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Viruses often subvert antiviral immune responses by taking advantage of inhibitory

immune signaling. We investigated if hantaviruses use this strategy. Hantaviruses

cause viral hemorrhagic fever (VHF) which is associated with strong immune activation

resulting in vigorous CD8+ T cell responses. Surprisingly, we observed that hantaviruses

strongly upregulate PD-L1 and PD-L2, the ligands of checkpoint inhibitor programmed

death-1 (PD-1). We detected high amounts of soluble PD-L1 (sPD-L1) and soluble

PD-L2 (sPD-L2) in sera from hantavirus-infected patients. In addition, we observed

hantavirus-induced PD-L1 upregulation in mice with a humanized immune system.

The two major target cells of hantaviruses, endothelial cells and monocyte-derived

dendritic cells, strongly increased PD-L1 and PD-L2 surface expression upon hantavirus

infection in vitro. As an underlying mechanism, we found increased transcript levels

whereas membrane trafficking of PD-L1 was not affected. Further analysis revealed

that hantavirus-associated inflammatory signals and hantaviral nucleocapsid (N) protein

enhance PD-L1 and PD-L2 expression. Cell numbers were strongly reduced when

hantavirus-infected endothelial cells were mixed with T cells in the presence of an

exogenous proliferation signal compared to uninfected cells. This is compatible with the

concept that virus-induced PD-L1 and PD-L2 upregulation contributes to viral immune

escape. Intriguingly, however, we observed hantavirus-induced CD8+ T cell bystander

activation despite strongly upregulated PD-L1 and PD-L2. This result indicates that

hantavirus-induced CD8+ T cell bystander activation bypasses checkpoint inhibition

allowing an early antiviral immune response upon virus infection.

Keywords: bystander activation, hantaviruses, viral immune evasion, PD-L1, PD-L2, PD-1, CD86

INTRODUCTION

The immune response to infection is regulated not only by signaling through antigen receptors
but also by co-receptors (1). The principal stimulatory co-receptor CD28 is constitutively
expressed on T cells and interacts with CD80 and CD86 expressed on activated professional
antigen-presenting cells (APCs) such as dendritic cells (DCs) (2). In contrast, programmed
death-1 (PD-1), a member of the CD28 family, is a key negative regulator of immune
responses (3). PD-1 is expressed on activated T cells whereas the known PD-1 ligands,
PD-L1 and PD-L2, are detected on professional APCs similar to CD80 and CD86 (4). In
addition, PD-L1 is expressed by non-hematopoietic cells such as endothelial cells (5–8). PD-L1
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is further upregulated by proinflammatory cytokines that are
released during virus infections such as type I and type II
interferon (9). These pro-inflammatory cytokines also enhance
PD-L2 expression, which is usually expressed at only low levels
by a restricted number of cell types such as dendritic cells (DCs)
(9).

Viruses have evolved mechanisms to exploit host inhibitory
receptor signaling for subversion of host immune responses
(10). Persisting viruses such as human immunodeficiency virus
type 1 (HIV-1), hepatitis B virus (HBV) and hepatitis C virus
(HCV) drive virus-specific CD8+ T cells into a dysfunctional
or “exhausted” phenotype that is characterized by increased
PD-1 expression (11, 12). In accordance, blockade of PD-1
or its ligands in chronic viral infection can enhance virus-
specific CD8+ T-cell responses and reduce the viral load. The
functional consequences of PD-L1 upregulation during acute
viral infection are less clear (13). For example, CD8+ T cell
responses are impaired and immunopathology is attenuated
by the PD-1 pathway during acute virus infections of the
lower respiratory tract (14). On the other hand, it has been
reported that PD-L1 upregulation on DCs contribute to the
antiviral defense during acute HSV-1 infection (15). Moreover,
during acute Friend retrovirus infection CD8+ T cells expressing
high levels of PD-1 were both cytotoxic and critical for virus
control (16).

Viral hemorrhagic fever (VHF) is a term for a group of
similar but distinct zoonotic human diseases that are caused
by RNA viruses including hantaviruses. Humans are infected
with hantaviruses after inhalation of aerosols that contain virions
derived from the natural host reservoirs, mostly rodents (17).
The hallmarks of VHF are increased vascular permeability
and loss of platelets (18). Hantaviruses are known to replicate
without causing obvious cytopathic effects. As with other VHFs
dysregulated immune responses play a role in hantavirus-
associated diseases (19, 20). Paradigmatic experiments with
lymphocytic choriomeningitis virus (LCMV)-infected mice have
shown that PD-L1 is critical for prevention of immunopathology
and virus-induced dysfunction such as vascular leakage (21, 22).
Thus, it is important to understand how hantavirus replication
modulates PD-L1 and PD-L2. In this study, we investigated how
hantavirus replication affects the key stimulatory and inhibitory
checkpoints of immune responses and explored the functional
consequences thereof.

MATERIALS AND METHODS

Ethics Statement
The analyses of human sera were in accordance with the
ethical standards of the institutional research committee and
with the 1964 Helsinki declaration and its later amendments
or comparable ethical standards. For this retrospective study,
formal consent is not required. Buffy coat preparations were
purchased from German Red Cross (Dresden). Blood samples
were taken with the approval of the ethics committee of the
Charité–Universitätsmedizin Berlin. Written informed consent
was obtained from all donors.

Cells
Vero E6 and RPE-1 cells were cultured in Dulbecco’s MEM
(Gibco) supplemented with 10% hiFCS (BioWhittaker), 2mM
L-glutamine, penicillin and streptomycin (PAA). HUVECs
were generated and cultivated as described (23). Adherent
cells were passaged by first washing with PBS (Biochrom),
addition of trypsin until cells detached and finally addition
of FCS-containing medium to stop trypsin. HEL cells, an
erythroleukemia suspension cell line, were cultured in RPMI
1640 (Gibco) with 10% hiFCS, 2mM L-glutamine, penicillin and
streptomycin (PAA). Huh7.5 cells is a human hepatoma cell line,
which expresses an endogenous RIG-I with a mutation (T55I) in
the first caspase-recruiting domain. This mutated RIG-I acts as
a dominant-negative inhibitor (24). Transduced Huh7.5 clones
overexpressing constitutive active RIG-I have been generated
previously and were cultured as described (25). Huh7.5 cells were
cultured as previously described (26).

Density gradient centrifugation using Ficoll-Paque was used
to isolate PBMCs from buffy coat units (DRK, Dresden). In
short, blood diluted 1:1 with RPMI wash (RPMI 1640, 2% heat-
inactivated FCS and 0.2mM EDTA) was layered onto Ficoll
(PAA) and centrifuged at 800 g, 30min RT. PBMC were isolated
from the interface, washed twice and CD14+ cells isolated using
Blood CD14 isolation kit (Miltenyi Biotec). CD14+ monocytes
were used to generate immature DCs by cultivation in RPMI1640
with 10% hiFCS (Hyclone), 2mM L-glutamine, penicillin and
streptomycin (PAA) and further supplemented with 500 IU/ml
GM-CSF (ImmunoTools) and 200 IU/ml IL-4 (ImmunoTools).
Medium and cytokines were changed every 2–3 days, cells were
used for experiments at day 6.

Cytokines And Pathogen-Associated
Molecular Patterns (PAMPs)
IFN-α, IFN-β, and IFN-γ were provided by ImmunoTools.
Further samples of IFN-β were supplied by R&D Systems.
TLR3 agonist polyinosinic:polycytidylic acid [poly(I:C)] and
polydeoxyadenylic:polydeoxythymidylic acid [poly(dA:dT)],
which indirectly stimulates retinoic acid–inducible gene I
(RIG-I), were obtained from InvivoGen. Poly(I:C) was used at
10µg/ml and poly(dA:dT) at 1µg/ml.

Serum Samples And ELISAs
Samples from patients infected with Puumala virus (PUUV) or
Dobrava-Belgrade virus (DOBV) were collected for diagnostic
purposes and were anonymized and stored before being tested
retrospectively. Routine diagnostic testing included qPCR of
the L segment of hantavirus from RNA isolated from the
sera, positivity indicating the presence of active viral infection
and thus an acute infection. All serum samples were stored
at −80◦C before use. The histone/dsDNA complexes were
determined using Cell Death Detection ELISAPLUS (Roche) for
quantification of neutrophil extracellular traps (NETs) in the
serum as previously described (27). Human sPD-L1 and sPD-L2
levels were determined by using ELISA kits from R&D Systems,
whereas the ELISA for measuring soluble CD86 (sCD86) was
provided by PromoKine.
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Flow Cytometry of Surface Molecules
Cells were harvested and washed twice in ice-cold FACS washing
solution. Cells were then resuspended in 50 µl FACS blocking
solution, containing the primary antibody in appropriate
dilution, and incubated for 1 h. Cells stained with directly-
coupled antibodies were washed and analyzed. For uncoupled
primary antibodies after incubation cells were again washed twice
with FACS wash and secondary antibody, diluted in FACS block
solution, was added. After 45min the cells were washed with
FACS wash solution and resuspended in FACS fixation solution.
For quantifying fluorescence of labeled cells a FACSCalibur R©

(BD Biosciences) was used. Results were evaluated with the
flow cytometry analysis software programs CellQuestPro R© and
FlowJo V10 (BD Biosciences).

Transfection
Transfection was undertaken using plasmid pcDNA3.1 HTNVN
or empty pcDNA3.1 as control (1 µg) using Lipofectamine 3000
transfection reagent according to the manufacturer’s protocol,
including Optimem medium (Thermo Fischer Scientfic).

Antibodies And Staining Reagents
For flow cytometry and functional studies, respectively, the
following antibodies and staining reagents were used: anti-
CD40 (clone 5C3), anti-CD54 (cloneHA58), anti-CD80 (L307.4),
anti-CD83 (clone HB15e), anti-CD107a (H4A3), and anti-B7-
H2 (clone 2D3) were supplied by BD PharMingen; anti-PD-1
(clone J116), anti-PD-L1 (clone MIH1), and anti-PD-L2 (clone
MIH18), anti- B7-H3 (clone H74), anti-B7-H4 (clone MIH35)
were purchased from eBioscience; anti-CD86 (clone IT2.2) was
supplied by ImmunoTools; anti-DC-SIGN (Clone MR-1) was
purchased from Acris; anti-MHC class I (clone w6/32) and II
(clone L243) were produced in-house; HCMV pp65 495-503
loaded NTA HLA-A2 tetramer reagents were obtained from
TCMetrix. Secondary antibodies coupled to fluorochromes were
supplied by Dianova. Blocking monoclonal antibodies directed
against human IL-15 (clone 34559) and anti-human IFNR chain
2 (clone MMHAR-2) were supplied by R&D Systems. Cells
were incubated with blocking antibodies or isotype-matched
control antibodies for 1 h before exposure to virus. Isotype-
matched control antibodies were supplied by BD PharMingen.
For immunohistochemistry human-specific FITC-coupled anti-
MPO (clone 7.17; ImmunoTools) and polyclonal goat anti
human PD-L1 (R&D Systems) were used with bovine anti
goat Fab fragment Alexa 594-coupled (Dianova) as secondary
antibody, all used at 1:300 dilution.

PD-L1 Uptake Protocol
Cells were incubated with PE-coupled anti-PD-L1 antibody for
1 h at 4◦C or 37◦C for 4 h before being washed and analyzed
by flow cytometry. Uptake was calculated by subtracting MFI at
37◦C from MFI at 4◦C. Uptake of HTNV infected cells was then
compared to uninfected cells.

T Cell Assay
CD4+ cells were isolated from PBMCs using CD4-coupled beads
(Miltenyi) and frozen on liquid nitrogen until use. HUVECs

infected with HTNV at a MOI of 1.5 were incubated in flat-
bottom 96-well plates for 4 days before being were mixed with
allogenic CD4+ cells at a ratio of 1:4 and treated with PHA at
5ug/ml for 2 days. Proliferation was measured by MTT dye test
(EZ4U-test).

Viruses
Virus stocks of Hantaan virus (HTNV, strain 76-118) and Tula
virus (TULV, strain Moravia) were propagated on VeroE6 cells
in a biosafety level 3 (BSL3) laboratory as previously described
(28). For virus titration, supernatants from hantavirus-infected
cells were incubated with Vero E6 cells and subsequently focus-
forming units (FFU) were counted in a chemiluminescence
detection assay (29). Virus stocks were regularly tested for
mycoplasma by PCR and stored at −80◦C before use. In order
to infect cells virions were allowed to adsorb to cells for 1 h.
After infection cells were washed three times withmedium before
incubation in a humidified incubator at 37◦C. Uninfected cells
treated with medium instead of virions were used as mock
control. Herpes simplex virus type 1 (HSV-1) strain KOS and
Vesicular stomatitis virus (VSV, strain Indiana) was propagated
and titrated as previously described. Titres were determined by
plaque assay on Vero E6 cells and expressed as PFU per milliliter
(30). UV inactivation was performed for 5min and the remaining
titer was tested and found to be less than 1 FFU/ml.

qPCR
RNA was isolated from cells using RNeasy Plus mini kit
(Quiagen) and reverse transcribed using SuperScript III (Thermo
Fisher Scientific). qPCR was performed on a qTOWER3

(Analytik Jena) using PrimeTime gene expression master
mix and PrimeTime primers (IDT). The input RNA was
normalized using average expression of β-actin and cyclophilin
B housekeeping genes.

Humanized Mouse Model
The generation of mice with a humanized immune system has
been described elsewhere (31). Briefly, NSG mice expressing
HLA-A2, a human MHC class I molecule, were humanized by
reconstitution with HLA-A2+ human CD34+ hematopoietic
stem cells isolated from umbilical cord blood. Engraftment
was evaluated at 11 weeks post inoculation by cytofluorimetric
analysis of PBMCs. Successfully engrafted mice were infected
i.p. with 105 focus-forming units (FFU) of HTNV (strain 76-
118). Infection was successful as determined by qPCR from sera.
Twenty-Two days post infection mice were sacrificed and liver,
kidney, lungs and spleen fixed and mounted in paraffin blocks.
The infection experiments were approved by the governmental
animal-welfare committee of the state Berlin, Germany (G
0013/12).

ImageJ Analysis
Six cell-rich areas of five to twelve cells each were analyzed on
each slide. Cell density was determined blind using DAPI staining
and subsequently the mean intensity of staining of human PD-L1
(Texas Red) was determined.
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Statistical Analysis
Student’s t-test and 1 way ANOVA test with Bonferroni
correction were used to determine statistical significance. P-
values below 0.05 (95% confidence) were considered to be
significant. Prism 6 software (GraphPad) was used for statistical
analysis.

RESULTS

Strong Upregulation of PD-1 Ligands in
Hantavirus-Infected Patients and in an
Animal Model of Hantavirus Infection
Initially we tested if hantaviruses modulate the expression of the
ligands of checkpoint inhibitor PD-1 during clinical infection
of humans. For this purpose, we measured the amount of
soluble PD-L1 (sPD-L1) and soluble PD-L2 (sPD-L2) in sera
from hantavirus-infected patients. The level of both sPD-L1
(Figure 1A) and sPD-L2 (Figure 1B) were strongly upregulated
in sera from hantavirus-infected patients as compared to
normal healthy individuals. Sequential samples from the same
patients indicate that for both PUUV and DOBV sPD-L1
levels decrease with time indicating active regulation and that
acute samples still with active virus replication (hantavirus
RNA positive) have high sPD-L1 levels (Figure 1C). Similarly,
PUUV samples early in convalescence (IgM > IgG) had
significantly raised sPD-L1 compared to samples taken later
(IgG > IgM) (Figure 1D). We also detected elevated levels
of neutrophil extracellular traps (NETs), a marker for recent
hantavirus infection, in these sera (Figure 1E) (27, 32). The
level of sPD-L1 detected in culture supernatants and plasma
of patients is known to correlate with the level of membrane-
bound PD-L1 (33, 34). Taken together, PD-L1 and PD-
L2 are strongly upregulated in hantavirus infected patients.
Using a previously established animal model of hantavirus-
induced immunopathology we analyzed the spleen of hantavirus-
infected mice with a humanized immune system as previously
published (31). We observed enhanced expression of human
PD-L1 in the spleen (Figure 1F) in addition to high levels of
human myeloperoxidase (MPO)-expressing cells, presumably
neutrophils (data not shown). Taken together this data shows that
PD-L1 and PD-L2 are strongly upregulated during hantavirus
infection in vivo.

Hantavirus-Infected Human Dendritic Cells
Upregulate Both Costimulatory Molecules
as Well as PD-L1/PD-L2
Next we investigated the possible source of sPD-L1 and sPD-L2
seen in sera from hantavirus-infected patients. The production
of sPD-L1 by proteolytic cleavage of membrane-bound PD-
L1 is a feature of activated monocyte-derived DCs (35).
This important immunoregulatory cell type is susceptible to
hantavirus infection (36–39). As previously reported, immature
DCs infected with Hantaan virus (HTNV), the most common
cause of human hantavirus infections, upregulated adhesion
molecules and MHC molecules (Figure 2A). In addition, HTNV
increased expression of costimulatory molecules on the surface

of immature DCs (Figure 2B). Intriguingly, HTNV infection
resulted in enhanced expression of both PD-L1 and PD-
L2 whereas PD-1 was barely detectable on the surface of
uninfected and HTNV-infected immature DCs (Figure 3A).
In contrast, HTNV-infected DCs did not upregulate other
members of the B7 family such as B7-H2, B7-H3, and B7-
H4. (Figure 3B) (40). In summary, hantavirus replication in
DCs drives surface expression of both T cell costimulatory
molecules such as CD86 as well as the T cell inhibitory molecules
PD-L1/PD-L2.

Hantavirus Regulates PDL1/PDL2
Expression on the Transcription Level
In further experiments we analyzed the mechanism upregulating
PD-L1 and PD-L2 during hantavirus infection of DCs. PD-
L1 expression can be regulated on the genetic, transcriptional,
post-transcriptional and post-translational level (41). We first
determined the number of PD-L1 and PD-L2 transcripts in
HTNV-infected DCs and DCs exposed to IFN-α by qPCR.
HTNV increased the number of transcripts encoding PD-L1
and PD-L2 (Figure 4A). IFN-α also upregulated PD-L1 and PD-
L2 transcripts. We also tested whether HTNV modulates DCs
trafficking of PD-L1. As shown in Figure 4B HTNV-infected
DCs endocytosed PD-L1 as efficiently as uninfected control cells
excluding altered endocytosis kinetics as a mechanism of PD-L1
upregulation. In conclusion, hantaviruses increase the number of
PD-L1/PD-L2 transcripts but do not modulate endocytosis of the
corresponding proteins.

Hantavirus-Associated Inflammatory
Signals Including Hantaviral N Protein
Drive PD-L1 Expression
Next we examined which hantavirus-associated inflammatory
stimuli modulate PD-L1 expression on immature DCs. IFN-
γ and to a lesser extent IFN-α upregulated cell-surface PD-L1
(Figure 5A). Hantavirus replication triggers pattern recognition
receptors (PRRs) such as toll-like receptor 3 (TLR3) and
retinoic acid–inducible gene I (RIG-I) (30, 42, 43). Strikingly,
TLR3 agonist poly(I:C) strongly increased PD-L1 expression on
immature DCs (Figure 5A). Poly(I:C) similarly induced PD-L2
(data not shown). In contrast, immature DCs treated with RIG-I
activating signals such as UV-inactivated VSV or poly(dA:dT) did
not show increased PD-L1 expression (Figure 5A). The absence
of PD-L1 upregulation after stimulation of the RIG-I pathway
was confirmed by using Huh7.5 cells expressing a constitutive
active RIG-I molecule (RIG-CA) (25). These cells did not express
elevated PD-L1 levels compared to the untreated cells whereas
Huh7.5 cells treated with IFN-γ upregulated PD-L1 compared
to untreated Huh7.5 cells (Figure 5B). We also tested the effect
of hantaviral nucleocapsid (N) protein, which has many diverse
functional activities during the viral life cycle (44). As shown
in Figure 5C expression of N protein in HEL cells, a human
erythroleukemia cell line, resulted in PD-L1 upregulation. In
summary, type I IFN, hantaviral N protein, and TLR3 signaling
induced PD-L1 expression whereas RIG-I signaling had no effect.
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FIGURE 1 | Levels of sPD-L1, sPD-L2, hantavirus-specific IgG and NETs in sera from hantavirus-infected patients. Sera from normal healthy individuals or

convalescent hantavirus-infected patients (after the viremic phase) was tested by ELISA for levels of (A) sPD-L1 and (B) sPD-L2. Error bars represent the mean ± SD

(****p < 0.0001, ***p < 0.001, paired Student’s t-test). (C) Sequential sera samples from patients with PUUV (black) or DOBV (blue) were tested for sPD-L1. Red

samples also tested additionally positive for hantavirus RNA and are therefore acute infections. (D) Levels of sPD-L1 in patients with kidney failure or in convalescence

were further analyzed. Convalescent sera were separated into early convalescent (IgM dominant) or late convalescent (IgG dominant). Error bars represent the mean

± SD (*p < 0.05, paired Student’s t-test). (E) The level of NETs in sera from normal healthy individuals or convalescent hantavirus-infected patients was determined as

previously described (27). Error bars represent the mean ± SD (***p < 0.001, paired Student’s t-test). (F) Spleen sections from uninfected or HTNV-infected

humanized mice were stained for human PD-L1 (red) and nuclei (blue). HTNV-infected spleen sections show large areas of human cells with enhanced PD-L1

expression in comparison to uninfected spleen sections (upper left and right panel; inserts show higher magnification of cells; bars represent 100µm). Slides from

uninfected and HTNV-infected humanized and unreconstituted mice animals (N = 3 each group; 12 total) were analyzed using ImageJ to determine the intensity of

human PD-L1 staining (Lower panel). Error bars represent the mean ± SEM (****p < 0.0001, paired Student’s t-test). The samples from unreconstituted mice were

used to determine the background staining. No significant difference was found in background staining in HTNV-infected or uninfected unreconstituted mice.

Subversion of T Cell Responses by
Hantavirus-Induced Checkpoint Inhibitors
We next analyzed whether PD-L1 and PD-L2 is upregulated on
hantavirus-infected endothelial cells, which play a pivotal role
in hantavirus pathogenesis (45, 46). Upon hantavirus infection
human umbilical vein endothelial cells (HUVECs) upregulated

both PD-L1 and PD-L2 (Figure 6A). PD-L1 expression started

to increase on HTNV-infected cells at 12 h post infection
similar to MHC class I expression (Figure 6B). PD-L1 expression

further increased at later time points post infection (Figure 6B).
We also tested whether hantavirus-induced PD-L1 and PD-L2
modulate T cell responses. For this purpose, HTNV-infected
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FIGURE 2 | Mature DC phenotype after hantavirus infection. Immature DCs

were infected with HTNV at MOI of 1.5 and incubated for 4 days before

staining for (A) maturation markers and (B) costimulatory markers. The results

shown are representative of three independent experiments using three

different donors.

HUVECs were mixed with allogeneic CD4+ cells and stimulated
with PHA. T cells strongly upregulate PD-1 upon stimulation
with PHA (47). As shown in Figure 6C the numbers of
surviving T cells and endothelial cells was strongly reduced in
comparison to control T cells exposed to uninfected HUVECs,
suggesting that T cell proliferation may be reduced. These
results indicate that hantaviruses upregulate both PD-L1 and
PD-L2 on endothelial cells which has a functional effect on T
cells.

Hantavirus-Induced Bystander Activation
Despite Upregulation of Checkpoint
Inhibitors
To test the functional consequences of PD-1 ligand upregulation
we investigated the behavior of T cells when exposed to
infected autologous myeloid cells. We infected PBMCs from
healthy human donors with HTNV and subsequently stained
T cells for expression of the C-type lectin CD69 as an
early marker of T-cell activation (48). Recently, it has been
shown that CD69 regulates the metabolism and migration-
retention ratio of T cells as well as the acquisition of T
cell effector or regulatory phenotypes (49). Surprisingly, we
observed increased percentages of activated cells especially in
the CD8+ T cell population early after infection of PBMCs
with HTNV (Figure 7A). Bystander activation of T cells during
viral infections is common and is initiated by stimulated
professional APCs such as DCs (50). In order to identify
the responding cells, we tested whether heterologous memory
CD8+ T cells are activated in this experimental setting.

FIGURE 3 | Hantavirus-induced upregulation of PD-L1 and PD-L2 on

immature DCs. (A) Immature DCs were infected with HTNV at a MOI of 1.5

and incubated for 4 days before staining for PD-1, PD-L1 or PD-L2.

(B) Immature DCs infected as for (A) were stained for members of the B7

family other than PD-L1/PD-L2. The results shown are representative of three

independent experiments using three different donors. Positive controls are

given in the lower panel (B7-H2 and B7-H3 from HUVEC, B7-H4 from HEK293

cells transfected with a B7-H4 plasmid).

FIGURE 4 | Increase in PD-L1 and PD-L2 transcripts but not cellular uptake in

hantavirus-infected immature DCs. (A) Immature DCs were infected with

HTNV at MOI of 1.5 and incubated for 4 days or exposed to IFN-α for 6 h at

2,000 U/ml before being harvested. Subsequently, RNA was isolated and the

number of indicated transcripts quantified by qPCR according to the

delta-delta-Ct (ddCt) method. (B) Immature DCs infected as for (A) were

incubated with PE-coupled anti-PD-L1 antibody at 4◦C 1h or at 37◦C for 4 h

before being washed and analyzed by flow cytometry. Uptake was calculated

by subtracting MFI at 37◦C from MFI at 4◦C. Uptake of HTNV infected cells

was then compared to uninfected cells. Results are derived from three

independent experiments, error bars represent the mean ± SD.

For this purpose we infected PBMCs derived from HLA-
A2+ human healthy donors that were seropositive for human
cytomegalovirus (HCMV), a member of the human herpesvirus
family. A HLA-A2 tetramer loaded with a immunodominant
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FIGURE 5 | Control of PD-L1 expression by inflammatory stimuli.

(A) Immature DCs were exposed to the following inflammatory stimuli before

staining for PD-L1: type I IFN (IFN-α at 1,000 U/ml), type II IFN (IFN-γ at 1,000

U/ml), poly(dA:dT), UV-inactivated VSV or poly(I:C) for 24 h. The results shown

are representative of three independent experiments using three different

donors. (B) Huh7.5 cells (control), Huh7.5 cells permanently expressing a

constitutively active form of RIG-I (RIG-CA) or Huh7.5 cells stimulated with

IFN-γ at 1,000 U/ml for 24 h were stained for PD-L1 and analyzed by flow

cytometry. Results are derived from three independent experiments, error bars

represent the mean ± SEM (*p < 0.05, paired Student’s t-test). (C) HEL cells

were transfected with HTNV N-expressing plasmids or empty plasmids

(Control). After 2 days cells were stained for PD-L1. Results are given as a

percentage of control and are derived from three independent experiments,

error bars represent the mean ± SD.

peptide derived from pp65 (CMVpp65TET) was used to detect
HCMV-specific CD8+ memory T cells. After HTNV infection
of PBMCs the percentage of CMVpp65TET+ CD8+ T cells
that expressed CD107a (LAMP-1), a marker for degranulation

FIGURE 6 | Upregulation of functional PD-L1 and PD-L2 on HTNV-infected

endothelial cell lines. (A) HUVECs were infected with HTNV at a MOI of 1.5

and incubated for 4 days before staining for PD-L1 or PD-L2. The results

shown are representative of 4 independent experiments using 4 different

donors. (B) Human primary fibroblasts (Fi301) cells were infected at a MOI of

1.5 and incubated for 12, 24 or 48 h before staining for PD-L1 or MHC class I

molecules. Results are derived from three independent experiments (*p <

0.05, **p < 0.01, paired Student’s t-test). (C) HUVECs infected as for (A) were

mixed with allogeneic CD4+ cells at a ratio of 1:4 and treated with PHA at

5µg/ml. After 2 days the number cells was measured by MTT dye test

(EZ4U-test). Results are derived from three independent experiments using

three different donors, error bars represent the mean ± SD.

of activated CD8+ T cells (51), significantly increased in
PBMCs as compared to uninfected PBMCs (Figure 7B).
In contrast, in PBMCs infected with herpes simplex virus
type 1 (HSV-1), another member of the human herpesvirus
family, no significant increase in activated CMVpp65TET+
CD8+ T cells was observed (Figure 7B). In conclusion,
heterologous T cells are activated at an early time point after
hantavirus infection despite increased expression of PD-L1 on
antigen-presenting cells.
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FIGURE 7 | Monocyte-dependent bystander activation of CD8+ T

lymphocytes by hantavirus. PBMCs isolated from blood of healthy human

donors were mock-infected or infected with HTNV. After 3–4 days cells were

analyzed by flow cytometry. (A) HTNV-specific increase in CD69+ cells in the

CD4+ and CD8+ subset of CD3+ cells after 4 days of incubation. Results are

from three independent experiments. Error bars represent the mean ± SEM

(*p < 0.05, paired Student’s t-test). (B) PBMCs from HLA-A2+

HCMV-seropositive healthy human donors were exposed to HTNV or HSV-1

for 4 days before being stained for HCMV-specific CD3+ cells using a pp65

loaded tetramer reagent (CMVpp65TET). Degranulation was determined by

CD107a staining. Results are derived from three independent experiments.

Error bars represent the mean ± SEM (*p < 0.05, paired Student’s t-test).

CD86-Dependency of Hantavirus-Induced
Bystander Activation
We next examined the mechanisms by which hantavirus-infected
DCs cause bystander activation despite checkpoint inhibitors.
First, we tested whether hantavirus-infected DCs express
inflammatory cytokines that can cause bystander activation of
memory CD8+ T cells in the absence of cognate antigen such
as IL-15, IL-18, and IL-21 (52). For this purpose RNA from
immature DCs infected with HTNV or exposed to IFN-α was
isolated and subjected to qPCR. As shown in Figure 8A HTNV
upregulated production of mRNA encoding IL-15, IL-18, and
IL-21 in immature DCs. This finding is in line with cytokine-
drive bystander activation of T cells during hantavirus infection
of PBMCs. In order to further dissect the mechanism we used
antibodies to block IL-15 as this cytokine has been implicated in
hantavirus-induced natural killer (NK) cell activation (53). We
also blocked type I IFN, which also can contribute to bystander
activation of T cells (52). The IL-15 block had no significant
effect whereas the type I IFN block significantly reduced T cell
bystander activation (Figure 8B). In comparison depletion of
CD14+ cells completely abrogated hantavirus-induced bystander
activation (Figure 8B). CD14 serves as marker for monocytes
which are detected in PBMCs at frequencies of 10–20% (54) and
represent the major hantavirus-permissive cell type in PBMCs.
In addition, by blocking the T cell costimulatory molecule B7-2
(CD86) during HTNV infection of PBMCs we could also prevent
bystander activation of CD8+ T cells (Figure 8C). In contrast,
blocking of MHC class I molecules had no effect (Figure 8C).
These result suggested that CD86 expressed by CD14+ cells
plays a major role in hantavirus-induced bystander activation
whereas interaction of T cell receptors (TCRs) with MHC-bound
peptides interactions is not required (Figure 8C). In accordance,
CD14+ cells strongly upregulated CD86 during infection with
HTNV (Figure 8D) and high levels of soluble CD86 were
detected in hantavirus-infected patients (Figure 8E). Taken

together, these results demonstrate that CD14+ monocytes are
inducing hantavirus-driven bystander T cell activation in a
CD86-dependent manner.

DISCUSSION

In this study, we detected high amounts of sPD-L1 and
sPD-L2 in sera of hantavirus-infected patients. Hantaviruses
strongly upregulated PD-L1 and PD-L2 on endothelial cells,
which play a pivotal role in hantavirus-induced pathogenesis.
In line with an inhibitory role of PD-L1/PD-L2 hantavirus-
infected endothelial cells did not induce T cell proliferation.
Hantaviruses also strongly increased expression of PD-L1 and
PD-L2 on monocyte-derived DCs. However, monocyte-derived
inflammatory cells could still activate heterologous CD8+ T cells
in a CD86-dependent fashion. This indicates that hantavirus-
induced CD8+ T cell bystander activation bypasses inhibitory
checkpoints.

Gene expression of PD-L1 and PD-L2 is controlled by
inflammatory signals (9). Hantavirus-induced upregulation of
PD-L1 and PD-L2 could be indirect due to release of IFNs. In
line with this view, endothelial cells and DCs predominantly
produce IFN-β upon infection with pathogenic hantaviruses
(37, 38, 55, 56). PD-L2 is upregulated equally well by IFN-β
and IFN-γ whereas PD-L1 is especially sensitive to IFN-γ (57).
In hantavirus-infected patients vigorous responses of NK cells
and CD8+ T cells resulting in increased levels of IFN-γ are
observed (19, 58–61). In addition to this, we show that hantaviral
N protein in HEL cells resulted in PD-L1 upregulation although
the underlying mechanism is unclear. Thus, IFN-independent
mechanisms may contribute to hantavirus-induced PD-L1/PD-
L2 expression as recently shown for MHC class I molecules (62).
In conclusion, PD-L1/PD-L2 upregulation in hantavirus-infected
patients is due to both IFNs and additional IFN-independent
mechanisms.

Hantavirus infection is detected by pattern recognition
receptors, primarily TLR-3 (42) and RIG-I. (30, 43). We found
that the TLR3 ligand poly(I:C) strongly increased PD-L1 levels
on immature DCs. In accordance, poly(I:C) has been reported
to upregulate PD-L1 on DCs (63, 64) as well as endothelial
cells (65) and airway epithelial cells (66). In contrast, PD-L1
was not upregulated upon stimulating RIG-I. Taken together,
our in vitro observations would fit with hantavirus infection
strongly inducing PD-L1 and PD-L2 by triggering TLR-3,
which transmits downstream signals through the TIR-domain-
containing adapter-inducing IFN-β (TRIF) pathway. Production
of IFN-β by both TLR3 and RIG-I induced signaling would be
expected to further increase expression of PD-1 ligands later in
infection.

Other viruses have also been reported to modulate checkpoint
inhibitors. Similar to hantaviruses the Japanese encephalitis virus
nonlytically infects monocyte-derived DCs thereby inducing
phenotypic maturation and a significant increase in PD-L1
expression (67). Replication competent but not inactivated
KSHV induces PD-L1 expression in human monocytes in a
dose-dependent manner although the precise mechanism has
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FIGURE 8 | Dependency of hantavirus-induced bystander activation on costimulatory CD86 molecules. (A) Immature DCs were infected with HTNV at a MOI of 1.5

and incubated for 4 days or exposed to IFN-α for 6 h at 2,000 U/ml before being harvested. Subsequently, cellular RNA was isolated and the number of indicated

cytokine-encoding transcripts quantified by qPCR according to the delta-delta-Ct (ddCt) method. (B) PBMCs treated with anti-IL15 (20µg/ml) or anti-IFN-α (20µg/ml)

and PBMCs depleted of CD14+ cells were exposed to HTNV at a MOI of 1.5 for 4 days before CD69 expression on CD8+ cells was measured by cytofluorimetric

analysis. Results are derived from three independent experiments, error bars represent the mean ± SEM (*p < 0.05, ***p < 0.001, 1 way ANOVA test with Bonferroni

correction). (C) PBMCs treated with anti-CD86 or anti-MHC (both 10µg/ml) were exposed to HTNV at a MOI of 1.5 for 4 days before CD69 expression on CD8+

CD45RO+ cells was determined by cytofluorimetric analysis. Error bars represent the mean ± SEM (*P < 0.05, Student’s t-test). (D) PBMC infected with MOI 1.5 of

TULV or HTNV were analyzed 3 days post infection for the expression of CD86 on the surface of CD14+ cells. (E) Sera from normal healthy individuals or

convalescent hantavirus-infected patients were tested by ELISA for levels of sCD86. Error bars represent the mean ± SD (****p < 0.0001, paired Student’s t-test).

not been defined (68). Akhmetzyanova et al. observed a type I
IFN-dependent increase in PD-L1 expression after infection of
spleen cells with the murine Friend retrovirus (FV) (69). PD-1
and PD-L1 are also up-regulated in monocytic cells upon HIV-
1 infection (70, 71). In accordance, the HIV-1 Tat protein has
been observed to increase PD-L1 expression on DCs through
TNF-α and TLR4 (72). The HCV core protein up-regulates PD-
L1 expression on Kupffer cells, which binds PD-1 to promote
T cell dysfunction and development of viral persistence (73).
A subset of macrophages upregulated PD-L1 expression via
type I IFN during infection with LCMV (74). In addition,
influenza virus enhances PD-L1 expression of lung macrophages
through type I IFN signaling (75). Taken together, it appears that
PD-L1 upregulation is a relatively common consequence of viral
infection which is driven by type I IFN and viral PRR triggering.

PD-L1 expression on professional APCs facilitates the
induction of regulatory T cells (Tregs) and enhances expression

of the key transcription factor forkhead box p3 (Foxp3) (76, 77).
Tregs not only regulate effector T cell function but also humoral
immunity (78). A recent report has shown that the severity
of hantavirus-associated disease correlates with expression of
Foxp3 (79). This strongly suggests that hantavirus-induced
upregulation of PD-L1 on DCs induces Tregs. In accordance,
other investigators have shown that virus-induced PD-L1
upregulation on monocyte-derived DCs leads to expansion of
Tregs (67).

We observed that hantavirus-infected human endothelial
cells upregulate surface expression of PD-L1 and PD-L2
and inhibit proliferation of PHA-stimulated T cells. Other
investigators detected increased amounts of PD-L1 in hantavirus-
infected cultures of rat endothelial cells (80). In HFRS
patients, hantavirus-induced PD-L1 may be responsible for the
contraction of a newly identified highly cytotoxic T cell subset
that strongly upregulates PD-1 in the late phase of hantavirus
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infection (81). Hantavirus-induced expression of PD-L1 and
PD-L2 may contribute to the recently described protection of
hantavirus-infected endothelial cells from cytotoxic attack by
CD8+ T cells and NK cells (82). In line with this notion, antibody
blockade of PD-L1 and PD-L2 on IFN-γ treated endothelial
cells enhanced cytolytic activity of antigen-specific CD8+ T
lymphocytes (8). Similarly, failure of the inhibitory PD-1/PD-
L1 axis during hantavirus infection of vascular tissue may lead
to unbalanced immunostimulation and immunopathology as
proposed for inflammatory blood vessel diseases (83).

Despite checkpoint inhibition we observed bystander
activation in a subset of T cells. Bystander activation of T
lymphocytes represents a first line of antiviral defense and may
contribute to hantavirus-induced immunopathogenesis. In line
with his view, bystander T cells responding to dengue virus,
another VHF virus, secrete IFN-γ (84). It has been reported
that virus-induced bystander T cell activation bypasses control
checkpoints such as Tregs (85). In accordance, we observed
that hantavirus-induced bystander T cell activation is not
prevented by PD-Ll/PD-L2 upregulation on monocyte-derived
inflammatory DCs. This can be explained by the fact that
bystander CD8+ T cell activation does not result in TCR-
induced PD-1 upregulation. In contrast, TCR signaling induced
by cognate antigen upregulates PD-1 expression on CD8+ T
cells within the first 24 h during infection (86). This may ensure
that virus-specific T cells are excluded from innate responses and
differentiate into effector T cells of the adaptive immunity.

Hantavirus-induced bystander activation was strictly
dependent on CD14+ cells. This may be explained firstly by
the fact that monocyte-derived cells are needed for hantavirus
infection in PBMCs. Secondly, CD86 is expressed almost
exclusively on monocyte-derived cell types and we could show
that CD86 was required for hantavirus-induced bystander
activation. Thus, CD86 on hantavirus-infected DCs may activate
heterologous CD8+ T cells through CD28. The importance
of CD28 for bystander activation of CD8+ T cells has been
previously described (87). It is unlikely that hantaviruses directly
activate T lymphocytes through PRRs. However, previous
reports demonstrated that inflammatory cytokines such as type
I contribute to innate T cell activation (88–90). In accordance,
we observed that blocking of type I IFN reduced bystander
activation of CD8+ T cells upon hantavirus infection.

Many acute viral infections are known to trigger bystander
activation of heterologous CD8+ T cells (91–93). Often CD8+
T cells specific for human herpesviruses contribute to the
heterologous antiviral immune response (92). In line with
this view, we observed activation of HCMV-specific memory
CD8+ T cells in PBMCs from HCMV-seropositive patients after

hantavirus infection. In fact, bystander activation of CD8+ T
cells represent an early line of antiviral defense (94). Bystander
activated CD8+ T lymphocytes control early pathogen load in
virus-infected tissue by a NKG2D-dependent mechanism (95). In
accordance with this concept, cytotoxic CD8+ T cells strongly
expressing NKG2D were detected in the lung of hantavirus-
infected patients (96). NKG2D ligands are upregulated by PRRs
that sense viral replication (97). These include RIG-I, which has
been shown to detect hantaviruses (30). Interestingly, a strong

plasmablast response with reactivity against virus-unrelated
antigens has recently been detected in patients with acute
hantavirus pulmonary syndrome (98).Whether this heterologous
B cell response has a pathogenic or protective role is unclear.

In conclusion, hantavirus-infected patients suffer from
immunopathology in the face of immunosuppressive PD-L1
upregulated by hantaviral N protein and most likely hantavirus-
induced TLR3 signaling. This apparent discrepancy could be
explained by rapid cleavage and removal of PD-L1 from the
surface of hantavirus-infected cells in vivo. In accordance,
we detected large quantities of sPD-L1 in the serum of
patients with hantavirus-associated disease. Moreover, the lack
of opportunistic infections in these patients implies that PD-
L1 does not globally suppress the immune system. Finally, early
activation of heterologous CD8+ T cells during acute virus
infections bypasses or overwhelms the inhibitory PD-1/PD-L1
axis and represents a means of eluding viral immune subversion
at least in the short term (99).
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