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Transplantation is unusual in that T cells can recognize alloantigen by at least two distinct

pathways: as intact MHC alloantigen on the surface of donor cells via the direct pathway;

and as self-restricted processed alloantigen via the indirect pathway. Direct pathway

responses are viewed as strong but short-lived and hence responsible for acute rejection,

whereas indirect pathway responses are typically thought to be much longer lasting

and mediate the progression of chronic rejection. However, this is based on surprisingly

scant experimental evidence, and the recent demonstration that MHC alloantigen can be

re-presented intact on recipient dendritic cells—the semi-direct pathway—suggests that

the conventional view may be an oversimplification. We review recent advances in our

understanding of how the different T cell allorecognition pathways are triggered, consider

how this generates effector alloantibody and cytotoxic CD8T cell alloresponses and

assess how these responses contribute to early and late allograft rejection. We further

discuss how this knowledge may inform development of cellular and pharmacological

therapies that aim to improve transplant outcomes, with focus on the use of induced

regulatory T cells with indirect allospecificity and on the development of immunometabolic

strategies.

KEY POINTS

• Acute allograft rejection is likely mediated by indirect and direct pathway CD4T cell

alloresponses.

• Chronic allograft rejection is largelymediated by indirect pathway CD4T cell responses.

Direct pathway recognition of cross-dressed endothelial derived MHC class II

alloantigen may also contribute to chronic rejection, but the extent of this contribution

is unknown.

• Late indirect pathway CD4T cell responses will be composed of heterogeneous

populations of allopeptide specific T helper cell subsets that recognize different

alloantigens and are at various stages of effector and memory differentiation.

• Knowledge of the precise indirect pathway CD4T cell responses active at late time

points in a particular individual will likely inform the development of alloantigen-specific

cellular therapies and will guide immunometabolic modulation.

Keywords: T cell allorecognition, transplantation, indirect presentation, cytotoxic CD8 T cells, T follicular helper

cell, germinal center, exhaustion, chronic allograft vasculopathy
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INTRODUCTION

Although innate recognition of alloantigen can exhibit properties
more typically associated with adaptive immunity (1–3), the
conventional T cell response to alloantigen is still considered
critical for determining short and long-term outcomes for solid
organ transplants. Transplantation is unusual in that alloantigen
can uniquely be recognized by at least two pathways; the indirect
and the direct. The oft-repeated mantra that the short-lived
direct pathway is responsible for acute rejection and the longer
lasting indirect pathwaymediates chronic rejection is based upon
little evidence and, as highlighted by the recent description of
a third semi-direct pathway, is an oversimplification. Here we
review recent advances in our understanding of how different
T cell allorecognition pathways may contribute to rejection and
consider how this knowledgemay inform development of cellular
and pharmacological therapies that aim to improve transplant
outcomes.

PATHWAYS OF T CELL
ALLORECOGNITION

Direct Pathway
The direct pathway, whereby recipient CD4 and CD8T cells
recognize intact MHC class II and class I alloantigen, respectively
on the surface of donor antigen presenting cells (APCs)
(Figure 1A), was for several decades considered the dominant
pathway responsible for transplant rejection. Initially proposed
on the basis of the ex vivo mixed leukocyte reaction (4),
understanding of the direct pathway has evolved, through a
series of seminal publications (5–8), to encompass the passenger
leucocyte theory—that allograft rejection is triggered by direct-
pathway recognition of donor dendritic cells that have migrated
from the allograft to host secondary lymphoid tissue.

Up to 10% of a recipient’s T cells recognize a single MHC
alloantigen; a peculiarity made all the more anomalous by
the lack of an obvious evolutionary advantage (9–11). Two
explanatory models have been proposed (12, 13): According to
the high determinant density model, every MHC molecule on
the surface of a donor APC is recognized as foreign, compared to
only around 150 complexes per cell on host APCs following self-
restricted processing and presentation of conventional antigen
(14, 15). Further amplification is provided through the ability
of one particular MHC alloantigen to present multiple different
peptides: the multiple binary complex model. Crystallographic
analysis of the interaction between an allospecific T cell and
its target MHC alloantigen has revealed a similar orientation as
occurs for conventional T cell responses, suggesting that the high
precursor frequency of direct pathway T cell clones is principally
due to multiple binary complex recognition (16, 17).

Indirect Pathway
The demonstration by Lechler and Batchelor that allografts
that lacked passenger leucocytes could still be rejected (9,
10) suggested that alloantigen could also be recognized
conventionally, as self-restricted processed peptide (Figure 1B).

FIGURE 1 | Pathways of T cell allorecognition. (A) In direct pathway

allorecognition, MHC Class II and Class I alloantigen is recognised as intact

protein on the surface of donor antigen presenting cells (APC) by CD4 and

CD8T cells respectively. (B) In indirect allorecognition, graft alloantigen

(typically MHC antigen) is internalised by recipient APC [typically a dendritic cell

(DC)], processed and presented as peptide fragments in the context of

recipient MHC, for self-restricted recognition by recipient T cells. Although in

theory both CD4 and CD8T cells can recognise processed alloantigen via the

indirect pathway, indirect pathway CD8T cell responses are not considered

relevant for the rejection of vascularized allografts. (C) In semi-direct

allorecognition, MHC alloantigen is acquired by recipient DC but, rather than

presentation as processed allopeptide, is re-presented as conformationally

intact protein.

Termed the indirect pathway, its role in allograft rejection has
been increasingly emphasized (11, 12, 18, 19).

Given the number of mismatched major and minor
histocompatibility antigens contained within a transplanted
organ, a potentially huge number of disparate allopeptide
epitopes could be generated for recognition via the indirect
pathway. Despite this, the alloimmune response is generally
directed against a limited number of immunodominant epitopes
(13–15, 20). Immunodominance is, however, not fixed and may
shift with time, with patterns of dominance likely influenced
by prior immunization history. Such epitope spreading may
underpin chronic rejection (21).
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Semi-direct Pathway
The demonstration that intact antigen could be transferred
between different cell types (16, 17, 22), raised the possibility
that direct pathway T cell recognition of intact alloantigen
may occur on host dendritic cells (Figure 1C). This has been
difficult to prove, but received experimental support from the
demonstration of alloantigen transfer between culturedDCs (23),
and following transfer of DCs from one mouse strain into the
peritoneal cavity of another (24). Subsequent murine studies have
confirmed the acquisition of intact alloantigen by recipient DCs
following challenge with a vascularized allograft (25–29). The
mechanisms by which alloantigen is transferred remain unclear,
with early studies suggesting cell-to-cell contact was required
(23, 30, 31), but more recent publications showing a role for
extracellular vesicles (32, 33).

Although discussed as a distinct pathway, semi-direct
allorecognition is a means by which recipient T cells may
recognize “intact” alloantigen. This will result in activation of
the same T cell clones as would respond via direct pathway
allorecognition. In contrast, those T cell clones responding to
the processed alloantigen via the indirect pathway are likely to
be very different.

THE ROLE OF DIFFERENT
ALLORECOGNITION PATHWAYS IN
ALLOGRAFT REJECTION

The contribution of different allorecognition pathways to
allograft rejection will be governed by two main factors: the
presence of target epitope and the ability of that pathway, once
activated, to mediate graft damage. Differences in the duration
of direct and indirect T cell alloresponses are thus likely to
profoundly influence their ability to mediate early and late graft
rejection.

Duration of CD4T cell Alloresponses
Activation of CD4T cell Clones With Direct

Allospecificity
Experimental and human transplant studies suggest that direct
pathway CD4T cell responses are limited to the first few weeks
after transplantation (34–36), with murine transplant models
suggesting that its duration correlates with the lifespan of the
donor DC fraction (35, 37). A small number of human studies
have similarly suggested that direct pathway CD4T cell activation
is short-lived (21, 34, 38, 39).

However, recent publications from the Morelli and Benichou
groups challenge these assumptions. Their studies suggest that
“direct” pathway activation is largely due to recognition of intact
alloantigen acquired onto the surface of host APCs by transfer
of donor-derived extracellular vesicles—in essence, semi-direct
allorecognition (32, 33). Whether the Morelli and Benichou
findings represent a radical reappraisal of direct pathway T cell
activation is not clear. Their experimental systems were not
designed to examine semi-direct presentation in isolation of
the conventional donor DC/ recipient T cell interaction, and it
is difficult to know the relative contribution of both to T cell

activation. Nevertheless, by theoretically dissociating activation
of directly alloreactive CD4T cells from expression of target
MHC class II alloantigen on donor APCs, the Morelli and
Benichou papers raise the potential for direct pathway CD4T cell
activation to occur at late time points after transplantation.

Activation of CD4T cell Clones With Indirect

Allospecificity
It is more straightforward to theorize how indirect pathway
CD4T cell responses against self-restricted processed alloantigen
can last much longer than those against intact alloantigen. In
support, several animal studies have ascribed a functional role
for the indirect pathway CD4T cell response in the progression
of chronic allograft rejection (40–43). Late anti-allopeptide
reactivity has been similarly described in human transplant
patients with chronic graft dysfunction (34, 38, 44–46), though
it is unclear from these studies whether the T cell responses
identified ongoing naïve responses or recall of alloreactive T cell
memory established early after transplant.

On the assumption that the crux to late alloreactive T cell
activation is continued presentation of stimulatory target epitope,
we have recently studied the division of monoclonal populations
of naive TCR-transgenic CD4T cells that recognize a specific
allopeptide epitope and that are adoptively transferred at late
time points after murine heart transplantation (35). These
experiments confirmed that in the mouse, direct pathway
CD4T cell activation is dependent upon the donor hematopoietic
fraction, with responses not detectable beyond the first week.
In contrast, chronic rejection was associated with ongoing
presentation of processed MHC class I alloantigen and late
activation of the responding indirect-pathway CD4T cell
population.

The indirect pathway CD4T cell response has generally been
considered as a single entity but use of monoclonal T cell
lines with precise allospecificity enabled us to show that there
was considerable heterogeneity within the response. Unlike the
response against MHC class I allopeptide, the indirect pathway
response against MHC class II allopeptide was as short-lived as
the direct pathway, and not detectable beyond the first week of
transplantation, because it too was dependent upon the donor
hematopoietic fraction as a source of MHC class II alloantigen
(35).

Duration of CD8T cell Alloresponses
The presentation of intact MHC class I alloantigen by migrating
donor DCs, in the context of pro-inflammatory co-stimulatory
ligands, is generally considered the principal mechanism for
generating direct pathway CD8T cell alloimmunity. However,
other than at artificially very high precursor frequencies (47),
differentiation of naïve CD8T cells to cytotoxic effectors requires
help from activated allospecific CD4T cells. Hence, the duration
of the CD8T cell alloresponse will partly be governed by
availability of CD4T cell help.

A series of seminal publications (48–50) have highlighted that
for conventional immune responses, CD4T cell help is delivered,
not to the CD8T cell, but through “licensing” of an intermediary
APC, which, crucially, presents both MHC class I and class II
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restricted target epitopes for CD8 and CD4T cell recognition,
respectively. This enables the formation of a linked “three-cell”
cluster (Figure 2A). With regards to alloreactive CD8T cell
alloimmunity, a similar three-cell cluster can be created that
incorporates the donor DC and a direct pathway CD4T cell
(Figure 2B). Murine studies suggest this provides CD4T cell help
for generating cytotoxic CD8T cell responses immediately after
transplant (51). Thus, if help for alloreactive CD8T cells can only
be delivered by CD4T cells with direct allospecificity, then the
window for CD8T cell activation is limited to the immediate
post-transplant period.

Late CD8T cell alloimmunity may, however, be generated
through provision of help from CD4T cells with indirect
allospecificity. In support, murine studies have convincingly
shown that, immediately after transplantation, indirect pathway
CD4T cells can provide CD8T cell help (52). This raises
further questions about how such help is delivered, because
it requires the formation of a cumbersome four-cell cluster
model (Figure 2C), in which help is delivered by CD4T cells
recognizing processed allopeptide presented by a recipient APC
to CD8T cells responding to intact MHC class I on the
surface of a donor APC. Moreover, the lack of apparent linkage
between the donor APC / CD8T cell couplet and the recipient
APC / CD4T cell couplet raise concerns of inappropriate and
uncontrolled CD8T cell activation, because similar unlinked
help could theoretically be provided by bystander CD4T cell
responses to unrelated antigen. Semi-direct presentation of
MHC class I alloantigen by recipient DCs potentially provides
an elegant solution, if one assumes that the same DCs
simultaneously present class I alloantigen both as intact protein
and processed peptide. This would enable formation of a three-
cell cluster, in which linked help is provided by indirect pathway
CD4T cells (Figure 2D). Murine studies by ourselves and
others have demonstrated simultaneous expression of intact and
processed alloantigen by recipient DCs following transplantation
(26, 27), and adoptive transfer studies have further suggested that
these ‘cross-dressed’ DCs can prime effective CD8T cell cytotoxic
alloresponses (27).

Demonstrating the functional relevance of this pathway is
challenging, because it is difficult to devise model systems in
which semi-direct recognition can be studied in isolation from
direct pathway responses. We have shown that recipient DCs
are required for generating a cytotoxic CD8T cell population
that effects rejection of heart grafts that are otherwise unable
to provoke conventional direct pathway T cell responses (29).
Similarly, Smyth et al. have recently demonstrated that recipients
that cannot mount indirect pathway T cell responses are still
capable of effecting acute cellular rejection of heart grafts, but
that this rejection is dependent upon the recipient DC fraction
(28). While both these papers support an independent functional
role for semi-direct allorecognition in graft rejection, it should
be stressed that they do not necessarily show that this pathway
is dominant or more effective than conventional direct pathway
responses.

In summary, animal studies provide strong support that
immediately after transplantation, strong CD4T cell-dependent
cytotoxic CD8T cell responses can be generated by direct

and semi-direct presentation of class I alloantigen. The
extent to which these mechanisms, particularly the semi-
direct presentation of parenchymal MHC class I alloantigen,
can drive late CD8T cell activation has still to be clarified.
In this respect, although clinical studies have reported late
direct pathway responses in human transplant patients (53–
56), this is generally based upon in vitro recall IFN-γ responses
of recipient peripheral blood mononuclear cells (PBMCs).
Definitive evidence, either experimental or clinical, for late
alloreactive CD8T cell cytotoxicity is lacking (57).

ALLORECOGNITION PATHWAYS AND
EFFECTOR MECHANISMS

Early Acute Rejection
Given the above, one would anticipate that direct pathway
responses dominate early after transplantation, with the
CD4T cell response central. Full CD4T cell activation requires
continued TCR engagement (58), with target MHC class
II alloantigen expressed on the surface of donor APCs or
re-presented by recipient DCs intact. CD4T cells do not
generally exhibit cytotoxic activity, and although direct pathway
CD4T cells can effect allograft rejection autonomously (59, 60),
their greatest contribution to graft rejection is likely to be
as helpers to direct pathway CD8T cells (Figure 2B). Once
activated, the cytotoxic CD8T cell alloresponse can target all
MHC class I alloantigen expressing cells of the graft.

Although indirect pathway CD8T cell recognition of
processed alloantigen can occur, this only appears relevant for
the rejection of skin (61, 62) and not vascularized allografts
(63), because target epitope (recipient MHC class I antigen) is
expressed in the former as a consequence of host endothelial
ingrowth.

Murine transplant models have confirmed that indirect
pathway CD4T cell activation also occurs early after
transplantation (14, 64, 65). Although adoptive transfer studies
have suggested that indirect pathway CD4T cells may have an
autonomous effector role in acute rejection (42, 66, 67), this
possibly occurs only with artificially high numbers of transferred
cells. As with indirect pathway CD8T cell responses, the target
allopeptide epitope for indirect pathway CD4T cells is unlikely to
be expressed at early time points within the transplant. Instead,
indirect pathway CD4T cells are uniquely capable of providing
help to alloreactive B cells for generating Ig-class switched
alloantibody responses (68, 69); acute alloantibody-mediated
rejection is thus robust clinical evidence of early indirect pathway
CD4T cell activation.

Late Rejection
Although semi-direct presentation of endothelial MHC class
II alloantigen raises the possibility of late activation of
CD4T cell clones with direct allospecificity, this remains
unproven. Chronic rejection is more plausibly mediated by
indirect pathway CD4T cell responses directed against major and
minor mismatched histocompatibility alloantigens (34, 38, 44–
46). The principal role for indirect pathway CD4T cells in graft
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FIGURE 2 | Delivery of CD4T cell help for cytotoxic CD8T cell alloimmunity. (A) For CD8T cell responses against conventional protein antigen (such as viral antigen)

following internalisation by the dendritic cell (DC), processed viral peptide is presented in the context of MHC class II and class I for CD4 and CD8T cell recognition,

respectively. CD4T cell help is delivered to the DC, resulting in upregulation of co-stimulatory signals on the DC surface. This in turn results in enhanced presentation

and more effective priming of the CD8T cell response. (B) In transplantation, a similar three cell cluster model is achieved by donor DC presentation of intact MHC

class II and class I to direct pathway CD4 and CD8T cells. (C) Although animal models have shown that indirect pathway CD4T cells can provide effective help for

cytotoxic CD8T cell alloresponses against intact MHC class I alloantigen, this theoretically involves a cumbersome four cell cluster with two unpaired couplets:

recipient APC presenting to recipient indirect pathway CD4T cell and donor DC presenting MHC class I alloantigen to direct pathway CD8T cells; raising concerns

regarding uncontrolled CD8T cell alloresponses from bystander CD4T cell activation. (D) These concerns are obviated if a recipient DC is able to re-present intact

MHC class I alloantigen and processed MHC class I allopeptide simultaneously, enabling the provision of linked help from indirect pathway CD4T cells to direct

pathway CD8T cells.
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rejection is likely in providing help for humoral and cytotoxic
CD8T cell alloimmunity.

As discussed above, other than development of delayed
(>6 months after transplant) acute cellular rejection in human
transplant recipients, definitive evidence for late allospecific
cytotoxic CD8T cell activation is lacking. One group has
identified a population of circulating “terminally differentiated”
effector memory (TEMRA) CD8T cells at late time points in a
cohort of kidney transplant recipients and reported a correlation
with subsequent graft dysfunction (57, 70). The antigen
specificity of this TEMRA population was not determined,
and although it did provoke endothelial activation upon in
vitro culture, chronic CD8T cell stimulation in response to
continued exposure to target class I alloantigen would be
expected to lead to a state of exhaustion, characterized by
loss of effector status (71, 72). If so, it is not immediately
apparent how such exhausted cells contribute to the
progression of allograft vasculopathy. Exhaustion is, however,
malleable, and one possibility is that late cytotoxic CD8T cell
alloresponses are rescued from exhaustion by provision of
help (73), most likely from indirect pathway CD4T cells and
formation of a three-cell cluster involving the recipient DC
(Figure 2D).

In contrast, de novo generation of class-switched
donor specific alloantibody (DSA), sometimes years after
transplantation, robustly demonstrates that the indirect pathway
helper CD4T cell / allospecific B cell axis is operational at
late time points after transplantation. Late-developing DSA
responses are generally long-lived, suggesting deposition
of allospecific long-lived plasma cells (LLPCs) in the bone
marrow. These are thought to be an exclusive product of a
germinal center (GC) response, and in this regard, a consistent
feature in our recent murine studies on chronic heart allograft
rejection is the presence of splenic GC activity at late time
points after transplantation (35, 74). Long-lasting GC responses
[as typically found in the gut and in humoral autoimmune
disease (75, 76)] are maintained by delivery of help from
specialized T follicular helper (TFH) cells (77), and thus their
presence in our transplant models suggests ongoing TFH

cell differentiation from indirect pathway responses against
persistently presented target allopeptide epitope. By using
synthetic MHC class II / allopeptide tetramers to map the
endogenous indirect pathway CD4T cell population, we
confirmed that this late presentation of allopeptide epitope
was associated with ongoing division and marked late
expansion (∼10,000 fold) of the responding T cell population
(35).

Interestingly, this expanded population also exhibited features
consistent with exhaustion. Exhaustion is a state distinct from
and senescence, and is characterized by progressive loss of
effector function and expression of multiple inhibitory receptors
(72). It has garnered much attention recently, because it is
perhaps not the propensity to trigger self-reactive responses,
but the ability, or otherwise, to counter their progression
through development of an exhaustive state that may ultimately
determine outcomes for autoimmune disease (71, 78). Our
studies highlight that exhaustion is likely to impact on graft

outcome, but in doing so, raises an important question: if, as
seems probable, ongoing indirect pathway CD4T cell responses
against persistent allopeptide epitope are a critical factor in the
progression of chronic rejection, how is this achieved despite
the development of an exhausted state? This question has not
been addressed experimentally, because exhaustion is only now
beginning to be considered in relation to transplantation (79), but
we speculate several solutions:

Exhausted Allospecific CD4T cells Retain Effector

Function
Exhausted T cells have been shown in some models to provide
important viral control (80), which raises the possibility that
exhausted indirect pathway CD4T cells may still mediate
allograft progression. Fahey et al. recently reported that in
a murine model of chronic lymphocytic choriomeningitis
virus infection, exhausted CD4T cells acquire phenotypic
characteristics, such as C-X-C motif chemokine receptor 5
(CXCR5), inducible T cell co-stimulator (ICOS), OX40, and
PD-1, that resemble the TFH subset (81). Moreover these
skewed, exhausted cells expressed interleukin-21 (IL-21), a key
cytokine for TFH cell function (82), and could provide help for
late antiviral antibody responses. Thus, these experiments may
explain the simultaneous findings of exhaustion and persistent
germinal center humoral immunity in our transplant model
(35). Interestingly, IL-21 secretion by the helper CD4T cell
subset is also critical in preventing the development of
CD8T cell exhaustion and providing control in chronic viral
infection (83–85), raising the possibility that in a transplanted
individual, exhausted TFH-like CD4T cells also promote the
development of late cytotoxic CD8T cell alloresponses. Not all
chronic disease models, however, support a functional role for
exhausted CD4T cells in promoting late humoral immunity
(86), and thus the relevance of the exhausted TFH cell subset
to chronic allograft vasculopathy still requires clarification. One
recent study has, for example, suggested that the development
of exhaustion is associated with prolonged allograft survival
(87).

Exhaustion Is Bypassed by Epitope Diversification
One mechanism by which chronic autoimmune responses are
sustained despite the propensity for exhaustion is through intra-
and inter-molecular epitope diversification or “spreading” (13).
As responses against a dominant epitope become exhausted,
this enables the focus to shift to encompass new target
T cell epitopes within the same, or completely different
molecules. Diversification to sub-dominant (88), as well as
cryptic self-epitopes (14, 89, 90) has been described in
experimental transplant models, and a seminal publication
by the Suciu-Foca group has reported an association with
the development of chronic allograft vasculopathy in human
heart transplant recipients (21). Epitope spreading, even to
target a second alloantigen on the graft, may permit humoral
responses against the first alloantigen to be maintained,
because of the ability of the allospecific B cell to acquire
additional graft alloantigen as it internalizes target alloantigen
(91).
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Recall of Memory CD4T cell Responses
In contrast to murine transplant models, which generally study
naïve T cell responses to alloantigen, recall memory responses,
often from cross-reactive heterologous immunity, are considered
a sizeable component of the alloresponse encountered in clinical
practice (92–94), and are particularly relevant because of their
relative insensitivity to immunosuppressive agents. Of note,
unlike central memory alloreactive CD4T cells (generated
following acute allograft rejection), exhausted alloreactive
CD4T cells (purified from recipients undergoing chronic
rejection) were unable to provide co-stimulation-independent
help for the production of alloantibody in our experimental
system (35). This raises the possibility that in clinical practice,
T cell help for generating late humoral alloimmunity is provided
by recall responses of allospecific memory CD4T cells that have
been deposited early after transplantation, rather than by a
chronically activated, but exhausted, population. Certainly, it is
unlikely that exhausted CD4T cells will respond to target epitope
in the typical ELISpot assays used clinically to evaluate late direct
and indirect pathway activation (53–56); these assays are instead
generally considered a marker of memory recall, particularly
those that involve prolonged in vitro culture (21). This may
explain why in clinical transplantation late de novo donor specific
alloantibody responses appear to focus on disparate MHC class
II, rather than MHC class I, alloantigens (95, 96). Although
MHC class II alloantigen is likely to be upregulated on the
endothelium of human allografts, MHC class I alloantigen will
still be expressed more widely and much more abundantly
within the graft, and certainly there is no a priori reason why
disparateMHC class I alloantigens will be less immunogenic than
disparate class II alloantigens. Thus, MHC class I alloantigen
may be presented as processed allopeptide continually, resulting
in chronic activation and exhaustion within the responding
helper CD4T cell population, whereas levels of MHC class
II alloantigen expression within the graft may fluctuate and
fall below a threshold at which the CD4T cell response
terminates and effective anamnestic responses are generated.
Subsequent upregulation of class II alloantigen expression on
the graft endothelium in response to stress from, for example,
concurrent viral infection, may result in provision of help for
generating late anti-class II alloantibody through recall responses
of deposited memory class II allopeptide-specific CD4T cells.
Although speculative, this would be consistent with the reported
association between the development of class II allopeptide-
specific CD4T cell memory responses (as determined by in vitro
ELISpot culture assay) and chronic rejection in human heart
transplant recipients (21).

TARGETING LATE T CELL
ALLORESPONSES TO PREVENT
PROGRESSION OF CHRONIC REJECTION

A better understanding of the allorecognition pathways active at
late time points after transplantationwill inform the development
of tolerogenic strategies that aim to prevent progression of
allograft vasculopathy and prolong allograft survival. Two

approaches will be considered further: regulatory T cell therapy
and targeting the metabolic pathways that sustain chronic T cell
alloresponses.

Regulatory T cells
Numerous cells with immunoregulatory potential are described
(97). Here we focus on the classical CD25pos CD4T regulatory
cell (T-reg) (98, 99). Naturally-occurring, thymus derived T-regs
(nT-regs) are defined by the master transcription factor forkhead
box P3 (FOXP3) (100, 101) and provide essential control of
autoimmunity through: absorption of pro-inflammatory IL-2;
CTLA-4-mediated masking of CD80 and CD86 co-stimulatory
ligands on APCs; expression of immune-inhibitory molecules
(IL-10, IL-35, TGF-β); and granzyme-mediated killing of APCs
(102).

FOXP3-expressing T-regs develop in the periphery (pT-
reg) upon engagement with target epitope in a TGF-β rich
environment (103, 104). While nT-regs are polyclonal, pT-
regs are defined by antigen exposure. This has important
consequences for T-reg therapy, because although T-regs may
exhibit non-antigen-specific suppressor function, more potent
inhibition occurs upon engagement of the TCR. In support, pre-
clinical studies suggest that alloantigen-specific induced T-regs
(iT-reg) are more effective than nT-regs in preventing allograft
rejection (105–107).

Current translational transplant studies are focused upon
the delivery of T-regs with direct allospecificity (97, 99, 108–
112), partly because these can be generated more readily than
indirect pathway T-regs. These are likely to be most effective
in preventing early acute rejection, albeit the strong pro-
inflammatory environment immediately after transplantation
may favor deleterious trans-differentiation of the administered
T-regs to T effector status (113). Control of acute rejection is
not a major clinical problem, and while early administration of
direct pathway T-regs may have long-lasting consequences (114),
based on the above consideration of expression of target epitope
at late time points, one would predict that chronic rejection will
be better controlled by iT-regs with indirect allospecificity. This
is supported by murine studies (106, 107, 115, 116). If so, the
challenge will be in determining not only which mismatched
major and minor histocompatibility alloantigens are being
actively processed, but also the precise self-restricted allopeptide
epitopes that are generated by this processing. This may not be
as daunting as first appears, because as long as target epitope is
expressed, transfer of allopeptide-specific T-regs may dominantly
inhibit concurrent indirect pathway responses against other
alloantigens (117). Subsequent epitope diversification that shifts
the focus of the indirect pathway CD4T cell response to new
epitopes on different alloantigens should be similarly controlled
by “infectious” tolerogenic mechanisms (118, 119).

T cell Metabolic Pathways
It is likely that the alloreactive CD4T cell response at late
time points after transplantation will comprise a number of
different populations with specificities for different alloantigens.
These populations will further differ in their helper T cell
subset polarization (TH1, TH2, TH17, TFH), and in their stage
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of effector to memory transition. This will include populations
of allospecific CD4T cells that have acquired an exhausted
phenotype or have undergone peripheral differentiation into
regulatory T cells (pT-reg). As discussed above, the relative
contribution of these different populations to the progression
of allograft vasculopathy has still to be clarified, but it is now
apparent that the individual stages of T cell differentiation are
underpinned by profoundly different metabolic states, and it is
the metabolic environment that dictates T cell differentiation
(120–122). Immunometabolism is still an emerging field but
raises the potential that specific metabolic pathways could be
targeted with the expectation of improvements in transplant
outcomes.

Naïve T cells persist in a catabolic state, with their
bioenergetic requirements met largely by mitochondrial
oxidative phosphorylation (OXPHOS). Upon binding target
antigen, activated T cells switch their metabolic profile to
aerobic glycolysis, characterized by marked augmentation in
glycolysis and a lesser, but nevertheless critical (123), increase
in OXPHOS (Figure 3). Central to these changes are signaling
via the phosphoinositide 3-kinase (PI3K)–AKT1–mammalian
target of rapamycin (mTOR) axis (124–126) and upregulation
of the transcription factors MYC and hypoxia-inducible factor
1α (HIF1α). This results in increased amino acid and glutamine
transfer to fuel glutaminolysis and glycolysis. Although the
switch to glycolysis is clearly, when oxygen is otherwise
abundant, an inefficient means of producing ATP; it does
generate the metabolic intermediates for synthesizing the
nucleotides and amino acids required for differentiation and
division. It also produces acetyl-CoA for manufacturing lipids
(127). Upon pathogen clearance, the activated T cell population
undergoes contraction by apoptosis, leaving a small population
of long-lived memory T cells. These cells revert to a catabolic
state, but unlike naïve cells, OXPHOS is maintained, at least
in part, by mitochondrial fatty acid oxidation (FAO), in which
IL-7 and IL-15 signaling mediates AMP-activated protein kinase
(AMPK)-dependent increases in mitochondrial biomass and
spare respiratory capacity (128–131).

Not all effector T cell populations rely upon aerobic glycolysis,
and most notably, pT-regs rely upon OXPHOS and FAO
metabolism (132, 133). Consequently, inhibition of glycolysis,
either by blocking mTOR1c or downstream HIF1 α signaling,
promotes a switch from TH17 to pT-reg differentiation (134–
136). The TFH subset is similarlymore dependent uponOXPHOS
than the classical TH1 subset (137), and Bcl-6 expression (the
key transcription factor for this subset) represses glycolysis
(138). This possibly counters the high glucose requirements
associated with the germinal center B cell response. Finally,
although exhausted T cells exhibit typical aerobic glycolysis at
initiation of the response, continued antigen binding to the TCR
results in downregulation of the PI3K–AKT1–mTOR signaling
pathway (139) and NFATC-mediated expression of PD-1 and
other inhibitory ligands (140, 141). This results in inhibition of
glycolysis and increased FAO (142).

From the discussions presented so far, we make two
predictions: firstly, that at late time points graft alloantigen will
be continually processed by recipient APCs for recognition by
CD4T cells with indirect allospecificity; and secondly, that the

metabolic profile governing these late chronic responses will be
skewed from glycolysis and instead focus on OXPHOS, perhaps
with a reliance on FAO. If so, then transplant outcomes will be
determined by the relative contributions of the indirect pathway
T cell subsets that meet those energy requirements, with memory
or T follicular helper cell responses being potentially destructive,
while exhausted or regulatory T cell responses being neutral or
beneficial. Therapeutic targeting of immunometabolic pathways
is a developing field, and approaches so far in autoimmunity
(143) and transplantation (144) have generally focused on
inhibiting glycolysis and preventing the differentiation of T
effector cells. Such an approach may not be particularly effective
if commenced at late time points after transplantation when
glycolysis is not the dominant metabolic pathway. In this regard,
Byersdorfer et al. have recently shown that the administration
of etomoxir, an agent that blocks FAO by irreversibly inhibiting
carnitine palmitoyl-transferase 1 (CPT1), improved late disease
scores in a murine model of chronic graft-vs.-host disease
(145). Interestingly, etomoxir only affected donor alloreactive
T cells that had divided more than six times and was ineffective
at preventing acute T effector differentiation, suggesting that
similar inhibition of FAO may prevent progression of allograft
vasculopathy in recipients of solid organ transplants. One
potential problem with this approach is that the metabolic
pathways active in the different subsets of exhausted, memory,
pT-reg, and TFH cells may be quite similar. For example,
while treatment with the mTOR inhibitor rapamycin would, by
blocking glycolysis, be expected to promote the development
of pT-regs and favor allograft survival (134, 136, 146), it
has also been shown to increase deposition of memory
T cells (130, 147); a population that, as discussed above,
may have a contrary impact on graft outcomes. The same
considerations hold for other agents, such as 2-deoxyglucose,
that potentially increase pT-reg generation by blocking glycolysis
(144, 148).

As the field of immunometabolism advances, it is likely
that more nuanced differences in the metabolic profiles of
memory, regulatory and follicular helper CD4T cells will become
apparent, and that these differences could ultimately be targeted
pharmacologically. For example, the phosphatase PTEN, which
is the main negative regulator of PI3K, has been recently
shown to be critical for maintaining T-reg stability (149, 150).
Its conditional deletion led to increased glycolysis and re-
differentiation of the T-reg population into other T helper cell
subsets, most notably the TFH cell subset, and was associated
with development of germinal center humoral autoimmunity
(150).

SUMMARY

Although the CD4T cell alloresponse is a key determinant
of transplant outcomes, many aspects of this response remain
unclear more than 60 years after the first human kidney
transplant. It seems likely that the late CD4T cell response will
be focused on self-restricted, processed alloantigen. This response
will be fluid and shift to target different epitopes on the same or
different alloantigens and involve different T helper cell subsets at
varying stages of effector and memory differentiation. Although
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FIGURE 3 | Metabolic pathways of T cells. (A) Important metabolic pathways in T cells include glycolysis, the tricarboxylic acid (TCA) cycle (green), fatty acid oxidation

(FAO), fatty acid synthesis (FAS), oxidative phosphorylation (OXPHOS) and glutaminolysis. The stars indicate reactions that generate reducing equivalents (i.e. NADH)

to drive OXPHOS. Utilization of different metabolic pathways by different cell types is indicated. Greyed out pathways represent pathways that have not been defined.

(B) Key metabolic pathways and inhibitors during late chronic responses are highlighted pathways by different cell types is indicated.

the future introduction of new broad acting immunosuppressive
agents is likely to improve transplant outcomes, their impact
may only be modest (151). Instead, alloantigen-specific cellular
therapies, such as the administration of cultured T-regs, are
on the cusp of entering clinical practice, and potentially
offer a personalized approach to specifically inhibit deleterious
alloimmune responses that are active in a particular recipient,

while preserving global immune responsiveness. Key to the
success of these cellular therapies will be the ability to interrogate
accurately the entire CD4T cell alloresponse in the individual,
and to map currently active effector or exhausted CD4T cell
responses, as well as the recent deposition of central and
effector memory T cells. This will require the development
of experimental approaches that analyze the allospecific T cell
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population in situ, without the need for protracted in vitro culture
and stimulation.
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