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Dendritic cells (DCs) are bone marrow derived cells which continuously seed in peripheral

tissue. During infection, DCs play an essential interface between innate and adaptive

immunity. Pneumonia is a lung inflammation triggered by pathogens and is characterized

by excessive release of inflammatory cytokines that activate innate and acquired

immunity. Pneumonia induces a rapid and protracted state of susceptibility to secondary

infection, a state so-called sepsis-induced immunosuppression. In this review, we

focus on the role of DCs in the development of this state of immunosuppression.

Early during inflammation, activated DCs are characterized by decreased capacity of

antigen (cross)- presentation of newly encountered antigens and decreased production

of immunogenic cytokines, and sepsis-induced immunosuppression is mainly explained

by a depletion of immature DCs which had all become mature. At a later stage,

newly formed respiratory immature DCs are locally programmed by an immunological

scare left-over by inflammation to induce tolerance. Tolerogenic Blimp1+ DCs produce

suppressive cytokines such as tumor growth factor-B and participate to the maintenance

of a local tolerogenic environment notably characterized by accumulation of Treg cells. In

mice, the restoration of the immunogenic functions of DCs restores the mucosal immune

response to pathogens. In humans, the modulation of inflammation by glucocorticoid

during sepsis or trauma preserves DC immunogenic functions and is associated with

resistance to secondary pneumonia. Finally, we propose that the alterations of DCs

during and after inflammation can be used as biomarkers of susceptibility to secondary

pneumonia and are promising therapeutic targets to enhance outcomes of patients with

secondary pneumonia.

Keywords: dendritic cells, pneumonia, inflammation, immunity, innate, mucosal immunity, steroids, intensive care

units

Lung infection is a one of the main cause of mortality and morbidity worldwide
(1). The overall death rate for patients with such infections was 2.6 million deaths
worldwide in 2015, which is the leading infectious cause of death (2). However,
the consequences of these infections cannot be reduced to the direct mortality from
primary infection. Indeed, in critically ill patients recovering from a first severe sepsis
(e.g., pneumonia or peritonitis), the risk for developing pneumonia reaches 30 to 50% (3)
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and in critically ill patients cured from primary pneumonia
the early relapse with the same pathogen is up to 20%.
(4). One of the main hypothesis to explain this susceptibility
to infections is that patients with severe sepsis acquire a
state of immunosuppression as evidenced by different host
response during community-acquired and hospital-acquired
pneumonia (5).

SEPSIS INDUCED IMMUNOSUPPRESSION

Development of severe immune defects in immune-competent
septic patients, a phenomena so-called “sepsis-induced
immunosuppression” (6) has been associated with the risk
of secondary pneumonia. During sepsis, the production and
the release of pro-inflammatory cytokines is a necessary
physiological phenomenon that activates the defense against
bacterial infections and ensures injured tissue healing. To limit
the risk of immunopathology observed during an overwhelming
systemic inflammatory response syndrome (SIRS), whose main
complication is a multi-organ failure syndrome (7), innate
immunity cells rapidly develop a systemic compensatory anti-
inflammatory response (CARS). This CARS aims to restore
the state of immune homeostasis but either its prolongation
or its exacerbation leads to an increased susceptibility to
infections(6, 8).

So far, the main features of this sepsis-induced
immunosuppression are

1. A decreased antigen presentation ability by antigen presenting
cells (APCs). APCs, mainly Dendritic Cells (DCs) and
monocytes, have a central role in the capture, in the processing
and in the presentation of antigens to effector lymphocyte
T cells. These functions, essential for the establishment of
an inflammatory response, are altered for weeks in mice and
humans cured from systemic inflammation (9, 10)

2. Dysregulation of the secretions of cytokines. During infection,
cytokines are messengers which ensure the coordination
of all the cellular families. For example, APCs shape the
response of effector T cells and innate-lymphoid cells to
immunity or tolerance via the secretion of pro- or anti-
inflammatory cytokines (e.g., Interleukin-12 or TGF-β).
In critically ill patients, a decreased production of pro-
inflammatory cytokines (such as TNF-α and IL-12) associated
with a blunt release of anti-inflammatory cytokines (IL-10,
TGF- β) have been associated with altered levels of pattern
recognition receptors (11) epigenetic modifications (12) and
post-transcriptional regulations.

3. T cell exhaustion and apoptosis: Exhaustion corresponds to the
progressive loss of effector functions of T cells in the presence
of a high antigenic load (13), while excessive inflammation
results in caspase-3-dependent apoptosis (14, 15).

The capacity of DCs to detect environmental changes, to produce
cytokines and present antigens to T cells suggests that they are
a corner-stone of the physiopathology of the susceptibility to
secondary pneumonia. Indeed, type 1 DCs (cDC1s) which are
a highly potent cytokines secretion subtype of DCs, are a major

source of IL-12 and hence promote NK and NKT cell IFN-
γ production during systemic bacterial or viral infections (16).
Mouse models of primary pneumonia (e.g., due to pneumococcal
infection) have demonstrated a critical role for the activation
of NK and iNKT in mediating the innate immune response
to pulmonary infection (17) and especially in post-influenza
bacterial secondary pneumonia (18, 19). In this review, we will
thus focus on the fate of bona fideDCs (i.e., DCs not derived from
monocytes) during and after sepsis, and will highlight the effects
of glucocorticoids which are the first efficient immunotherapy in
severe sepsis (20).

DENDRITIC CELLS LIFE-CYCLE BEFORE,
DURING AND AFTER ACUTE
INFLAMMATION

Dendritic cells are bone marrow derived cells which play an
essential interface between innate and adaptive immunity. DCs,
which are the most potent antigen presenting cells (APCs), are
involved in the initiation and the regulation of T cell-dependent
immune response (21). According to the microenvironment and
the signaling, DCs can secret pro-inflammatory cytokines to fight
against infection or anti-inflammatory cytokines to maintain
tolerance to self-tissue.

Before acute inflammation, DC precursors (pre-DCs)
continuously leave the bone marrow as precursors and colonize
peripheral tissues and lymphoid organs (e.g., spleen) where
they develop into fully functional immature DCs (22). DCs are
classified in different subsets: “plasmacytoid DCs” (pDCs) are the
main source of type 1 interferons during many viral infections;
the “conventional DCs” (cDCs), including mouse CD8+ cDCs
and CD11b cDCs, have high antigen-presentation capacity and
mainly produce other pro-inflammatory cytokines. In mice and
human, two lineages of cDCs are clearly identified by differential
expression of Xcr1 and Sirpa (23, 24) which recently allowed
proposing a unified nomenclature of DCs across tissues and
species, namely cDC1s and cDC2s, respectively (25). Indeed, the
expression of CD141 (thrombomoduline) and CD1c (BDCA1)
enable the distinction of two populations of Human DCs
(26). The gene-expression profiles and functions of CD141+
cDCs and of CD1c+ cDCs resemble those of mouse cDC1
and cDC2 respectively (27, 28). cDC subsets are functionally
well characterized: both cDC1s and cDC2s efficiently present
extrinsic antigens on the MHC-II complex to CD4T cells,
although cDC2s appear to be more efficient for that function,
cDC1s excel in antigen cross-presentation (presentation of
extrinsic antigens to CD8T cells on the MHC-I complex),
although the other DC subsets can also exert this functions
under specific conditions (29).

DCs can be further classified according to their organ
localization and their migratory capacity: (1) the migratory DCs
(including cDCs) are localized in peripheral tissues and migrate
to the draining lymph nodes upon activation where they can exert
their function of antigen presentation (for example Langerhans
cells and dermal DCs), whereas (2) the resident DCs (including
pDCs and cDCs) which remain in lymphoid organs where they
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locally collect Ag, (including from migratory DCs) to act as
an amplificatory signal for T cell priming (for example thymic
cDCs and splenic cDCs) (30). The classification proposed by
Guilliams et al can integrate multiple layers of information
in the denomination of DC subsets while still preserving a
unifying nomenclature for their lineage belonging: for example,
mouse spleen resident CD8a+ cDCs can be called “spleen
resident CD8a+ cDC1s,” and the mouse CD103+ cDCs that have
migrated from the skin into the cutaneous lymph node can be
called “mouse CLN migratory CD103+ cDC1s.”

In steady state, the DCs have low expression of major
histocompatibility complex class-II (MHC-II) and of membrane
costimulatory molecules (such as CD86). DCs thus have high
endocytic function for capturing Pathogen or Danger-associated
molecular patterns (PAMPs or DAMPs), but are incompetent to
present newly encountered antigens onMHC II molecules and to
prime T-cells (31).

In the absence of infection, antigens presented by DCs
silence effector T cells either by inducing apoptosis or by
expanding regulatory T cells (32). This phenomenon has
been recently better understood. In steady state, in contrast
with DC maturation during inflammation, the maturation
of migratory DCs (involving a novel NF-κB-regulated gene
network) is associated with the induction of tolerance rather
than T cell priming and activation (33). This process of
terminal differentiation of steady state DCs is called “homeostatic
maturation.” Some authors suggest that the signals triggering
homeostatic, tolerogenic, DC maturation are conveyed via
multiple pathways, some overlapping in part with those
triggering inflammation but also leading to the expression
of a specific transcriptional genetic program (34, 35). This
homeostatic maturation leads to tolerogenic DC which promote
the expansion of regulatory T cells (Treg) and tolerance to self-
antigens (36).

During infection, the maturation of DCs is induced by the
detection of PAMPs (direct activation) and by inflammatory
cytokines released by other activated immune cells (indirect
activation) (37). Direct activation of DCs induces several
conformational and functional changes: (1) DCs become efficient
at presenting the antigens by transient upregulation of MHC II
synthesis (38); (2) they secrete cytokines for T cell polarization.
Directly activated DCs are thus competent to prime naive T
cells but they lose the ability to process and to present newly
encountered antigens (9).

DCs can also be indirectly activated by inflammatory
cytokines produced by PAMP-stimulated immune and epithelial
cells (e.g., IFN-α/β, TNF-α . . . ) (39). The levels of MHC-II
and of co-stimulatory molecules are increased on the surface
of indirectly activated DCs. Indirectly activated DCs can prime
naive T cells like directly matured DCs, however their cytokine
secretion function is altered and they retain the capacity to
process new antigens (40, 41). During inflammation, directly
and indirectly-activated DCs coexist and could theoretically be
selectively targeted by interventions aiming to restore immune
competence after inflammation.

Protracted impairment of antigen presentation and of
cytokine production in DCs of mice and patients cured

from acute inflammation have been reported (42). Yet, new
DCs continue to be produced after the onset of sepsis and
inflammation with similar rates as in healthy conditions (43).
Thus, after a few days, bodies cured from inflammation are
seeded by newly formed immature DCs which are supposed to
be fully functional. However, the susceptibility to infections last
for weeks in critically ill patients cured from SIRS, and paralyzed
DCs are still observed weeks after the cure from infections. If
the paralysis of DCs lasts for weeks after inflammation, two
periods can be distinguished: an early stage corresponding to
the inflammatory response, and a later one lasting several weeks,
probablymonths, after resolution of SIRS and characterized by an
apparent return to non-inflammatory conditions but persistent
dysfunctions of DCs. An important consideration when aiming
to restore immune-competence during and after sepsis is to
differentiate the mechanisms of DCs alterations during these two
stages (Figure 1).

DECREASED NUMBER OF IMMATURE
DCS

The early decreased ability to present new antigens by the
direct activation of DCs is not deleterious during local infections
because a small number of DCs encounters the infecting
pathogen and becomes activated, while the numerous remaining
immature DCs can respond to new challenge. However, systemic
circulation of PAMPs and of inflammatory mediators during
sepsis causes systemic activation of DC, reducing the number of
immature DCs capable of mounting an effective response to new
threats, and limiting the ability of innate immunity to prime T
cell responses (9, 44). The simultaneous activation of an excessive
number of cDCs during systemic inflammation depletes the
body from fully functional DCs and is thus immunosuppressive.
Moreover, the total number of migratory and resident DCs is
decreased following lung inflammation (45). The depletion of
circulating DCs is reported in murine models of sepsis by caecal
ligation and puncture (46) and the number of splenic DCs is
decreased in patients dying from severe sepsis in intensive care
units (15). Early after a lung infection by influenza virus, the
presence of DCs in the lung was reduced (17, 47). Currently, the
mechanisms of these “DC-penia” have not been fully elucidated.
Some authors describe a defective de novo formation of DCs
from common progenitors in the bone marrow (48) when
others describe apoptotis mechanisms (46, 49, 50) or lysis
by regulatory innate like lymphocytes (51). The mechanism
involved in DCs apoptosis after SIRS is still unclear but a study
has shown that an enzyme called acid sphingomyelinase (A-
SMase), which is activated when DCs are treated with high
numbers of Escherichia coli, induces apoptosis (52). The clearance
of apoptotic DCs by viable DCs induces antigen-specific Tregs
cells, and is thus probably beneficial to prevent auto-immune
diseases (53). In addition to inducing immunosuppression by
reducing the number of DCs, this phase of apoptosis could
also induce a tolerogenic microenvironment maintaining this
immunosuppressive state (54). The prolonged decrease in the
number of circulating cDCs and pDCs has been associated with
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FIGURE 1 | Migratory dendritic cell response during primary pneumonia, and during sepsis-induced immunosuppression (left). The stimulation of immature migratory

dendritic cells (im.DCs) by pathogen-associated molecular patterns induces the production of inflammatory cytokines (such as Interleukin-12) which stimulate

innate-like lymphocyte and natural killer cell (NK) functions and primes naive CD4T cells. During sepsis-induced immunosuppression (middle and right panels),

bacterial clearance is decreased as compared to what is observed during primary pneumonia. (middle) Early after primary infection, activated DCs (Act.DCs) are

unable to respond to subsequent pathogens, and fail to produce cytokines and prime new CD4T cells. (right) Lately, newly formed DCs locally acquire a tolerogenic

programing (Tol. DCs) upon instruction by local tolerogenic mediators (star). Glucocorticoid (GC) inhibits DC activation and limit the SIRS. Upon stimulation by

pathogens, Tol-DCs do not activate NK cells but induce the local accumulation of Treg cells. GC inhibits tolerogenic mediators and can restore immunogenic functions

of newly formed DCs.

the risk of secondary infection in septic patients (55). This critical
loss of DCs, which has also been associated with secondary
pneumonia in burned patients (56) and in brain-injured patients
(57), is probably a mechanism common to all the critical illness-
inducing immunosuppression.

cDCs are continuously renewed from bone marrow pre-
DCs and have a dependence for FLT3L/FLT3 (58). In the
case of IAV infection, it seems that the drop of cDC number
in the lungs is due to a defective FLT3L production (47).
One the other hand, some DC-like cells, such as the mo-
DCs (monocytes-derived DCs), are derived from monocytes
in a GM-CSF dependent mechanism. In case of inflammation,
an increase in the proportion of mo-DCs, which are more
susceptible to polarization toward immunosuppressive functions
by the local microenvironment, is also a cause of “sepsis induced
immunosuppression.” Indeed, these mo-DCs have also been
reported to induce TH2 and TH17 responses (59, 60). Sepsis-
induced immunologic dysregulation occurs at every level of
the ontogeny of each subset of DCs (61). Considering these
results, several teams have hypothesized that the correction of
the number of DCs after inflammation, notably by injecting
FLT3L which is the DC growth factor, can restore immune-
competence and limit the susceptibility to secondary pneumonia
(47, 62, 63). To the best of our knowledge, the effects of FLT3L
have never been investigated in septic patients, but GM-CSF,
which is not specific to DCs but accelerates DC maturation,
demonstrates disappointing effects in patients with sepsis (64,
65).

Patients lacking cDC2 due to IRF-8 genetic mutations
are susceptible to infections (66). It is thus likely that
lack of cDCs participates to the susceptibility to secondary
infections, and functional defects of newly formed DCs can
be of importance when aiming to restore a DC network
after sepsis.

FUNCTIONAL ALTERATIONS OF THE
NEWLY FORMED DCS

Bone-marrow released pre-DCs reach peripheral tissue where
they receive final differentiation messages and become fully
functional. This final tissue maturation process explains the
diversity of DC populations observed in the different organs
in normal conditions and is called tissue-imprinting. It was
recently shown after sepsis that the newly formed DCs are
modulated both in the bone-marrow at a progenitor state
(67) and locally in peripheral tissue at a final differentiation
state by an immunological scare left-over by a primary
inflammation response (10, 68). DC-precursors exposed to this
newmicroenvironment are deficient for their capacity to produce
IL-12, due to epigenetic alterations (69), impaired antigen
(cross)-presentation capacity, and preferentially drive T cellular
immunity to tolerogenic functions (10).

Several mediators of this suppressive-microenvironment left-
over by primary sepsis have be demonstrated to be important as
will be detailed below.

Blimp-1
B lymphocyte-induced maturation protein-1 (Blimp-1) is a
pleiotropic transcriptional factor which represses the IFN-β
promoter and regulates functions of many immune cells,
especially in lymphocytes (B and T cells). Blimp-1 is also
expressed and functionally important for the myeloid lineage
cells such as DCs and macrophages (70). The tolerogenic
functions of Blimp-1 on DCs are well demonstrated in systemic
autoimmune diseases, such as systemic lupus erythematosus.
Mice with a Blimp-1ko phenotype in all CD11c-expressing
cells including DCs (Blimp-1flox/flox; CD11c-CRE+) present an
increased secretion of interleukin 6, an increased differentiation
of effector T cells and suffer from the development of a lupus-like
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syndrome (71). Likewise, Blimp-1 regulates cDC2 homeostasis
by preventing the excessive production of pro-inflammatory
cytokines and overwhelming expansion of cDC2s after TLR
stimulation (72). Blimp-1 could also be involved in SIRS andmay
be partly responsible for the observed susceptibility of patients to
nosocomial pneumonia. We showed that cDC2s from patients
suffering of SIRS expressed a high level of Blimp1 compared
with healthy donors and thus lose their ability to produce type
1 cytokines (including interleukin-12) (10). Blimp-1 expression
is also increased in DCs from patient suffering of post-trauma
SIRS whose physiopathology is similar to sepsis and who are also
susceptible to secondary pneumonia (73). In trauma patients,
the increased expression of Blimp-1 has been correlated with
the trauma severity (Glasgow Coma Scale) and with respiratory
complications in intensive care unit (10). The overexpression
of Blimp1 in cDC2s of critically ill patients recovering from
a primary pneumonia might be a marker of the severity of
immunosuppression and may thus allow identifying and treating
early the patients at high risk of severe secondary infections.

Interleukin (IL)-10
Numerous cell types, including NK cells, B cells, monocytes
and DCs, were shown to produce IL-10 during “sepsis induced
immunosuppression” (74).

IL-10 induces the apoptosis of mature DCs during chronic
viral infections (75) and decreases the number of live DCs during
post-traumatic pneumonia (76). In response to IL-12 secretion
by mature DCs, NK cells rapidly express IL-10 which inhibits
the production of IL-12 by DCs to prevent an overwhelming
and deleterious immune response (51). For example, IL-10
neutralization by anti-IL-10 mAb restores the production of
inflammatory cytokines, such as IL-12 and TNF-α, by DCs (77).
During systemic infection, IL-10 inhibits the maturation of DCs
and impairs the ability of cDC1s to prime a T cell response. This
autocrine IL-10 regulation limits the development of new mature
DCs (78) and limits the capacity of mature DCs to initiate Th1
responses. Immunosuppressive IL-10+ DCs induce Th2 response
by stimulating cytokine secretion like IL-4 and “regulatory DCs”
secreting IL-10 are also associated with up-regulation of T
regulatory cells (T-reg). This regulatory mechanism is notably
involved in hyper-eosinophilic airway inflammation (79, 80). IL-
10 secretion is an essential component for the protective response
against airway hyper reactivity and asthma (81) and is involved in
development of lung tolerogenic DCs after pneumonia (82).

Tumor Growth Factor-Beta: TGF-β
TGF-β molecules act as cellular switches regulating numerous
physiological processes such as immunity, cell renewal and
healing. TGF-β is a pleiotropic cytokine involved in the
development of Treg lymphocytes by inducing the Foxp3
transcription factor expression in CD25− naive T cells in order
to enforce the transition to Treg cells (61). TGF-β are expressed
constitutively by a wide variety of cells in the lung, including
myeloid cells (DCs and alveolar macrophages), T cells and
fibroblasts (83).

TGF-β are produced as inactive proprotein composed of
mature TGF-β bound to latency-associated peptide. TGF-β

activation from latency is controlled by numerous pathways that
include actions of proteases present in the microenvironment
such as plasmin, and/or by thrombospondin 1 or selected
integrins expressed at the membrane of cDCs (84, 85). The
unusual temporal discontinuity of TGF-β synthesis and action
is an original mechanism which allows the TGF-β/LAP complex
to behave as a matrix-localized sensor. During sepsis-induced
immunosuppression, DCs are thus both a source and an activator
of TGF-β in the tissue of mice cured from pneumonia (10). Our
previous results indicate that cDCs of mice recovering from lung
infection produce TGF-β and induce Treg cell accumulation (10).
When they are activated by TGF-β after primary pneumonia,
these Treg cell decrease the pro-inflammatory cytokine secretion
pattern and the upregulation of CD80 and CD86 costimulatory
molecules of immature cDCs, creating a tolerogenic environment
(86). This mechanism is also found in intestinal epitheliumwhere
intestinal DCs promote a tolerogenic environment via TGF-β
secretion to prevent an exacerbated response against the many
non-pathogenic antigens in the gut (87). The crucial role of
TGF-β in self-tolerance has long been established, with genetic
deletion of TGF-β inducing multifocal inflammatory disease (88)
or with the TGF-β down-regulation of co-stimulatory molecules
expression on the surface of DCs limiting the functions of T
cell effectors in the epidermis (89). The DCs-Treg cells-TGF-β
loop plays a central role in the susceptibility to hospital-acquired
pneumonia observed after severe infections.

GLUCOCORTICOIDS & DENDRITIC CELLS

Lately after a primary lung inflammation, newly formed DCs
receive tolerogenic messages during terminal differentiation
in the tissue, and local imprinting drives DCs toward a new
tolerogenic transcriptional programing (Figure 1). Tolerogenic
DCs fail to develop immunogenic functions in response
to subsequent infectious threats, and bacterial clearance
is decreased during secondary pneumonia. Host-targeted
approaches aiming to modulate the lung imprinting of DCs
have the potential to restore immune competence after sepsis,
and to decrease the risk of secondary pneumonia. Yet, specific
interventions, such as the injection of blocking anti-IL-10 or
anti-TGFβ antibody, have not been tested for the prevention
of hospital-acquired infections in patients, probably because of
safety concerns.

Glucocorticoids for the modulation of inflammatory-
induced immunosuppression have been extensively tested in
humans. Recent randomized studies have demonstrated that
glucocorticoids decrease the risk of death of patients with septic
shock (20) or with community acquired pneumonia (90). Low
doses of steroid also prevent hospital-acquired pneumonia
in severe trauma patients (91). It can seem counterintuitive
to use drugs classically considered as immunosuppressive in
patients with severe infections or at high risk of sepsis. Indeed,
glucocorticoids are highly anti-inflammatory molecules (92)
and steroids have long been indicated for the management of
patients suffering from non-septical inflammatory diseases such
as rheumatoid arthritis or systemic erythematous lupus (93), and

Frontiers in Immunology | www.frontiersin.org 5 November 2018 | Volume 9 | Article 2590

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bouras et al. Dendritic Cells and Susceptibility to Pneumonia

for the induction of tolerance to graft (94). A reappraisal of the
immunological effects of steroids during acute inflammation,
and a better comprehension of the impacts of inflammation on
the development of immune response to secondary infections,
have provided the rational to explain these clinical observations.
We propose that steroids prevent the excessive activation of DCs
during the severe inflammatory stage (Figure 1, middle panel)
and limit the alterations of DCs observed during the late stage of
sepsis-induced immunosuppression (Figure 1, right panel).

It has been long known that the Hypothalamic-Pituitary
Adrenal (HPA) axis, and in particular glucocorticoids, is a major
component of the response to sepsis (95), as demonstrated
by the susceptibility of adrenalectomized mice to septic shock
(96). Endogenous glucocorticoid (i.e., cortisol), as well as
therapeutic glucocorticoids (i.e., dexamethasone), control many
essential metabolic, cardiovascular, and homeostatic functions
during inflammation. These numerous effects results from the
pleiotropic activity of the glucocorticoid receptor (GR) on
multiple gene promotors and on multiple target cells (94).
Multiple GR isoforms exist (including the main GRα and
β receptors) with distinct tissue distribution patterns and
functions. The activated glucocorticoid–glucocorticoid receptor-
alpha (GC-GRα) complex acts at the intra-cytoplasmic level to
reduce the post-transcriptional expression of pro-inflammatory
cytokines and to increase the transcription of anti-inflammatory
and tolerogenic genes (94).

Endogenous or synthetic glucocorticoids particularly
influence the innate immune cells during the inflammation
period. One of the main targets of glucocorticoids are innate
lymphoid cells and the neuroendocrine axis is crucial for
tolerization of the innate immune system to microbial endotoxin
exposure through direct corticosterone-mediated effects on
innate cells (97). Glucocorticoids also modulate DCs during
and after inflammation (98). In vitro, exogenous GCs at
therapeutic concentrations inhibit the differentiation of DCs
from their precursor cell (99), and limit their activation
by PAMPs/DAMPs (100). GCs induce apoptosis of mature
migratory DCs in vivo and in vitro (101). Interestingly, many
studies have demonstrated that glucocorticoids suppress mature
DCs but spare immature DCs via a differential expression
of GR translational isoforms (102, 103) and the activation
of cell survival pathways (104). Endogenous glucocorticoid
elevation following pneumonia participates to the clearance
of mature pro-inflammatory cDCs and to the development
of tolerogenic DCs (105–107). In humans suffering from

septic shock, GC restores MHC-II expression on myeloid
cells, suggesting a better antigen presentation by APCs
during treatment (108). During viral pneumonia, the initial
hypercorticism limits the inflammatory-induced lung injuries
and prevents mortality during bacterial superinfection (109).
This protective effect (108) is notably mediated by direct
effect of GC on the cytokine production by DCs since the
conditional deletion of GR in CD11c+ cells prevents mice
from death upon LPS stimulation. These results suggest
that glucocorticoids are necessary to control the initial
inflammatory response, limiting the initial shortage on
immature DCs, and limiting the local imprinting which
induces the formation of tolerogenic DCs for weeks after the
primary pneumonia.

CONCLUSION

Clinical and bacterial cure failures are common in patients
treated for pneumonia, and the susceptibility to secondary
infection is high. These observations have been linked to the
development of sepsis-induced immunosuppression. Acquired
alterations in the numbers and functions of respiratory
DCs are crucial in this condition. To develop targeted-host
approaches, it is necessary to closely consider the timing
of the interventions. A loss of immature DCs is the main
mechanisms during the early phase, and alterations of the
terminal maturation of newly formed DCs participate to the
month-long susceptibility to secondary pneumonia. To treat the
sepsis-induced immunosuppression, and limit the susceptibility
to secondary pneumonia, many therapies have been tested in
recent years. They aimed either to limit the initial SIRS (and thus
the CARS) in particular by the use of low dose glucocorticoids
(20, 91, 110) or to restore or supplement the secretion of pro-
inflammatory cytokines by the injection of IFN-γ, GM-CSF (110)
or interleukin-12 (10).

Using exogenous glucocorticoid at early phase of sepsis
may limit the immune paralysis by decreasing the number of
tolerogenic mature DCs and by limiting the development of a
tolerogenic trained innate immunity.
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