin (HA) and neuraminidase
(NA), which are encoded on individual segments of viral RNA,
and define the host range of each virus (1, 3). Through a process
unique to influenza and other segmented genome viruses, co-
infection of different viral subtypes in human, swine, avian
or other animal hosts can result in reassortment leading to
antigenically unique novel viruses that may take advantage
of an immunologically naïve host species (4). This process
of reassortment resulted in the emergence of the four major
influenza virus strains causing pandemics; the 1918 H1N1
Spanish influenza, the 1957 H2N2 Asian influenza, the 1968
H3N2 Hong Kong influenza, and the 2009 H1N1/09 swine
influenza, that infected up to 50% of the global population
and caused a significant increase in mortality (2, 3). While
infection can occur year-round, the epidemiology of influenza
virus infection is seasonal, causing peak illness in November
through March in the Northern Hemisphere and approximately
200,000 hospitalizations and 36,000 deaths annually in the
United States (3). Currently, the most common circulating
influenza A subtypes are H1N1 and H3N2, which are included
in quadrivalent vaccines together with the type B influenza
lineages Yamagata and Victoria (5). Due to the wide variety of
circulating viruses and the frequency of genetic reassortment
between subtypes, vaccination is required annually to provide
immune protection during each influenza season although it may
not be complete if there is mismatch between predicted strains
included in the vaccine and the resultant circulating strains in the
following season.

Seasonal influenza infections during the second and third
trimester of gestation increase the morbidity of pregnant women
with higher hospitalization rates than the general population
and mortality (6). Pregnant women have been particularly
vulnerable to pandemic influenza viruses showing up to 45%
increased morbidity and mortality, and they were at an increased
risk of higher cardiopulmonary complications and gestational
abnormalities during the four major influenza pandemics in
the past 100 years (7–9). While pregnant women typically
represent 1% of the American population, during the 2009
H1N1 pandemic they comprised 6.4% of all hospitalizations
and 4.3% of all deaths (10, 11). Over half of those women
hospitalized for H1N1 influenza virus infection had another pre-
existing condition, such as asthma, high blood pressure, and
diabetes; women with asthma represented 43.5% of deaths from
influenza virus infection during pregnancy, which is part of a
larger phenomenon of enhanced viral pathogenesis and severe
outcomes among asthmatic adults (11, 12).

Influenza infection-related complications in fetuses and
neonates have been associated with increased risk of miscarriage,
pre-term birth, stillbirth, neonatal death, and low birth weight
(6, 9, 13, 14). Clinical reports of influenza-like illness (ILI)
during pregnancy have been correlated with a five-fold increase
in perinatal morbidity and mortality (15). The incidence of pre-
term birth increased from 7 per 1,000 births to 39 per 1,000 births
and the incidence of stillbirth from 6 to 27 stillbirths per 1,000
births in the 2009 pandemic (9, 10, 16). Specifically, pregnant
women who tested positive for the 2009 swine-origin H1N1

virus were more likely to deliver low birthweight infants than
pregnant women who delivered following ILI that was not caused
by the pandemic strain (17). There is historical evidence that the
1918 and 1957 pandemics produced similar clinical outcomes
for pregnant women; however, modern diagnostic procedures
employed during the 2009 H1N1 pandemic allow for more direct
linkage between influenza viral infection of pregnant mothers
and poor outcomes for maternal and neonatal health (9).

The mortality rates reported for both women and their
newborns led to initiatives by the Centers for Disease Control
and Prevention (CDC) and the World Health Organization
(WHO) to increase influenza vaccination coverage in pregnant
women (5, 18). Maternal vaccination during the second or third
trimester of pregnancy with seasonal trivalent influenza vaccine
substantially reduced the incidence of ILI in both mothers and
their newborns (19–21) and has not been associated with pre-
term delivery or an increase of adverse outcomes for mothers
or their infants. In a review of 7 clinical studies, Bratton et
al concluded that maternal vaccination reduced the likelihood
of stillbirth compared to unvaccinated pregnant mothers (22–
24). However, while the conventional intramuscular vaccination
has been determined to be reasonably safe for routine use
during pregnancy, promoting the transplacental transfer of anti-
influenza virus antibodies from mother to fetus, clinical data is
inconclusive regarding the efficiency of immune responses to
the vaccine when compared to those induced in non-pregnant
women (18, 19, 25–27).

Vaccination is widely recommended during pregnancy for
the benefit of mother and child; however, vaccination coverage
among pregnant women in the United States remains around
50% (6). Research into the specific mechanisms by which H1N1
influenza virus infection causes pregnancy complications and
how pregnancy hormones modulate the immune response to
infection and vaccination may reveal improved routes of therapy
for women infected with influenza A virus during pregnancy.
This review will discuss how H1N1 influenza virus infection
disrupts maternal lung and placental function as well as the
role of pregnancy hormones in shaping the innate and cellular
immune responses to H1N1 influenza virus infection.

The Physiology of Influenza A Virus

Infection and Immune Responses
Human influenza A virus is typically transmitted through
respiratory droplets and inhaled into the nasopharynx. Initial
virus infection occurs when hemagglutinin (HA), a surface
protein on influenza virions, binds to α2,6-linked sialic acids
that are widely expressed on the surface of ciliated airway
epithelial cells throughout the upper respiratory tract (28, 29).
Viruses are then endocytosed primarily via a clathrin-mediated
pathway; upon acidification of the vesicle containing influenza
virions, the HA protein is triggered to fuse viral and cellular
membranes, releasing the viral genome into the cell (30–32).
The eight negative-stranded RNA segments of the viral genome
are then translocated to the nucleus, where they replicate using
the associated viral RNA-dependent RNA polymerase through a
complementary RNA (cRNA) replication intermediate (33). In
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parallel, viral transcripts are generated using stretches of capped
cellular RNA molecules as primers (“cap-snatching”). After
translation of the viral transcripts in the cytoplasm, the eight
genome segments are packaged into virions which are released
from the apical cellular membranes to infect nearby cells and
thus result in viral amplification (32, 34). Viruses shed from the
nasopharynx may be inhaled further into the lower respiratory
tract causing severe pulmonary infections or transmitted through
respiratory droplets from the upper respiratory compartment
to the next person. People infected with 2009 H1N1 influenza
A virus were contagious as early as 12 hours post-inoculation
and typically began experiencing symptoms approximately 2 days
following infection (35).

The release of viral RNA within the cell activates innate
immune signaling pathways, especially toll-like receptors (TLRs)
and retinoic-acid-inducible gene 1 (RIG1), which induce the
expression of the pro-inflammatory cytokines interferon-α (IFN-
α) and interferon-β (IFN-β) (36, 37). The secretion of these
cytokines activates the surrounding epithelial cells to express
antiviral genes that hamper viral entry and replication and
recruit innate immune cells to the site of infection (37–39).
Natural killer (NK) cells and neutrophils kill infected cells, and
additional cytokines expressed by activated airway epithelium
and innate immune cells induce fever and mucus production,
which in turn results in coughing and rhinorrhea to shed the
virus and cellular debris from the lungs and the nasopharynx
(38, 40). These infection-induced responses are the hallmark of
influenza illness symptomatology, and in clinically vulnerable
populations, chest congestion due to viral infection and the
ensuing immune response can lead to bronchitis, pneumonia,
and secondary bacterial infections (41–43). Viral clearance finally
occurs around 8 to 10 days after the onset of symptoms when
the adaptive immune response mounts virus-specific clearing
of infected tissue (38, 44). Viral antigen is taken up and
processed by dendritic cells which migrate upon activation to
draining mediastinal lymph nodes and prime naïve resident
T cells to respond to the infection (45). Humoral memory is
developed when naïve B cells are primed by soluble antigen
and costimulated by CD4+ T follicular helper (TFH) cells to
mature into plasmablasts that will then traffic to the site of
the infection and secrete virus-specific neutralizing antibodies
(46). Ultimately, following costimulatory help from CD4+ T
cells, CD8+ cytotoxic T lymphocytes will traffic to the lungs
and eradicate virus-infected cells (38, 46, 47). Upon resolution
of disease, alveolar macrophages clear cellular debris, and basal
stem cells regenerate airway epithelium to restore healthy tissue
(48, 49). In animal models for influenza viral pathogenesis, it was
demonstrated that virus-specific CD103+ CD8+ tissue resident
memory (TRM) T cells in the lungs could provide rapid response
upon the next infection and memory B cells persisted in the
mediastinal lymph nodes to secrete virus-neutralizing antibody
into circulation upon restimulation (50–52).

Research into the specific mechanisms of H1N1 influenza
A virus binding, entry, RNA replication, transmission, and
induction of the host immune system has been extensive since the
1918 Spanish influenza pandemic; however, investigations into
how these mechanisms manifest in disease in immunologically

unique populations, such as infants, the elderly, HIV+ or
asthmatic patients, and pregnant women have been limited.

Hormonal Regulation of Pregnancy and

Immune Signaling Are Delicately Balanced

to Protect Fetal Development
Female reproduction is regulated predominately via estrogen,
progesterone, luteinizing hormone (LH), and follicular
stimulating hormone (FSH). Estrogen receptors (ERs) and
progesterone receptors (PGRs) are typically expressed within
the cytosol and translocated to the nucleus upon ligand binding
to induce a suite of genes encoding immunomodulators,
regulators for tissue remodeling, mammary gland development,
metabolism, lung physiology and function (53–55). LH and FSH
are synthesized in the anterior pituitary gland and coordinate the
decidualization of the uterine endometrium as well as the release
of oocytes from mature ovarian follicles into the uterus for
fertilization (56). A fertilized oocyte develops into a blastocyst,
and then the outer layer of the blastocyst forms a polarized
structure called the trophectoderm (57). The trophoctoderm
layer implants in the uterine wall to become syncytiotrophoblasts
that secrete human chorionic gonadotropin (hCG) and develop
into fetal placental chorionic villi (57). Placental hCG expression
signals the maternal corpus luteum to produce progesterone,
which maintains the appropriate thickness and vascularization
of the endometrium to support embryonic growth (56).

Insufficient progesterone production has been associated with
infertility and recurrent spontaneous abortions, indicating that
variations in progesterone levels as a result of infectious disease
are not well tolerated by maternal physiology and may result
in miscarriage or pre-term birth (58–60). Sex hormones play a
crucial role in organizing endometrial granulated lymphocytes
(EGLs) in the innermost layer of epithelial tissue in the uterus
and populations of uterine natural killer (NK) cells, dendritic
cells, macrophages, andmemory and regulatory T cells are tightly
controlled throughout the first, second, and third trimesters of
pregnancy (56, 61, 62). Estrogens are expressed in several major
forms, mainly estradiol (E2) and estriol (E3); each can have
biphasic effects in stimulating pro-inflammatory signaling via
mitogen-associated protein kinases (MAPKs) and NK activation
at low concentrations or enhancing the expression of PD-
L1 on T cells and the synthesis of TGF- β and IL-10 at
high concentrations (62). Progesterone receptors are expressed
broadly on most immune cell subsets and are produced in
higher levels in females (62–64). In the uterus, progesterone
induces the transition of naïve Th0 cells into IL-4, IL-5, and IL-
6 secreting Th2 memory cells upon antigen recognition; these
Th2 cells are critical for coordinating immune tolerant cytokine
crosstalk between the maternal and fetal sides of the placenta
and preventing intrauterine NK cell activation against fetal
trophoblasts (61). The expression of IL-4 and IL-6 then promotes
hCG secretion from the corpus luteum, which in turn releases
more progesterone, creating a positive feedback loop for the
amplification of hormone-mediated Th2 polarization (61). This
phenomenon has been shown to be important for maintaining
immune tolerance, and recurrent miscarriage is associated with
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a predominance of Th1 memory cells in the endometrium
(65). Estrogens have also been implicated in inducing CD4+

CD25+ T regulatory cells (Tregs) and are critical for maintaining
tolerance within the maternal-fetal interface (66). Progesterone
also upregulates the activity of uterine Tregs, which act as
suppressors of inflammatory immune subsets, particularly NK
cells and macrophages resident to the endometrium (62, 64). In
this way, estrogens and progesterone coordinate an environment
in which both uterine epithelial cells and innate immune cells
resident to uterine tissue will tolerate the implantation of a
fertilized oocyte and the development of a placenta and fetus.

The structure and cellular composition of placenta is critical to
maintaining fetal growth and development as well as protection
from inflammation. Fetal placenta develops from the cells in the
implanted blastocyst as it transitions into the trophoblast which
differentiates into cytotrophoblasts and synciotrophoblasts.
Both cell types contribute to the development of chorionic
villi that form an interface with the uterine decidua (57). Here,
maternal blood makes direct contact with fetal cells, allowing
for gas, nutrient, and waste exchange but also providing a
potential door for entry of bacteria, viruses, and parasites to a
fetus with an undeveloped immune system (67). Few pathogens
can cross the placental barrier from the mother to the fetus.
TORCH pathogens [Toxoplasma gondii; other pathogens
including, human immunodeficiency virus (HIV), varicella
zoster virus (VZV), malaria-causing Plasmodium species,
Listeria monocytogenes, Treponema pallidum, parvoviruses
B19, enteroviruses, and recently, Zika virus; rubella virus;
cytomegalovirus (CMV); and herpes simplex virus 1 and 2
(HSV)] are associated with fetal and neonatal morbidity and
mortality from CNS abnormalities, microcephaly, blindness,
deafness, premature birth or low birth weight (67, 68). However,
there is limited evidence that influenza A virus crosses the
maternal-fetal barrier. Despite the demonstrated ability of
the 2009 pandemic strain to infect fetal trophoblasts, the
development of chorionic villitis and the widespread reports of
increased risk of maternal and fetal mortality, there were few
conclusive cases of vertical transmission via the placenta (69, 70).
Thus, poor fetal outcomes during pregnancy are likely due to
indirect exposure to maternal inflammatory cytokine expression
and dysregulation of pregnancy-supportive hormones.

In addition to preventing pathogen entry into the fetal
bloodstream, it is also critical that cytokines that make it across
the placental syncytiotrophoblast layer into the fetal circulatory
system do not cause inflammation or immune cell activation that
interrupts fetal growth and development (71, 72). Clinical reports
of maternal inflammation and infection during pregnancy have
been associated, although inconclusively, with the development
of autism, bipolar disorders, and schizophrenia in children born
tomothers infected with influenza A virus during pregnancy (73–
75). Peripheral blood mononuclear cells (PBMCs) isolated from
healthy pregnant women and co-cultured with 2009 pandemic
influenza A virus subtype H1N1 or circulating rhinovirus strains
(HRV43 andHRV1B) had significantly reduced IFN-α and IFN-γ
responses, indicating increased susceptibility to severe outcomes
of viral infection during pregnancy (76, 77) A shift away from
inflammatory Th1 cytokines (TNF-α, IFN-γ, IL-2) can limit

potential cytotoxic damage to the fetus and placenta (61, 62).
Sex hormones coordinate this shift by activating transcriptional
factors via transmembrane and intracellular receptors which
activate a suite of anti-abortive, pro-pregnancy genes (63). For
example, progesterone activates progesterone-induced binding
factor (PIBF) in lymphocytes, which in turn promotes the
synthesis of IL-3, IL-4, and IL-10, while reducing the expression
of IL-12 (78, 79). PIBF also inhibits NK cell degranulation, and
decreased PIBF expression is linked to recurrent spontaneous
abortions (79, 80). Thus, hormone-mediated suppression of
inflammatory cytokine production and cellular activation is
critical to successful pregnancy in the short-term by protecting
the placenta from inflammation that could trigger pre-term birth
or neurodevelopment damage; however, proper inflammatory
signals must still be activated to recruit innate immune cells and
CD8+ T cells in order to clear virus-infected tissue.

While pre-term birth and low birth weight neonates
have been well-documented outcomes of the 2009 H1N1
influenza virus infection in pregnant women, a mechanism
for this phenotype is unclear, though placental transmission of
inflammatory cytokines, dysregulated hormone signaling, and
oxygen deprivation due to maternal respiratory distress have all
been implicated (62, 81, 82). The effect of the hormonal millieu
during pregnancy on innate immune responses is complicated,
and ex vivo modeling of a single subset of cells may not depict
the entire story of hormonal, cytokine and immune cell signaling
between lung, fetus, and placenta in an infected pregnant woman.
Clinical samples from pregnant women are limited to blood,
post-partum placenta, and post-mortem tissues, leaving research
questions about maternal lung function and immune responses
to non-fatal influenza viral infection unanswered.

Rodent models, particularly mice, are a commonly accepted
experimental tool for preclinical research studies due to their
hemochorial placental structures, recapitulation of influenza viral
pathogenesis seen in humans, and their cost effectiveness over
multiple time points (29). One approach for the elucidation
of these mechanisms is to expose healthy non-pregnant female
mice to low doses of sex hormones comparable to birth control
or high doses comparable to those of pregnancy. Pazos et al.
implanted female C57BL/6 mice with degradable 17β-estradiol
(E2 in mice) pellets to yield serum E2 levels of third trimester
pregnancy and infected them with H1N1 PR8 virus; mice
implanted with E2 exhibited reduced type I IFN signaling and
impaired CD8+ T cell function compared to infected non-
implanted female mice (83). Robinson et al proposed that 17β-
estradiol has protective effect during pregnancy; ovariectomized
and E2-implanted female C57BL/6 mice infected with H1N1 PR8
influenza virus exhibited enhanced recruitment of neutrophils
and virus-specific T cells, which promote viral clearance (84).
In contrast, studies involving pregnant mice demonstrated that
while individual expression of estrogen or progesterone may
limit inflammation, the condition of pregnancy resulted in
elevated inflammatory responses to influenza virus infection
compared to the immune responses of infected non-pregnant
female mice (85–87). Pregnant mice infected with a mouse-
adapted, 2009 H1N1 influenza virus expressed elevated levels
of IL-1α, IL-6, granulocyte-colony stimulating factor (G-CSF),
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monocyte chemotactic protein (MCP-1), CXCL1, and RANTES
and experienced more severe pathology and mortality when
compared to non-pregnant mice (88). These cytokines were
highly expressed in humans who died as a result of 2009
H1N1 influenza A virus (87, 89). These differences in immune
responses between hormone-treated mice and pregnant mice
infected with influenza virus highlights how immune and
endocrine crosstalk between mother, fetus, and placenta has
far-reaching consequences beyond classical reproductive tissues
and complicates our understanding of typical H1N1 viral
pathogenesis.

The genetic background of mouse strain is also significant
in the selection of a pregnant mouse model. C57BL/6 mice
classically tend toward Th1-type immune responses while
mice with BALB/c genetic backgrounds tend toward Th2-type
immune responses (90, 91). Differences in genetic background
have been shown to cause variability in viral pathogenesis,
inflammatory cytokine response, pulmonary microRNA
expression, alveolar macrophage viability following intranasal
infection with 2009 H1N1 pandemic influenza virus strains
(92–94). Strain differences also affect the physiological response
to influenza viral infection during pregnancy. Recent findings
in C57BL/6 mice have highlighted that pregnancy significantly
enhances lung function by increasing respiratory compliance and
total lung capacity and that influenza virus infection does not
alter lung tidal volume, minute ventilation, diffusing capacity,
and compliance as shown in non-pregnant infected mice. The
authors observed less inflammation in the lungs of infected
pregnant mice and suggested that this is a protective mechanism
against maternal respiratory damage during pregnancy (95).
However, we and others have shown in the BALB/c mouse model
that pregnancy increases lung inflammation and expression
of stress-induced prostaglandins (PGs) and cyclooxygenase-2
(COX-2) prior to infection and that IAV infection enhances
immunopathology in the lungs of pregnant mice relative to
non-pregnant mice (86–88). Oxidative stress interferes with
lipid raft clustering and has been shown to inhibit the ability of
PIBF to bind its transmembrane receptor and IL-4R to induce
the STAT6 signaling pathway; this interference reduces the
sensitivity of cells to PIBF (96, 97). Thus, influenza viral infection
and subsequent oxidative stress may interfere with the unique
lung and mucosal physiology tightly regulated by sex hormones
toward successful pregnancy and fetal development.

Humoral Immune Responses Following

Infection and Vaccination During

Pregnancy
The natural outcome of infection is the development of
immunological memory to prevent re-infection and future
cellular damage. As discussed previously, soluble viral antigen
released from infected cells in the lungs primes naive B cells in the
proximal draining lymph nodes by binding to the B cell receptor
(BCR), crosslinking several BCRs in the process and amplifying
an activation signal (46, 98–100). Additional costimulation by
CD4+ helper T cells responding to processed viral antigen in
MHC class II proteins on the B cell’s surface is required to fully

activate B cells and provides a second activation signal, resulting
in clonal proliferation and amplification of antibodies specific
for influenza viral antigens (46). Selection for B cells with BCRs
with highest affinity for the viral antigen occurs in the germinal
centers found in secondary lymphoid tissues such as the spleen.
In the latter, cells undergo somatic hypermutation, a process
by which DNA encoding hypervariable Ig regions is broken by
activation-induced deaminase (AID) and uracil-DNA glycosylase
(UNG) and repaired by MSH2/6 and REV1. The accumulating
mutations may result in the generation of antibodies with an
increased affinity to viral antigens (101, 102). Immunoglobulin
class switching increases the range of functions by recombining
antibody variable regions encoding specificity for influenza
viral proteins with constant regions encoding receptors for
various innate immune cells and intercellular trafficking (102).
Ultimately, most antibody-secreting cells (ASCs) will undergo
apoptosis following viral clearance. Only a small percentage of
these high-specificity B cell clones will become plasma cells
that secrete low levels of antibody into the serum for months,
or memory cells that reside in the bone marrow, and can
be reactivated to provide antibody responses to a subsequent
infection (46, 103).

This system-wide coordination of B cell activation and
survival in response to foreign antigen delicately balances the
pregnant mother’s serum antibody levels to both provide the
benefits of transplacental immunity to the fetus and avoid
the development of fetal-reactive antibodies. The competing
priorities of fetal antigen tolerance and the production of
antibodies that can be transplacentally conferred to the fetus to
promote neonatal immunity are tightly regulated by pregnancy
hormones. Clinical evidence has long documented that the
symptoms of autoimmune diseases arising from the generation of
antibodies against self-antigen tend to recede during pregnancy
and resurge after parturition and breastfeeding, indicating that
pregnancy hormones play a role in coordinating immune
tolerance at the local uterine and systemic level (62, 64).
The development of autoimmune disorders such as multiple
sclerosis, rheumatoid arthritis, and systemic lupus erythematosus
(SLE), which are more prevalent in women, have been linked
to the effects of estrogen on B cell activation and function
(104). Estradiol (E2) has been shown to upregulate Bcl-2,
inducing survival of autoreactive B cells and changing signaling
thresholds required to induce apoptosis (105, 106). In contrast,
progesterone has been established as negative regulator of B
cell lymphopoiesis (107–109). Reduced expansion of B cells
within a pregnant mother may help establish allotolerance to
the fetus by preventing antibody recognition of fetal antigen,
which might result in inflammation, lymphocyte cytotoxicity,
and complement activation (63). Healthy pregnancy has been
shown to suppress B cell lymphopoiesis in BALB/c mice, which
could be reversed by the exogenous addition of IL-7 (107, 110,
111). These data suggest that pregnancy may reduce or redirect
activated B cells during their migration to the lungs or bone
marrow. Differential recruitment of IgA+ plasmablasts to the
murine mammary glands after parturition and during nursing
has been demonstrated, but specific homing receptors have not
been identified, suggesting a role of local chemoattractants such
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as E-selectin (112, 113). In this way, maintaining immunological
tolerance to fetal antigen that reaches the maternal circulatory
system may require that B cell activation be altered in order to
prevent the proliferation of anti-fetal antibodies.

Understanding how pregnancy impacts the development of
immune memory is of clinical significance. Immunization has
been reported to reduce hospitalization and ILI of pregnant
women and their newborns during the flu season with no record
of increased adverse events due to vaccination between this group
and the unvaccinated population (21, 23, 114, 115). Clinical
trials of seasonal trivalent inactivated influenza vaccination
(TIV) in Bangladesh showed improved transplacental transfer
of influenza-specific antibodies from mother to child (116).
However, there are mixed results in how pregnancy affects
humoral immunity following vaccination. Schlaudecker et al.
reported that pregnant women seroconverted at the same rate
as non-pregnant women following TIV but generated lower
geometric mean titers (GMTs) against H1N1 (A/California) and
H3N2 (A/Perth) viruses (26). Serological analysis from a cohort
of influenza A virus (IAV) vaccinated healthy pregnant and non-
pregnant women in California showed similar seroconversion
rates and numbers of plasmablasts (18). Thus, while influenza
vaccination during pregnancy has been demonstrated to be safe
and to reduce the incidence of influenza-induced hospitalization
and pre-term birth, further research into antibody functionality
and expression is still needed.

Pregnancy hormones may coordinate the down-regulation
of class-switching or post-translational modifications (i.e.,
glycosylation, fucosylation, sialylation, etc.) of the antigen-
binding (Fab) or receptor binding (Fc) regions of antibodies
in order to attenuate potentially inflammatory or anti-fetal
immune responses. There have been reports that pregnant
women infected with H1N1 pandemic virus in Shenyang,
China in 2009 produced an imbalanced proportion of anti-
H1N1 IgG1, IgG2, IgG3, and IgG4 antibody subtypes compared
with infected non-pregnant women in the same hospital (117).
Interestingly, IgG1 is preferentially transported from maternal
circulation across the placenta compared to other IgG classes,
especially IgG2, although this phenomenon has not been directly
linked to influenza infection and vaccination (118–120). While
preferential transport from mother to fetus is linked to neonatal
Fc receptor (FcRn) expression on placental syncytiotrophoblasts,
how pregnancy shifts expression from virus-specific IgG2 to IgG1
requires further investigation.

Antibody isotype classes and generation of specificity are
governed by the class-switching of Ig genes and somatic
hypermutation of their variable chain-encoding regions (102,
121). Variability is induced primarily by activation-induced
cytidine deaminase (AID) and uracil-DNA glycosylase (UNG)
that selectively damage DNA and repair it randomly (102, 121,
122). B cells that have complementarity-determining regions
(CDRs) that bind best to antigen are selected for by T follicular
helper cells (Tfhs) and clonally amplified to flood the circulatory
system with virus neutralizing antibodies (123, 124). Estrogen
and progesterone seem to work in opposition to each other on the
regulation of AID: estrogen receptors bind the HoxC4 promoter
to induce AID activation, while progesterone receptors can bind

directly to the AID promoter to inhibit activation (125–127).
Glucocorticoids have also been described as negative regulators
of AID activation (128). These phenomena are typically described
in the context of autoimmune disease regulation and have
not been described in the multi-hormonal environment of
pregnancy.

Asymmetric glycosylation, or the single glycosylation of
one side rather than both sides of the Fab or Fc antibody
chains, can result in fine-tuned interactions with antigen and
Fc receptors, and these binding affinities are important for
antibody-dependent cellular cytotoxicity (ADCC) (129, 130).
Pregnancy has been shown to increase the serum and
placental concentrations of asymmetrically glycosylated
IgG and may provide an explanation for the reduced
avidity and virus-binding capability following viral infection
during pregnancy (131, 132). Human and murine placental
expression of IL-6 has been shown to induce asymmetrical
glycosylation of IgG from hybridomas (133, 134). Trophoblast-
produced asymmetric antibodies have been documented
throughout the placenta (132, 135). However, whether these
signaling effects can extend outside the uterus has yet to
be determined and would be a major finding in maternal
immunity. By reducing binding specificity for antibody effector
cells via asymmetric glycosylation, the maternal immune
system may be able to mitigate the negative effects of any
anti-fetal antibodies that may have developed while still
maintaining a population of semi-functional or selectively-
functional antibodies that can neutralize pathogens and
non-self-entities (131).

CONCLUSIONS

Influenza viral illness causes significant socioeconomic and
clinical burden each year (136). While most research focused
on the consequences of influenza A (H1N1) virus infection
during pregnancy, there is evidence that influenza B virus
can also cause significant maternal and fetal complications
following mid-gestation infection (137, 138). It remains unclear
if seasonal type A (H3N2) virus infection during pregnancy
causes similar poor clinical outcomes compared to the severity of
complications following type A (H1N1) or type B virus infection
during pregnancy (138–141). Lastly, the recently identified highly
neurotropic avian H7N9 and H5N1 influenza A reassortants,
which could potentially cause pandemics, have been shown to
cause severe disease during pregnancy (142–147). The knowledge
gained through research of the 2009 pandemic swine-derived
influenza A (H1N1) virus may provide the clinical and research
community with an improved capacity for the early detection of
a novel pandemic virus entering a naïve pregnant population.
These studies we have reviewed demonstrate the vulnerability of
pregnant women to infectious diseases and the fact that neonatal
health is directly dependent on maternal health, doubles the
significance of research that results in improved therapies and
treatment strategies.

Respiratory infection during pregnancy is of broad interest.
While influenza A virus has generated some of the highest
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morbidity rates following maternal infection, coronavirus
outbreaks have also been associated with similar outcomes
in mothers and neonates following mid-gestation infection.
Infection with severe acute respiratory syndrome (SARS)
coronavirus and Middle Eastern respiratory syndrome (MERS)
coronavirus have been associated with spontaneous abortion,
fetal growth retardation, and maternal and neonatal mortality
(148–150). Mid-gestation infection with respiratory syncytial
virus (RSV) has been described in rare severe adult cases and
has also been associated with pre-term birth and low birth weight
in a cohort in Nepal (151, 152). High rates of mortality among
infants and toddlers infected with RSV highlights the need for
improved understanding of maternal immunity to RSV infection
and vaccination during pregnancy, and there is hope that
vaccination of mothers during pregnancy can provide passive
immunity that will protect the fetus for months after birth (153).
None of the previously mentioned viruses were transmitted
transplacentally to fetuses, and yet respiratory infection during
pregnancy induced significant maternal illness, pre-term labor,
low birth weight, or spontaneous abortion.

Early antiviral therapy following H1N1 influenza A virus
infection during pregnancy has been shown to significantly
reduce pre-term birth, hospitalization in intensive care units
(ICUs), and maternal death (11, 154). Seasonal H1N1 influenza
A virus induced increased levels of cyclooxygenase-2 (COX-2)
and prostaglandin-F2α in the lungs and placenta, providing a
mechanism for lung immunopathology and pre-term labor in
pregnant mice (88). The anti-inflammatory potential of COX-2
inhibitor therapy has already been proposed for decreasing
disease severity caused by the highly pathogenic avian influenza
strains H5N1 and H7N9 (155, 156). In addition, COX inhibitor
treatment has demonstrated to attenuate the lung expression of
granulocyte colony-stimulating factor (G-CSF) and keratinocyte-
derived (KC) cytokines elevated in pregnant mice infected by
H1N1 A/Brisbane/59/2007 and H1N1 A/California/07/2009
(157, 158). However, while non-steroidal anti-inflammatory
drugs (NSAIDs) have been shown to be safe during pregnancy,
COX-2 specific inhibitors may induce pre-term labor and
musculoskeletal defects (159–161). Viral load was negatively

associated with progesterone concentration, and reduced
progesterone expression was correlated with pre-term labor in
influenza virus-infected pregnant mice (88). Administration
of progesterone to female mice following influenza A(H1N1)
virus infection reduced immunopathological changes and
improved lung epithelial cell regeneration, although it did not
reduce viral load (162, 163). Hence, limiting viral replication
should be one of many aims for anti-influenza therapy during
pregnancy, including the limiting of immunopathology
caused by cytokine dysregulation and promoting the
healing of damaged airway epithelium following viral
clearance.

The connections between viral pathogenesis and reproductive
endocrinology makes the field of infectious disease in pregnant
women complicated, exciting, and clinically significant.
Investigations into the immunological components of infertility,
recurrent miscarriage, and preeclampsia have yielded a
wealth of information regarding the requirements of immune
tolerance and rejection, and this information can provide
a platform for understanding healthy pregnancy and how
inflammation and hormonal dysregulation will impact
maternal health and fetal development. Development of
accurate animal pregnancy models across a range of species in
coordination with broader clinical sampling from influenza-
infected or -vaccinated pregnant women will provide an effective
platform for validation of experimental studies and improved
therapeutics and treatment for pregnant women and their
offspring.
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