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T-cell exhaustion is a phenomenon of dysfunction or physical elimination of

antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B

virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion

appears to be often restricted to CD8+ T cells responses in the literature, although

CD4+ T cells have also been reported to be functionally exhausted in certain chronic

infections. Although our understanding of the molecular mechanisms associated with

the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also

explore the central mechanisms that control the altered expression patterns. Targeting

metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to

improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it

is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion

and how mitochondrial metabolism of T cells could be targeted whilst treating chronic

viral infections. Here, we review the current understanding of cardinal features of T-cell

exhaustion in chronic infections, and have attempted to focus on recent discoveries,

potential strategies to reverse exhaustion and reinvigorate optimal protective immune

responses in the host.
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INTRODUCTION

T cells play a key role in orchestrating pathogen-specific adaptive immune responses.
During primary infection, naive T cells recognize antigenic peptides presented on major
histocompatibility complex (MHC) molecules via their T-cell receptors (TCRs), leading to their
activation and differentiation into effector T cells over the course of ∼1–2 weeks (1, 2). This
differentiation results in robust proliferation, transcriptional, epigenetic, and metabolic changes,
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as well as the acquisition of effector functions, altered tissue
homing, andmassive clonal expansion (1, 3). Following antigenic
clearance, a vast majority of the effector T cells die by apoptosis.
However, ∼5–10% of the cells persist and differentiate into
memory T cells such as central memory, effector memory, and
tissue resident memory T cells (1, 3). Memory T cells are
maintained after the effector phase and can rapidly execute
their effector functions in response to reinfection/exposure to
previously encountered antigens. The rapid effector function
arises when the antigen is present transitory during an acute
infection. Nonetheless, this programming of memory T cell
differentiation is distinctly altered during chronic viral and
bacterial infections, and also in chronic diseases such as cancer
due to persistent antigenic exposure and/or inflammation (3, 4).
When altered differentiation progresses, the immune response
fails, and antigen-specific T cells progress to a state called T-cell
exhaustion.

T-cell exhaustion was first defined in 1993 by Moskophidis
and colleagues when they demonstrated impaired cytotoxic
functions during viral persistence in murine models (5). T-cell
exhaustion denotes the physical elimination of antigen-specific
T cells, also observed in chronic lymphocytic choriomeningitis
virus (LCMV) infection of mice (6, 7). T-cell exhaustion has
also been reported in various human chronic viral infections
such as human immunodeficiency virus (HIV), hepatitis B
(HBV), and hepatitis C (HCV), as well as in cancer (4, 8,
9). Exhaustion has been mostly described for CD8+ T cells
responses although CD4+ T cells have also been reported to
be functionally unresponsive in several chronic infections (10,
11). Wherry et al. firstly described the molecular signature of
CD8+ T-cell exhaustion during chronic viral infection (12).
Later, advances in biomedical technologies in research including
the utilization of MHC multimers that can recognize antigen-
specific T cells without reliance on T cell functions as readout,
as well as the progress in improved methods to evaluate
the phenotypic and functional portfolios of single cells have
enhanced our understanding of the complexities underlying the
T-cell exhaustion phenomenon (10, 13).

The state of exhaustion is mainly characterized by sequential
loss of T cell effector functions in a hierarchical manner where
loss of interleukin (IL)-2 production is the earliest sign (14, 15).
Subsequently, the production of tumor necrosis factor (TNF)
and other cytokines is dramatically reduced. However, interferon
(IFN)-γ, beta-chemokine production and perhaps cytotoxic
activities, are more resilient to inactivation (16–19). Exhausted
T cells also have altered proliferative abilities, sustained
upregulation of a wide array of co-inhibitory receptors, unique
transcriptional and epigenetic signatures, altered metabolic
fitness, failure for transition to quiescence, and acquisition of
antigen-independent memory T cell responsiveness (3, 4, 8,
20, 21). Notably, severely exhausted T cells appear to undergo
apoptosis and become eliminated leading to marked decline in
virus-specific T cells (5, 22, 23).

It is imperative to also understand that T-cell exhaustion
should be clearly delineated from T-cell anergy and senescence.
T-cell anergy is a state of non-responsiveness molecularly distinct
from T-cell exhaustion, which is induced by excessive stimulation

of TCR and either robust co-inhibitory molecule signaling or
restricted presence of concomitant co-stimulation through CD28
(4, 24). On the other hand, senescent T cells are often described
by increased expression of markers such as killer-cell lectin-like
receptor G1 (KLRG1) and/or CD57 (25–27), which exhausted T
cells have in low levels on their surfaces (12). The expression of
PD-1 is also increased on exhausted T cells whereas senescent
cells seldom express this marker (28). In this review, we will
discuss our current understanding of cardinal features of T-cell
exhaustion in chronic infections, while we will attempt to also
focus on recent discoveries and potential strategies for reversing
the state of exhaustion with a view to reinvigorate immune
responses.

IMMUNE CHECKPOINTS WITH
THERAPEUTIC POTENTIALS IN T-CELL
EXHAUSTION

In acute infections, co-inhibitory receptors function to
dampen the magnitude of immune responses, which are
in fact, down-regulated after pathogen clearance to achieve
homeostasis, and development of memory T cells. However, this
pattern diverges during chronic infections, where higher and
sustained expression of co-inhibitory receptors is characteristic
(3, 10). Co-inhibitory receptors vary in expression pattern,
ligands, and signaling motifs and our understanding of the
molecular mechanisms whereby they control T-cell exhaustion
is seldom understood (29). However, the identification of their
significance in the dysregulation of cellular immune responses
in chronically infected hosts has provided newer avenues for
designing therapeutic molecules to restore optimum immune
responses (10).

PD-1 PLAYS A PIVOTAL ROLE IN
REGULATING T-CELL EXHAUSTION

The dominant role of programmed death-1 (PD-1) in regulating
T-cell exhaustion was first revealed following gene expression
profiling of virus-specific CD8+ T cells during chronic LCMV
infection (30). Exhausted T cells up-regulated PD-1 expression,
and blockade of the PD-1 pathway promoted effector functions of
virus-specific T cells and significantly reduced the viral load in the
experimental animals. This result has been further substantiated
in many other chronic infections in mice, non-human primates,
and humans.

During HIV-1 infection, PD-1 expression on HIV-specific
CD8+ T cells positively correlates with high viral load,
impairment of CD8+ T-cell function, disease progression, and
reduced CD4+ T-cell counts. Antiretroviral therapy (ART) can
reduce the expression of PD-1 on virus-specific T cells in HIV-
infected patients. Long-term non-progressors (LTNPs) have low
expression of PD-1 on virus-specific T cells and these populations
are more polyfunctional than T cells of progressors (10, 31,
32). In vitro studies describe that blocking the PD-1 pathway
restores T-cell functions and improves pathogen control by
enhancing the proliferation potentials of T cells and promoting
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cytokine production (31–33). Moreover, in vivo administration
of anti-PD-L1 antibody increased both CD4+ and CD8+ T
cells with the ability to inhibit viral replication, i.e., decreasing
the plasma viral load, in mice chronically infected with HIV-
1 (34). More recently, treatment with PD-1 inhibitory antibody
during simian immunodeficiency virus (SIV) infection increased
the frequencies and functional quality of SIV-specific CD8+ T
cells detectable in the blood and gut, viral loads declined, and
significantly improved the survival rates in infected macaques
(35, 36). In addition to HIV, the dynamics and significance
of the PD-1 pathway has been investigated in HBV and HCV
infections (37–41). In chimpanzees chronically infected with
HCV, a 100-fold suppression of viremia was observed in one
of three animals treated with anti-PD-1 antibodies. Control of
virus replication was associated with reinvigoration of HCV-
specific CD4+ and CD8+ T cell responses (42). Interestingly,
PD-1 expression noticeably increased on HCV-specific CD8+ T
cells in the liver although the blocking of PD-1 had no enhancing
effect on the functions of these cells (41). This explains that
multiple factors must contribute and control the maintenance
of T-cell exhaustion and also indicates that the severity of
exhaustion is highly influenced by the location and levels of viral
antigen and the compartmentalization of the virus-specific T
cells (10).

Clinical trials have so far only evaluated single-dose regimens
in chronically infected patients, due to considerations of
potential toxicities of PD-1-targeted therapy in otherwise healthy
individuals (29). Even though there was only a modest response
rate for chronic HCV, among 20 patients receiving the highest
anti-PD-1 dose, three showed remarkable reduction in viral
RNA, and in 1 patient, HCV was undetectable for at least 1
year. Mild to moderate immune-related adverse events were
reported in six of 54 patients, which were resolved without
specific intervention (43). Single-dose PD-1-targeted therapy,
i.e., anti-PD-L1, has been evaluated in HIV infected patients
on clinically effective combination ART (cART). In this study,
Gay et al. described an increase in HIV-specific CD8+ T cell
responses in the blood in two of six patients, but without any
effects on HIV viral load. This result could likely be attributed
to the dosage of anti-PD-L1 antibodies used, which was 10-fold
lower than dosages selected for activity in patients with cancer
(44). These clinical trials suggest that there is potential to use
PD-1-targeted therapy in some patients for overcoming chronic
infections and that combination treatments should further be
assessed (29).

CONTRIBUTION OF OTHER
CO-INHIBITORY RECEPTORS FOR T-CELL
EXHAUSTION

There are several co-inhibitory molecules other than PD-1,
which are expressed on exhausted T cells. Exhausted T cells
can co-express PD-1 together with cytotoxic T lymphocyte
antigen-4 (CTLA-4), T cell immunoglobulin domain and mucin
domain-containing protein 3 (TIM-3), 2B4 (CD244), lymphocyte
activation gene 3 protein (LAG-3), CD160, and several others

(45). The individual expression of PD-1 or other co-inhibitory
receptors does not define a state of exhaustion rather a co-
expression of multiple co-inhibitory receptors do. Interestingly,
the indicated co-expression patterns are mechanistically related,
as concurrent blockade of these multiple co-inhibitory receptors
lead to synergistic reversal of exhaustion (3). Direct in vivo
blockade of CTLA-4 during chronic viral infections such as
LCMV, SIV, and HIV suggest that blockade of CTLA-4 fail to
decrease the viral load or increase T cell functionalities (30, 46).
In HCV infection, in vitro blockade of PD-1 alone failed to
restore the functions of hepatic PD-1+ CTLA-4+ virus-specific
CD8+ T cells although concurrent blockade of CTLA-4 and
PD-1 reinvigorated HCV-specific CD8+ T cells in a CD4+ T
cell–independent manner (41). Impressive results in controlling
cancer has been demonstrated for combined PD-1 and CTLA-
4 blockade in patients with melanoma, and drugs targeting at
least three other immune checkpoints, i.e., LAG-3, TIM-3, and
TIGIT, are now in clinical trials (29, 47). The investigation of co-
inhibitory molecules in co-regulating T-cell exhaustion indicates
that these pathways are non-redundant. It is also important
to consider that the molecules constitute diverse structural
families, which bind ligands with unique expression patterns and
poses distinct intracellular signaling pathways. Hence, there is
a potential to negate exhaustion through manipulation of the
pathways where these molecules are involved (3).

CYTOKINES AND T-CELL EXHAUSTION

Cytokines are molecules that facilitate communications,
activation, differentiation and de-activation of immune cells.
Involvement of both pro- and anti-inflammatory cytokines in
T-cell functions has been extensively studied to understand
the physiology of T cells under stressed conditions (48). Of
these modulators is the immunosuppressive cytokine IL-10,
which has been identified as a potential target to reinvigorate
exhausted T cells. IL-10 has been reported to be positively
associated with persistence of viral infections such as HCV,
HIV, and Epstein-Barr virus (EBV), a possible strategy for
viruses to evade host immune defenses (49, 50). In LCMV
infection models, the blockade of IL-10 appears to inhibit
viral persistence and enhances T-cell functions (51, 52). IL-
10 blockade is also employed in HIV infection, whereby
IL-10Rα blockade results in markedly increased secretion of
IFN-γ by CD4+ T cells. However, combining IL-10 blockade
with PD-1 blockade can only restore a restricted number of
cytokines produced by T cells including IL-2 (53). On the
contrary, in a mouse model of LCMV infection, combined
anti-IL-10 and anti-PD-1 therapy synergistically enhanced
anti-viral response of T cells (54). Despite the benefits of
anti-IL-10 therapy, there are still disadvantages in modulating
this otherwise important anti-inflammatory cytokine. For
instance, IL-10 production and downstream signaling paves
the way for regulating inflammation against gut microbiome
(55). Taken together, with the observations of IL-10-mediated
regulation of liver inflammation following LCMV infection,
treatment with anti-IL-10 should be carefully calibrated
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to prevent undesirable side-effects (56). This concern also
warrants a thorough revisit on the role of IL-10 blockade in
immunotherapy (50).

Apart from IL-10, IL-2 also serves as a target for
immunotherapy. Exogenous administration of IL-2 in vitro
is able to abrogate PD-1 inhibitory signaling (57). Grint et al.
demonstrated that IL-2 treatment successfully decreased the
virus RNA levels in HCV in HCV/HIV co-infected patients
(58). Importantly, IL-2 therapy is highly dependent on the
state of infection and can give rise to opposing consequences,
such as that previously described with the administration of
IL-2/anti-IL-2 immune complexes, which results in expansion
of regulatory T cells (Tregs) that impede virus clearance and
anti-viral functions of T-cells (59).

Other cytokines serving as potential immunotherapeutic
targets in reverting T-cell exhaustion include IL-7, IL-17, IL-21,
IL-22, and many others, which are also regarded as key mediators
during chronic infections (60–63). IL-21, for instance, improves
the clinical outcome in SIV-infected macaques with reduction
in the non-AIDS-associated morbidities when administered as
supplements with probiotics and ART (64). Other combinations
of ART with type-1 interferon (IFN-I) has also yielded positive
results by reducing the viral loads and restoring CD8+ T-cell
functions in humanized mice infected with HIV (65).

CROSS-TALK OF EXHAUSTED T CELLS
WITH OTHER IMMUNE CELLS

The frequency of Tregs may be increased in HIV and HCV
infections where Tregs likely limit the in vitro responses of
effector T cells (66). The direct role of Tregs in exhaustion
of CD8+ T cells as well as FOXP3–CD4+ T cells remains
unclear. There is also a possibility for Tregs to play a role in
exhaustion considering that Tregs are a source of IL-10, TGF-β
and perhaps other suppressive cytokines, for instance IL-35 (66).
Interestingly, recent reports in a chronic LCMVmodel described
an interaction between Tregs and the PD-1 signaling pathway
in regulating exhausted CD8+ T cells because simultaneous
reduction of Tregs and blockade of PD-1 signaling pathway
appears to have a robust synergistic effect on viral control and
reversal of exhaustion (67). Furthermore, other immune cell
types such as antigen-presenting cells (APCs), myeloid-derived
suppressor cells (MDSCs) (68, 69) natural killer (NK) cells and
even CD8+ regulatory populations (70–72) have been reported
to directly or indirectly promote T-cell exhaustion during chronic
infections.

Accumulating evidence indicates that functional impairment
of DCs could be associated with exhaustion of T cell functions
and progression of disease in HIV, HBV, HCV, and LCMV
infections (70, 71, 73–75) although the molecular mechanism
behind the impairment of T cell functions mediated via DCs
during chronic infections still remain ambiguous. Recent studies
showed that DCs promote T-cell exhaustion through signaling by
inhibitory receptors such as PD-1 and CTLA-4 (75, 76). Indeed,
PD-L1 is up-regulated on mDCs, although MHC molecules
and co-stimulatory molecules such as B7-1, B7-2, and CD40

are down-regulated (74, 75, 77). Intriguingly, up-regulated PD-
L1 appears to impair DC functions and associate with disease
progression during HIV and HBV infections (74, 75, 77).

TRANSCRIPTOMIC CHANGES IN T-CELL
EXHAUSTION

Several recent studies demonstrated that exhausted T cells have
a transcriptional profile remarkably different from their effector
and memory counterparts. These differences include major
alternations in the expression level of co-inhibitory and co-
stimulatory molecules, transcription factors, signaling molecules,
chemokine and cytokine receptors, and genes involved in
metabolism (12, 20, 78). There are several transcription factors
that play significance roles in T-cell exhaustion, including T-
bet, EOMES, FOXO1, FOXP1, Blimp-1, NFAT, BATF, IRF4, and
von Hippel–Lindau disease tumor suppressor (VHL) (16, 79–
86). Intriguingly, the main transcription factors, which regulate
establishment of T-cell exhaustion function in a specific manner.
During acute infection, terminally differentiated CD8+ T cells
express T-bet that has a functional role in the development of
these cell subsets (87) and differentiation of Th1 cells. However,
this transcription factor regulates the population of non-terminal
progenitor cells within the exhausted T cell subsets during
chronic infections (2, 81). It is described that EOMES favor the
development of central memory T cells during acute infection
by regulating quiescence and homeostatic turnover (88–90).
On the other hand, it is reported that EOMES regulates the
development of a terminally-differentiated subset of exhausted T
cells during chronic infection (81). There are two phenotypically
characterized subsets of exhausted T cells that are described
by intermediate expression of inhibitory receptor PD-1 and
high expression of the transcription factor T-bet and (PD-1IntT-
betHi) or high Eomes and high PD-1 expression (EomesHiPD-
1Hi). Although both the populations are required for control
of chronic infection, the PD-1Int subset have been shown to
contribute distinctly to clearance of pathogens upon PD-1
blockade (3, 81, 91).

In a study using toxoplasma encephalitis (TE)–susceptible
model, the CD4 +T cells experienced a more pronounced
exhaustion in comparison with CD8+ T cells. It has also
been demonstrated that deletion of Blimp-1 from exhausted
CD4+ T cells led to reversal of CD8+ T-cell exhaustion
and improved pathogen control (92). The transcription factor
interferon regulatory factor 9 (IRF9) has an integral role
in the antiviral immune response and is considered as a
component of IFN type I signaling pathway downstream
of the IFN-I receptor (IFNAR) (93). Using LCMV acute
infection model, it has been demonstrated that IRF9 limited
early LCMV replication by controlling the expression of IFN-
stimulated genes and IFN-I, and by regulating the levels of
IRF7, a transcription factor necessary for IFN-I production.
The study has also revealed that infection of IRF9- or IFNAR-
deficient mice resulted in the loss of early restriction of viral
replication and impaired anti-viral responses among dendritic
cells, leading to CD8+ T-cell exhaustion and chronic infection
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(94). Our understanding of the transcriptional regulation of
T-cell exhaustion is progressing, although it is important to
elucidate the mechanisms controlling the altered pattern of
gene expression. Moreover, there is also a necessity to identify
a master lineage-specific transcription factor for exhausted
T cells (63).

SIGNALING PATHWAYS AND T-CELL
EXHAUSTION

T-cell exhaustion involves a tight control by intricate signaling
pathways, either through active or passive suppression
(Figure 1). The signaling pathways involved in the up- and
down-streams of PD-1, a central player in rendering T-cell
exhaustion, are as discussed herein.

Chronic antigen stimulation alone is known to be adequate
in conferring T-cell exhaustion and inducing PD-1 expression
(3). PD-1 limits T-cell activation by attenuating TCR signaling,
thus preventing immunopathology. PD-1 is a transmembrane
molecule, and it’s C-terminal domain at the cytoplasmic tail
harbors an V/IxY225xxL/V immunoreceptor tyrosine-based
inhibitory motif (ITIM) and an TxY248xxV/I immunoreceptor
tyrosine-based switch motif (ITSM) inhibitory domains, which
serve as binding sites for Src homology 2 domain-containing
tyrosine phosphatase 2 (SHP2) (95–97).

Mutation of the ITSM tyrosine domain, which prevents SHP2
recruitment attenuates the ability of PD-1 to suppress T cell
activation (96, 98). Engagement of PD-1 receptor with PD-L1
or PD-L2 recruits SHP2 phosphatase to its cytoplasmic domain,
which functions to inhibit TCR signaling pathway by preventing
ZAP70 phosphorylation and its association with CD3ζ at TCR
complex (99). SHP2 also interferes with CD28 costimulatory
signaling by blocking PKC-θ activation and dephosphorylates
TCR signaling molecules including phospholipase C γ 1 (PLCγ1)
and Extracellular signal-regulated protein kinases (ERK1/2)
(100).

Besides, PD-1 antagonizes T-cell signaling by inhibiting
phosphatidylinositide 3-kinase (PI3K)/AKT/mammalian target
of rapamycin (mTOR) pathway. The PI3K/AKT/mTOR pathway
is well established in regulating cell survival, proliferation and
metabolism. Recruitment of SHP2 to the ITIM and ITSM
cytoplasmic domains of PD-1 inhibits PI3K thus further blocks
AKT phosphorylation and mTOR pathway (101). It is important
to note that reports from cancer studies suggest that PD-
1 engagement with PD-L1 does not cause dephosphorylation,
but leads to phosphorylation and activation of AKT and ERK,
which increases chemo resistance of the cancer cells (102,
103), implying a difference in PD-1 signaling between chronic
infection and cancer that requires further investigation. Through
inhibiting these signaling molecules, PD-1 indirectly inhibits the
production of cytokines including IL-2, hence interferes with T
cell growth and function. Anti-PD-1 treatment is able to restore
anti-viral T-cell signaling such as phosphor-JNK, phosphor-ZAP-
70 and phosphor-ERK, besides cytokine production (104).

T-cell activation promotes clathrin-independent
internalization TCRζ internalization as reported by Compeer

et al. (105) but TCR unit is often directed to the recycling
compartment. PD-1 ligation antagonizes TCR signaling by
causing internalization and ubiquitin-mediated degradation by
casitas B-lymphoma (Cbl)-b E3 ubiquitin ligase (106). Besides,
results from single cell imaging suggest that engagement of
PD-1 receptors form a microcluster consisting of PD-1 and
TCR within the synapse (100). This PD-1-TCR microcluster
formation interferes with the TCR signal and mediates T-cell
suppression. In case of chronic infection, viral persistence causes
the arrest of T cell motility in the splenic red pulp, as PD-1
engagement provides stability to the immunological synapse
resulting in immune paralysis in which the unresponsive T
cell cannot be released from the sites to engage other targets
(104). However, T-cell motility arrest can be completely restored
by therapeutic blockade of intravenous injection of antibodies
against PD-1 and PD-L1 (104).

One of the hallmarks of T-cell exhaustion is impaired cell
proliferation. PD-1 inhibits cell proliferation by attenuating
TCR-mediated activation of IL-2 production (99). In addition,
PD-1 blocks cell cycle progression through the G1 phase by
suppressing multiple transcription of SKP2, downstream of
PI3K-AKT and ERK pathways (107). SKP2 is a component
of Skp1/Cullin/F-box protein ubiquitin ligase, which functions
to degrade p27 (kip1) and inactivates cyclin-dependent kinases
(Cdks). By interfering with TCR signaling pathway, PD-1
engagement also leads to changes in transcriptional program
of T cells, as seen in the gene expression profiles from HIV-
specific CD8+ T cells in HIV-infected individuals. Among the
list of the regulated genes include basic leucine transcription
factor, ATF-like (BATF), an AP-1 family of transcription factor,
of which overexpression impairs T-cell proliferation and cytokine
functions. In contrast, BATF silencing rescue HIV-specific T cells
derived from individuals with chronic viremia (80).

EPIGENETIC ALTERNATIONS OF T-CELL
EXHAUSTION

Several reports have described that the epigenetic landscape of
a cell directly influences the transcriptional regulation of T-
cell exhaustion. Therefore, decoding the language of epigenome
specific to exhausted T cells appears to be one of the fundamental
steps toward developing therapeutic strategies for overcoming
T-cell exhaustion (108).

Currently, there is a paucity for information on global
epigenetic landscape for exhausted T cells although recent studies
of the Pdcd1 locus (which encodes PD-1) revealed important
information (29). During acute LCMV infection, the regulatory
region of the Pdcd1 locus is completely demethylated in
exhausted CD8+T cells compared to effector andmemory T cells
counterparts, and that reduction of virus titers is unlikely to affect
methylation pattern as the Pdcd1 regulatory region remained
unmethylated when virus titers decreased (109). Moreover,
chromatin remodeling of CD8+ T cells from LCMV-infected
mice revealed that diacetylated histone H3 was downregulated
in total and virus-specific CD8+ T cells suggesting loss of
epigenetically active genes (110). Intriguingly, in vitro treatment
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FIGURE 1 | PD-1 signal inhibits T-cell receptor (TCR) signaling pathway through several different mechanisms. (a) PD-1 engagement with PD-L1 or PD-L2 ligands

blocks TCR signal transmission by promoting microcluster formation and degradation of TCR. Accumulation of PD-1 within the synapse stabilizes the interaction

between T cells and antigen presenting cells causing “immune paralysis” and cell motility arrest. PD-1 ligation also enhances TCR internalization and degradation by

Casitas B-lymphoma (CBL)-B E3 ubiquitin ligase. (b) PD-1 signaling recruits SHP2 phosphatase to immunoreceptor tyrosine-based inhibitory motif (ITIM) and

immunoreceptor tyrosine-based switch motif (ITSM). SHP2 dephosphorylates ZAP70, ERK1/2 and suppresses the phosphatidylinositide 3 kinase

(PI3K)/AKT/Mammalian Target of Rapamyc from (mTOR) pathways, thus inhibiting multiple T-cell activation pathways. (c) PD-1 suppresses T-cell proliferation by

blocking the transcription of Skp1/Cullin/F-box protein ubiquitin ligase (SKP2), which controls cyclin-dependent kinases (Cdks) activation. A Basic leucine transcription

factor, ATF-like (BATF) is also a downstream target of PD-1 signaling that causes repression of T-cell proliferation and cytokine secretion. Besides, by inhibiting TCR

signaling, PD-1 blocks IL-2 production to limit T-cell proliferation. (d) PD-1 signaling promotes FOXO1 retention in nucleus and enables Pdcd1 gene transactivation.

Nuclear factor of activated T cells (NFATc1) in the absence of AP-1 interaction promotes the expression of Pdcd1 (PD-1 encoding gene). The transcription of Pdcd1 is

inhibited by AKT/mTOR signaling, which promotes phosphorylation of FOXO1 and 14-3-3 docking to sequester FOXO1 molecule from the nucleus into the cytoplasm.

PD-1 signaling stops the process by targeting the AKT/mTOR pathway.

of exhausted CD8+ T cells with histone deacetylase (HDAC)
inhibitors improved function of exhausted T cells in this recent
study.

Effector T cells and memory T cells display a number of
chromatin accessible regions (ChARs) within the Ifng locus
which are absent in exhausted T cells. However, ChARs of the
exhausted T cells are only moderately altered after treatment
with PD-L1 inhibitor (111). Assessment of the epigenetic state
during T-cell exhaustion in acute and chronic infections has
identified a number of notable changes to the chromatin
accessibility unique to exhausted T cells, which were marked
by distinct regulatory sequences possessing characteristics of
enhancer, such as enrichment at the intergenic and intronic
regions, depletion of transcription start sites (TSS), as well
as gene-distal regulatory elements (21, 111). These ChARs

were grouped into modules, which upregulate adjacent genes,
including Pdcd1. Of note, deletion of an −23.8 kb ChAR
harboring transcription factors binding motifs of Sox3, Tbx21
(Encodes T-bet), and Rara (encodes for retinoic acid receptor,
RAR) led to dramatic reduction in the expression of PD-1,
illustrating its role as an enhancer in PD-1 regulation (21).
These described observations, along with other studies (112,
113) indicate that continued antigen burden imparts a stable
pattern of chromatin accessibility in exhausted T cells with
functional consequences on transcription factors. Nevertheless,
the molecular basis by which transcription factors exert their
influence on cell fate remains unclear (3).

Exhausted CD8+ T cells reinvigorated by PD-L1 blockade
have a distinct epigenetic profile in comparison with memory T
cells (111). This epigenetic state is reported to bemaintained after
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FIGURE 2 | In acute infection, effector CD8 + T cells induce glycolysis after activation to sustain effector functions. Akt and mTOR promote glycolysis and support

effector T cell functions. In chronic infection, exhausted T cells express inhibitory receptors such as PD-1 and CTL4. PD-1 signaling reduces AKT activation and thus

suppress mTOR activity, switching T cell metabolism from glycolysis to FAO. These metabolic reprogramming may lead to mitochondrial depolarization, reduction of

mitochondrial biogenesis and higher rate of ROS production which is associated with functional impairment in exhausted T cells.

PD-1/PD-L1 blockade. Subsequent work involving transferring
exhausted T cells from chronically infected mice with LCMV
to mice with resolved acute infection showed sustained PD-
1 expression as well demethylation of PD-1 promoter in the
exhausted CD8+ T cells post transfer (114). Youngblood and
colleagues investigated the capacity of HIV-specific CD8+ T
cells to modify the PD-1 epigenetic program after reduction
in viral load. They reported that PD-1 promotor region was
unmethylated in the PD-1 hi virus-specific CD8+ T cells, whereas
it remainedmethylated in donor-matched naive cells at acute and
chronic stages of HIV infection. Interestingly, the transcriptional
regulatory region sustained unmethylated in virus-specific T cells
from individual with a viral load controlled by ART or from elite
controllers (115).

METABOLIC PROGRAMMING IN T-CELL
EXHAUSTION

An increasing body of evidence indicates that sufficient nutrient
supply and energy generation are main determinants of the T
cell’s ability to proliferate and mediate effector function (116,
117). Although alternations in the transcription program of T
cells be linked to T-cell exhaustion, several reports have also
suggested that metabolic deficiency and deregulation of nutrient
sensing signaling pathways contribute to T-cell exhaustion (12,
118, 119).

Bengsch et al. have recently demonstrated that glycolytic and
mitochondrial metabolism in early effector CD8+ T cells is
inhibited by PD-1 signaling in chronic LCMV infection. They
reported that PD-1 signals inhibit the expression of keymetabolic
regulator peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC1α) and interestingly overexpression

of PGC1α corrected some metabolic alterations in developing
exhausted T cells and improved effector function (120).
Importantly, the authors of this study also reported that T-
betHiPD-1Int cells have higher glucose uptake and a decrease
in mitochondrial mass in comparison to EomesHiPD-1Hi cells
and only PD-1Int cells could be rescued metabolically and
functionally.

Naive and resting T cells make use of fatty acid oxidation
(FAO) and the mitochondrial tricarboxylic acid (TCA)
cycle to generate large amounts of ATP through oxidative
phosphorylation (OXPHOS) (121, 122). Recent studies in a
murine model revealed that mitochondrial activity was one of
the requirements for the activation and sustenance of antigen-
specific responses (123, 124). Upon activation, T cells switch
their metabolism to high rates of glycolysis even in the presence
of sufficient oxygen and this support proliferation and effector
function via providing fast energy and metabolites (125).

HIV-specific T cells upregulated OXPHOS owing to an
increased mitochondrial mass (126). However, it’s not clear
whether the observed increase was due to an augmented number
of functional mitochondria or the emergence of massive non-
functional mitochondria (127, 128). Schurich et al. recently
described that the poorly functional PD-1hi T cell responses
against HBV upregulate GLUT1, which is a constitutive glucose
transporter (116). They also showed that Glut1hi HBV-specific
T cells are dependent on glucose supplies, unlike the more
functional CMV-specific T cells that could utilize OXPHOS
in the absence of glucose. The exhausted HBV-specific T cells
were unable to switch to OXPHOS and had also increased
mitochondrial size and lower mitochondrial potential, all
suggestive of mitochondrial dysfunction (116). Intriguingly,
their defect in mitochondrial metabolism was rescued by the
proinflammatory cytokine interleukin (IL)-12, which recovered
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the exhausted HBV-specific T cell effector function, increased
their mitochondrial potential, and reduced their dependence on
glycolysis.

The transcription factor mTOR is a key molecule sensing
ATP and intracellular amino acids (129) that also regulates
the fatty acid metabolism in memory T cells (122). The
PD-1 signaling pathway also affects T-cell functions through
metabolism. PD-1 signaling reduces AKT activation and thus
suppress mTOR activity, switching T cell metabolism from
glycolysis to FOA (Figure 2) (84, 130, 131). Declined mTOR
activation in exhausted PD-1+ CD8+ T cells give rise to
increased activity of the transcription factor forkhead box
O1 (FoxO1), which sustains PD-1 expression and survival of
exhausted CD8T cells (84). A recent report indicated that IL-
12 enhanced mTOR expression in antigen-stimulated CD8+
T cells, thereby modulating CD8+ T effector differentiation
and metabolism. Furthermore, blockade of the mTOR signaling
pathway via rapamycin inhibits IL-12-induced expression of
T-bet and skews the CD8+ T cell response toward EOMES
dependent memory development (132). Notably, T-bet has a
significant role in sustaining the limited effector functional
capacity of T cells in chronic infections (81). Moreover, T-
bet expression is increased by IL-12 in exhausted T cells in
chronic HBV infection and this enhance their functionality
(133).

Targeting metabolic dysfunctions with mitochondrion-
targeted antioxidants are reported to remarkably improve
the antiviral activity of exhausted HBV-specific CD8+ T
cells suggesting the pivotal role for ROS in T-cell exhaustion
(134). It is crucial to further investigate the contributions of
mitochondrial biogenesis on T-cell exhaustion and how we can
target mitochondrial metabolism of T cells when treating chronic
viral infection (135).

OTHER POTENTIAL STRATEGIES TO
OVERCOME T-CELL EXHAUSTION

Engineered T cells, such as T cells expressing chimeric antigen
receptors (CARs), are another strategy to overcome exhaustion
in cancer and chronic infections (136–138). Nevertheless, CAR-
T cells also become exhausted and require immune checkpoint
blockade so that they can restore their functionality (139, 140).
Instead of targeting the PD-1/PD-L1 signaling pathway, PD-1
expression could be declined by gene editing approach, made

possible by the CRISPR-Cas9 system. A recent report showed a
decreased PD-1 expression on primary human cells, utilizing the
CRISPR-Cas9 system (141), demonstrating a method to generate
CAR-T cells with more resistance to exhaustion. Nonetheless,
as up-regulation of inhibitory receptors represents a way for
the immune system to restrict immunopathology triggered by
prolonged exposure to antigen, a more fine-tuned and adjustable
approach to avoid exhaustion could be preferable (142–150).

Recently a stem cell–like CD8+ T-cell subset was discovered
among exhausted PD-1-expressing CD8+ T cells during chronic
viral infection and this subset can expand in response to
PD-1-targeted immunotherapy in contrast with terminally
differentiated/exhausted PD-1-expressing CD8+ T cells (151).
These two CD8+ T cell populations have distinct expression
profiles of co-inhibitory receptors and co-stimulatory molecules,
so describing how different immunotherapeutic interventions
affect these two population is highly relevant for understanding
the mechanistic basis of the efficacy of present and future
immunotherapies that target exhausted T cells (29).

CONCLUSIONS

Our understanding of T-cell exhaustion is advancing at a rapid
pace. However, it remains unclear as to what key transcription
factors are involved in critical signaling pathways related to
exhaustion and how these transcription factors are regulated
by epigenomic alterations. Moreover, most of the studies of T-
cell exhaustion have been focused on LCMV model and the
critical changes in T cell phenotype and functional impairment
of exhausted T cells utilizing human infected samples has
been neglected due to lack of in vitro models. Finally, more
detailed understanding of human anti-viral immunity is still
critical to develop novel immunotherapies to reverse the state of
exhaustion.
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