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Interleukin-33 (IL-33), considered as an alarmin released upon tissue stress or damage,

is a member of the IL-1 family and binds the ST2 receptor. First described as a potent

initiator of type 2 immune responses through the activation of T helper 2 (TH2) cells

and mast cells, IL-33 is now also known as an effective stimulator of TH1 immune cells,

natural killer (NK) cells, iNKT cells, and CD8T lymphocytes. Moreover, IL-33 was shown

to play an important role in several cancers due to its pro and anti-tumorigenic functions.

Currently, IL-33 is a possible inducer and prognostic marker of cancer development

with a direct effect on tumor cells promoting tumorigenesis, proliferation, survival, and

metastasis. IL-33 also promotes tumor growth and metastasis by remodeling the tumor

microenvironment (TME) and inducing angiogenesis. IL-33 favors tumor progression

through the immune system by inducing M2 macrophage polarization and tumor

infiltration, and upon activation of immunosuppressive cells such as myeloid-derived

suppressor cells (MDSC) or regulatory T cells. The anti-tumor functions of IL-33 also

depend on infiltrated immune cells displaying TH1 responses. This review therefore

summarizes the dual role of this cytokine in cancer and suggests that new proposals

for IL-33-based cancer immunotherapies should be considered with caution.
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INTRODUCTION

Cancer development depends on hallmarks such as self-sufficient proliferation, escape to anti-
apoptotic signals, resistance to apoptosis, immune evasion, infinite replication, nurture of
vascularization, and ability for invasion and metastasis (1). However, these hallmarks do not
only concern the cancer cell but also the tumor microenvironment (TME) which is essential
for tumorigenesis. The TME consists of fibroblasts, endothelial cells, immune cells, pericytes,
and smooth muscle cells which are recruited by cancer cells as non-malignant cells but then
modified to take part in tumor development (2–4). Besides cellular components, acellular
components such as matrix, chemokines, and cytokines are also essential for tumor development
(4). Cytokines as central mediators, favor the interaction between cells in the inflammatory tumor
microenvironment (5). Amongst these cytokines, Interleukin-33 (IL-33), a member of the IL-1
superfamily of cytokines (6), is well-known now to have an important role in innate and adaptive
immunity through its contribution to tissue homeostasis and responses to stress such as tumor
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development. IL-33 is constitutively expressed at high levels in
the nucleus of human and mouse tissue lining and in various
cell types including vascular endothelium (7), endothelial cells
of endothelial venules (HEVs) (8, 9) and epithelial cells in
barrier tissues that are exposed to the environment such as
bronchial epithelial cells (10), keratinocytes, epithelial cells of
the stomach, and salivary glands (7). Fibroblastic reticular cells
(FRCs) in lymphoid tissues and cells of the central nervous
system represent a major source of IL-33 (7, 11). IL-33 was
first described in HEV as an intracellular nuclear factor with
transcriptional regulatory properties (8). It was then shown
that IL-33 binds a heterodimer formed by the specific ST2
receptor and a co-receptor, the IL-1 receptor accessory protein
(6, 12). To exert its cytokine activity and alert the immune
system, IL-33 is not secreted extracellularly like a conventional
cytokine but after cell injury following cell stress or damage
(11, 13–16). Full-length IL-33 is thus considered as an alarmin
produced as a result of an injury to the central nervous system
(15), a mechanical stress (17, 18), necroptosis (19) but also
in pathological wound repair and fibrosis (20–22). The IL-
33/ST2 axis is also associated with many inflammatory diseases
such as asthma (23–25), rheumatoid arthritis, psoriatic arthritis
or osteoarthritis (26), pulmonary fibrosis (27) or dermatitis
and allergic contact dermatitis (28, 29). Many publications
have summarized the important role of IL-33 in these diverse
inflammatory diseases (30–34). IL-33/ST2 signaling is transduced
by MyD88 and the kinase-4 associated to the ST2 receptor, which
is a downstream adaptor protein, shared with other IL-1 family
members and Toll-like receptors (35). Moreover, the soluble
form of ST2 (sST2) produced from 3′-UTR promoter or splice
variants mRNA, can be a decoy receptor for IL-33 (36–38). IL-
33 was first described as a potent initiator of type 2 immune
responses through the activation of many cell types, including the
TH2 subset of helper cells, type 2 innate lymphoid cells (ILC2s),
mast cells, basophils, eosinophils, and myeloid cells such as
myeloid-derived antigen-presenting cells including macrophages
and dendritic cells (DCs) (6, 35, 39–45). Furthermore, IL-33-
exposed DCs or mast cells also selectively support FOXP3+

regulatory T cell (Treg cells) expansion through IL-33-induced
secretion of IL-2 (40, 41) and favor TH17 cell differentiation
through IL-1β and IL-6 secretion (46). IL-33 was detected in the
serum of patients with TH1/TH17 mediated diseases (47, 48).
However, besides this pro-inflammatory function of IL-33, its
protective role in atherosclerosis, obesity, type2 diabetes and
cardiac remodeling also holds an important place (16, 49–51).
Moreover, IL-33 can also activate type 1 immune responses via
TNF-α and IFN-γ expression by CD8T lymphocytes, natural
killer (NK) cells or iNKT cells. The latter can be stimulated
by IL-33 upon its ligation to their cell surface ST2 receptors
(13, 52–55). Finally, several studies have shown an important
involvement of IL-33 in several types of cancer with pro or
anti-tumorigenic functions depending on the immune status
of the tumor. The goal of this review is to summarize the
hallmarks of IL-33 in cancer, both in terms of its pro-tumorigenic
function targeting resident TH2 immune cells of the TME, and
as a tumor suppressor molecule activating the competent TH1
immune cells.

These properties therefore position IL-33 as a possible inducer
and prognostic marker of cancer development, as reviewed here.

IL-33 AS A MARKER FOR GOOD OR POOR
PROGNOSIS

IL-33 has been shown to be a promising biomarker in
several types of cancer for tumor detection and as a predictor of
prognosis and therapeutic response. Recently, IL-33 was shown
to be correlated with a bad prognosis in several types of cancer,
although in some cases IL-33 behaves as a tumor suppressor by
inducing an immune response. In terms of bad prognosis, high
levels of IL-33 were detected in the serum and tumors of patients
with glioma (56), gastric cancer (57), hepatocellular carcinoma
(58), uterine leiomyoma (59), lung cancer (60), colorectal cancer
(61), head and neck squamous cell carcinoma (62), and breast
cancer (63), when compared to corresponding healthy tissues.
The Cancer Genome Atlas Pan-Cancer analysis project showed
and declared that the level of IL-33 expression is altered in only
3% of∼580 tumors and that the most common genetic alteration
is the deletion of the IL-33 gene (64).

Lu and collaborators detected “significantly higher IL-33
expression in glioma tissues than in normal brain tissues
through immune-histochemical (IHC) analysis” (56). High IL-33
expression in glioma was correlated with shorter overall survival
(OS) and progression-free survival (PFS) (56). In women, IL-33
highly promotes epithelial cell proliferation and tumorigenesis in
breast cancer, since IL-33 increases Cancer Osaka Thyroid (COT)
phosphorylation via ST2-COT interaction in normal epithelial
and breast cancer cells. This induces the activation of MEK-
ERK, JNK-cJun, and STAT3 signaling pathways, both leading to
cell proliferation (65). The expression levels of IL-33 and ST2
proteins were also positively correlated with the expression of
Ki-67 in epithelial ovarian cancer tumors and at the metastatic
site, and negatively correlated with the patient survival time
(66). High expression of IL-33, assessed by IHC staining, was
associated with advanced stage clear-cell renal carcinoma and
abnormally high amounts of serum IL-33 was detected in patients
with hepatocellular carcinoma or gastric cancer. Hence, IL-33
is correlated with a bad prognosis in these types of cancer (57,
58, 67). sST2 was also described as a negative prognostic marker
when its serum concentration was associated with OS of patients
with hepatocellular carcinoma (68). Nevertheless, this soluble
IL-33 receptor can also be associated with a good prognosis
in colorectal cancer, as the trapping of soluble IL-33 in the
TME inhibits cancer growth and metastases (69). Moreover, the
level of IL-33 protein has been inversely correlated with tumor
grade and size in patients with pulmonary adenocarcinoma,
showing an association of low IL-33 expression level with a
poor prognosis (70–72). Likewise, a genome-wide association
study unveiled a correlation between high IL-33 expression and
a good prognosis in patients with osteosarcoma (73). However,
if IL-33 can have a pro-tumor effect by directly targeting cancer
cells, the tumor suppressor functions displayed by IL-33 are
indirectly promulgated by immune surveillance as we will show
hereafter.
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IL-33 AS A PRO-TUMORIGENIC CYTOKINE
THROUGH ACTIONS ON CANCER CELLS
AND TME

As described above, IL-33 is considered as a prognostic
biomarker when expressed in tumors. This intratumoral IL-33 is
expressed by cancer cells as well as by other cell components of
the TME. For instance, in patients with head and neck squamous
cell carcinoma and oral squamous cell carcinoma, intratumoral
IL-33 has been shown to be expressed in cancer-associated
fibroblasts (CAF) (62, 74). This infiltrating IL-33 has a direct pro-
tumorigenic effect on cancer cells and indirect effects on cellular
components of the TME.

In the first case, Wang and collaborators showed that the
IL-33/ST2 pathway up-regulated membrane glucose transporter
1 in non-small-cell lung cancer cells, enhancing their glucose
uptake and glycolysis, thus favoring in vitro outgrowth
of human lung cancer and its metastasis in a mouse
model (60). By in vitro and in vivo experiments, IL-33
was also shown to be able to promote growth, invasion
and migration of gastric cancer and colorectal cancer cells
due to the autocrine secretion of several metalloproteases
(MMP3, MMP9, MMP2), IL-6 and CXCR4 via the ST2-ERK1/2
pathway (61, 75). Moreover, IL-33 directly targets colon cancer
cells and breast cancer cells via JNK-cJun activation, which
promotes cell proliferation and therefore tumor growth (65,
76).

The impact of IL-33 on the TME encompasses angiogenesis,
matrix remodeling and cytokine/growth factor production
by non-epithelial cell components. The IL-33/ST2 signaling
pathway, favoring pro-angiogenic VEGF expression in tumor
cells and reducing tumor necrosis, is highly involved in
mammary tumor growth (77). Concerning matrix modeling,
human subepithelial myofibroblasts stimulated in vitro with IL-
33 induced the expression of extracellular matrix components
and growth factors associated with intestinal tumor progression
(78). IL-33-stimulated cancer cells produce cytokines, and TME
infiltrating immune cells are also involved in the expression
of IL-6 in response to IL-33/ST2 signaling. Likewise, IL-33
stimulates the secretion of cytokines and growth factors in
bone marrow myeloid and non-hematopoietic cells, resulting in
myeloproliferation of neoplasms (79, 80). Indeed, suppression
of IL-33 or high expression of sST2 suppresses IL-33-induced
angiogenesis, TH2 responses, macrophage infiltration and M2
macrophage polarization. This negatively regulates tumor growth
and metastatic spread of colorectal cancer, for instance through
the modification of the TME (69). IL-33 in the TME recruits
macrophages and stimulates their production of PGE2, and
in turn, macrophage-derived PGE2 stimulates colon tumor
development (76). The recruitment of macrophages in the TME
might account for the stimulation of CCL2 expression by IL-
33-stimulated cancer cells that express ST2, such as human
colon cancer cells (81). After recruitment, macrophages are
directly induced by IL-33 to be polarized in M2 tumor associated
macrophages (TAM) in the TME. Such TAMs are then able
to produce IL-10, VEGF, IL-6, and MMP9 which promote
proliferation and invasiveness of cancer cells (82–84). Yang and

collaborators showed that TAM are recruited by IL-33 in the
TME, and IL-33-stimulated TAM can increase intravasation of
tumor cells into the circulation at the early stages of metastasis
(85). Even in the brain, IL-33 in the TME induces growth
of glioma cells and facilitates microglia/macrophage infiltration
(86). IL-33-stimulated macrophages are also activated to produce
G-CSF, which in turn, boost myeloid-derived suppressor cells
(MDSC) from the pro-tumoral TME (87). Indeed, MDSC
contribute to tumor-mediated immune escape by suppressing
antitumor immune responses. IL-33 released in tumor tissues
in breast and colorectal cancer mouse models and in breast
cancer patients, has been shown to facilitate MDSC expansion,
recruitment and survival in the TME. This role could be due
to the induction of an autocrine secretion of GM-CSF (88–
90). Interestingly, another study showed that IL-33 does not
affect the number of MDSC but can significantly reduce the
differentiation of lineage-negative bone marrow progenitor cells
into granulocytic MDSC in tumor-bearing mice. Moreover
in the same study, IL-33-treated MDSC were shown to be
less immunosuppressive, with a reduced capacity to inhibit
T cell proliferation and IFN-γ production, production of
reactive oxygen species and their capacity to induce Treg

differentiation and expansion (91). IL-33 has a direct effect on
Treg cells expressing surface ST2. Indeed, these lymphocytes
are constitutively abundant in the intestine and able to prevent
dysregulated inflammatory responses to self and environmental
stimuli. IL-33 is constitutively expressed in epithelial cells at
barrier sites. High levels of IL-33 were also observed in inflamed
lesions of patients with inflammatory bowel disease, supporting
its role in disease pathogenesis (92, 93). In inflammatory
conditions, IL-33 signaling in Treg cells enhances transforming
growth factor (TGF)-β1-mediated differentiation. Alternatively,
IL-33 may provide a signal necessary for inducing their
accumulation and maintenance in inflamed tissues (94). Local
accumulation of Treg cells has been described in intestinal
tumors preventing tumor clearance in mouse models and in
patients. This role may be associated with a reduction of E-
cadherin expression, increased β-catenin signaling and IL-33
production by malignant and injured epithelial cells (95). In
tumors with low levels of infiltrating Treg cells, administration
of IL-33 accelerates tumor growth and occurrence of liver
and lung metastasis in breast cancer mouse models, and these
models display an intratumoral accumulation of MDSC and
Treg cells, as compared to untreated mice (90). Moreover,
IL-33 blockade, in addition to abrogating the polarization of
TAM, reduces the accumulation of Treg cells in lung tumors
of human lung preclinical mouse models (82). However, as
inflammation contributes to tumorigenesis, the accumulation
of Treg in inflammatory zones must contain inflammation and
therefore tumorigenesis. Treg may promote or inhibit tumor
development depending on the context, revealing the complex
relationship between inflammation, and cancer development.
Furthermore, mast cells which also express ST2 receptors and
respond to cell injury via IL-33 released from necrotic cells, can
secrete leukotrienes and cytokines to initiate pro-inflammatory
responses (96). In a colorectal cancer mouse model, IL-33
deficiency reduced mast cell accumulation in tumors. This
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deficiency further inhibited the expression of mast cell-derived
proteases and cytokines that promote polyposis (78, 96–98).
Generally, mast cells accumulate in inflamed gut and in colorectal
tumors, and their presence is correlated with a poor prognosis
and low overall survival (99, 100). In skin cancers, dermal mast
cells are able to respond to UVB-induced IL-33 by releasing IL-
10 to protect skin homeostasis after excessive UVB exposure.
However, IL-10 may contribute to skin cancer development, as
IL-10-deficient mice do not develop skin tumors upon UVB
exposure (101, 102).

DIRECT OR INDIRECT EFFECTS OF IL-33
AS A TUMOR SUPPRESSOR

Alongside its pro-tumorigenic role, IL-33 can also behave as a
tumor suppressor. Only one study has shown a direct anti-tumor
effect of this cytokine with the in vitro inhibition of proliferation
and induction of apoptosis of MIA PaCa-2, a pancreatic cancer
cell line (103). However, its anti-tumor functions were largely
associated with the activation of immune effector cells able
to lead to tumor clearance. All immune cells express the ST2
receptor and are able to respond to IL-33 stimulation. IL-33
has a significant role in cancer immune-surveillance in primary
prostate and lung tumors, which can be lost during the metastatic
transition inducing immune escape. The correlation between
IL-33 and HLA expression in human tumors using RNA-
sequencing data of resected prostate tumors was recently shown.
The down-regulation of IL-33 during the metastatic process
ultimately decreases the functionality of HLA-I and reduces
immune-surveillance favoring tumor development (104). In a
multivariable analysis, the infiltration of human hepatocellular
carcinomas (HCC) by cells expressing IL-33 and by CD8+ T cells
was associated with prolonged patient survival. These results led
to propose an HCC immune score identifying high- vs. low-risk
patients with different gene expression profiles (105). Injection
of IL-33 into established murine melanoma or acute myeloid
leukemia models inhibits tumor growth in a CD8+ T cell-
dependent manner prolonging the survival of mice. In the first
model, the reduction of tumor growth delay was correlated with
intratumoral accumulation of CD8+ T cells, and a decrease in the
number of immunosuppressive myeloid cells (106). In the second
model, the anti-leukemia activity was associated with increased
expansion and IFN-γ production of leukemia-reactive CD8+ T
cells (107). Moreover, the correlation between decreased IFN-γ
secretion and colon cancer aggressiveness, suggests that IL-33
signaling defects may impair the generation of IFN-γ-mediated
immunity (108). In soft tissue sarcoma, higher transcriptional
levels of IL-33 were also associated with a good prognosis. The
expression of IL-33 has also been negatively correlated with
the expression of chemokines, such as TGF-β, recruiting Treg

and MDSC, and positively correlated with the expression of
chemokines that recruit CD8+ T cells which promote anti-
tumor immune responses especially through INF-γ production
(109).

It has been shown that IFN-γ-producing cells present in
tumors associated with an IL-33 antitumor effect, were CD8+ T

cells and NK cells. Indeed, IL-33 expression in several cancers
affects the number of CD8+ T cells and NK cells in tumor
tissues and the production of IFN-γ/TNF-α, thereby favoring
tumor eradication through tumor cell cytolysis (110, 111). This
was also shown with the reduction of tumor metastasis in
B16 melanoma and Lewis lung carcinoma metastatic models
thanks to the transgenic expression of IL-33. In these transgenic
mice models, tumor infiltration and CD8+ T lymphocyte and
NK cell cytotoxicity was significantly increased compared to
non-transgenic mice. Moreover, treatment with recombinant
IL-33 increased CD8+ T lymphocyte and NK cell cytotoxicity
in vitro (112). CD8+ T cells are also indirectly stimulated
by IL-33 through DC. DC maturation is promoted by IL-
33 which increases their cross presentation ability particularly
during the anti-leukemia or anti-melanoma immune response
(107, 113). As mentioned in the introduction, IL-33-activated
DC are also able to promote the differentiation of TH17
cells which play an important role in cancer development.
TH17 are T helper lymphocytes secreting IL-17 and other
inflammatory cytokines, but can also display immunosuppressive
activities, therefore mediating context dependent pro- or anti-
tumor responses (114, 115). However, there are no published
studies mentioning a direct relationship between TH17 cells
and IL-33 in cancers. TH17 cells expressing the ST2 receptor
were found to accumulate in the small intestine in bowel
diseases where intestinal epithelial cells are the providing source
of IL-33, we can therefore stipulate that these cells could
play a role in digestive cancers. TH17 cells could have an
anti-tumor function with the production of pro-inflammatory
cytokines (116) or a pro-tumor role when they can acquire a
regulatory phenotype with immunosuppressive properties upon
IL-33 activation (117). Furthermore, DC can also drive TH9
cell dependent anti-tumor responses through the expression of
Ox40L when activated by IL-33 and stimulated by dectin-1
signaling (118–120).

Finally, the ILC2s which support type 2 immune responses by
producing IL-5 and IL-13 in response to IL-33 could also have
an antitumor function. Indeed, their tissue-repair function can
induce cholangiocarcinoma and liver metastasis (121). ILC2s can
also be mobilized from the lung and other tissues thanks to IL-
33, to penetrate tumors, mediate immune-surveillance with DC,
and promote adaptive cytolytic T cell responses and attraction
(122, 123).

CONCLUDING REMARKS

IL-33 therefore appears as a pro-tumorigenic cytokine that can
also limit tumor growth through the activation of antitumor
immunity. These opposing roles in tumorigenesis, as shown
in this review, greatly depend on the IL-33/ST2 signaling in
different immune cells. IL-33 is able to promote inflammatory
events which contribute to tumorigenesis whilst activating anti-
tumor immune responses. The different events promoted by IL-
33 activation of various immune cells which can be found in
the TME are summarized in the Figure 1. Depending on the
tumor context, IL-33 produced in the TME can activate diverse
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FIGURE 1 | Dual role of Il-33 in cancer. IL-33 released in the TME is able to stimulate cancer cells (tum), fibroblasts (Fibro), and different immune cells (Macrophages,

TAM, MDSC, mast cells, Treg, Dendritic Cells, TH17, TH9, ILC2, iNKT, CD8
+ T cells, and Natural Killer cells) which are activated to produce molecules involved in

pro-tumor (green) or anti-tumor (blue) processes leading to the development or to the regression of the tumor. Some cytokines produced by pro-tumor cells such as

MDSC or TAM, are also able to produce cytokines which inhibit anti-tumor cells such as all the TH1 cells.

immune cells which are able to promote a pro-tumor effect
such as TAM, MDSC, fibroblasts, mast cells, Treg and DC, or
to prevent tumor development such as NK cells, CD8+ T cells,
iNKT, ILC2, TH9, and TH17. All these cell types produce specific
cytokines, chemokines, and other molecules. These conclusions
are supported by Wasmer and Krebs’ review who demonstrated
the multiple functions of IL-33 in different cancer types
(124). As many cytokines with immunomodulatory properties,
IL-33 has been considered for anticancer immunotherapies.
However, knowing its dual role, therapeutic manipulation of
this cytokine should be considered with caution. The majority
of the studies mentioned propose cancer immunotherapy
strategies based on exogenous IL-33 administration. These IL-
33 adjuvanted vaccines aim at activating the immune cells

involved in the immune response (106, 107, 125–128). IL-33
could also indirectly activate effector T cells. For instance, a
replicating viral vector system used in cancer immunotherapy
which delivers tumor-associated antigens to DC for efficient
cytotoxic T cells priming, depends on IL-33 signaling (129). IL-
33 could likewise increase T cell activation to promote graft-
vs.-leukemia (GVL) reactions while decreasing fatal graft-vs.-
host- disease (GVHD) (130). Possibly however, ST2 blockade
might preserve GVL activity by blocking Treg controlling
GVHD (131). Indeed, considering the immunosuppressive pro-
tumorigenic role of IL-33, others have proposed to block IL-
33 as a novel anticancer strategy (62, 65, 69, 76, 82, 88). In
the future, IL-33 targeting in cancer immunotherapies should
be considered with caution, especially taking into account the
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intricate dual role of this cytokine in cancer as shown in this
review.
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