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During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal

uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs

is critical for adapting blood flow and nutrient transport to the developing fetus.

Failures in this process have been noticed in different pregnancy complications such

as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon

invasion into the decidua, the endometrium of pregnancy, EVTs encounter different

maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal

cells expressing a plethora of growth factors and cytokines. Here, we will summarize

development of the EVT lineage, a process occurring independently of the uterine

environment, and formation of its different subtypes. Further, we will discuss interactions

of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different

immune cells regulate EVT differentiation, invasion and survival. The present literature

suggests that the decidual environment and its soluble factors critically modulate EVT

function and reproductive success.

Keywords: placental development, extravillous trophoblast, decidual immune cells, trophoblast invasion, uterine

natural killer cells, decidual macrophages

INTRODUCTION

Development of the human placenta, its distinct epithelial trophoblast subtypes and their interplay
with maternal cells and growth factors of the pregnant uterus are crucial for a successful pregnancy.
After implantation the trophectoderm, the outermost cell layer of the blastocyst, gives rise to
mononuclear cytotrophoblasts (CTBs) forming placental villi through branching morphogenesis.
During the first weeks of gestation primary villi, consisting of proliferative CTBs, transform into
secondary mesenchymal villi and mature tertiary villi, the latter undergoing vasculogenesis and
angiogenesis (1–3). At term these tree-like structures of the human placenta display a surface area
of∼15 m2, completely covered with multinuclear syncytiotrophoblasts (STBs). STBs are generated
by cell fusion of villous CTBs (vCTBs) and fulfill a vast range of functions such as production of
pregnancy hormones, transport of oxygen and nutrients from the maternal blood stream to the
growing fetus and clearance of fetal waste products (4, 5). However, early placental development
and fetal growth occurs in the absence of maternal blood and oxygen and are likely supported by
growth factors and proteins secreted from endometrial glands (6). As soon as the utero-placental
circulation is established between 10th and 12th week of pregnancy placental villi are bathed in
maternal blood, and hence are termed floating villi.
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Whereas, STBs of floating villi represent the transport units
of the human placenta, anchoring villi of the placental basal
plate form another differentiated trophoblast type, the so called
invasive extravillous trophoblast (EVT). Upon attachment of villi
to thematernal decidua, the endometrium of the pregnant uterus,
proliferative proximal cell column trophoblasts (pCCTs) develop
which further differentiate into distal CCTs (dCCTs) ceasing their
mitotic activity (Figure 1). EVTs are formed upon detachment
from the distal cell column. These cells deeply migrate into
the maternal decidua and the first third of the underlying
myometrium (7). Already 2 weeks after fertilization two types of
EVTs can be discerned within thematernal uterine compartment,
interstitial CTBs (iCTBs), colonizing the decidual stroma, and
endovascular CTBs (eCTBs), penetrating the maternal spiral
arteries (8). Stepwise modification of these vessels is regarded as
a critical step in placentation. In the first weeks of pregnancy,
EVTs plug the spiral arteries, likely to prevent precocious onset of
blood flow to the developing placenta, hence protecting against
early placental damage through oxidative stress and fetal loss
(6, 9). However, as the embryo switches from histiotrophic to
haemotrophic nutrition after the 10th week gestation, plugs
dissolve and the endothelial layer of the spiral arteries is
replaced by eCTBs (8, 10). The latter are thought to arise
by luminal migration into the myometrial segments of spiral
arteries (11). Moreover, iCTBs accumulate in the muscular
vessel wall promoting its elastolysis and degradation, where
decidual macrophages and uterine natural killer cells (uNKs) also
contribute to this process (12). Notably, uNK cells, increasing in
numbers during the secretory phase of the menstrual cycle and
early pregnancy (13), initiate remodeling by inducing apoptosis
of vascular smooth muscle cells, whereas iCTBs are thought to
complete this process (14). These modifications transform the
spiral arteries into highly dilated vessels ensuring low-pressure
blood flow to the placenta and the developing fetus. Both
iCTBs and eCTBs upregulate adhesion molecules mimicking
an endothelial phenotype which could be instrumental during
invasion and for the replacement of maternal endothelial cells
(15). Defects in vessel remodeling, in particular in themyometrial
part of the spiral arteries, have been reported in various
pregnancy complications, such as preeclampsia, fetal growth
restriction, preterm labor, abortions, and stillbirth (9, 10, 16–
19). Failures in immunological acceptance of the placenta,
decidual function and/or abnormal trophoblast invasion and
differentiation could be underlying causes (20–23). During the
first weeks of gestation EVTs, originating from the trophoblastic
shell (24), also migrate into decidual lymphatics and veins,
already before arterial remodeling occurs (25–27). Number of
EVTs in lymphatic and venous vessels is lower in recurrent
abortions suggesting that, along with defects in spiral artery
remodeling, failed interactions of EVTs with other types of
uterine vessels could contribute to pregnancy complications (26).
Similarly, EVTs also invade into the decidual glands which could
promote early histiotrophic nutrition (28).

In the decidua basalis, iCTBs communicate with diverse cell
types of the fetal-maternal interface, such as decidual stromal
cells (DSCs) and different immune cells (Figure 1). Amongst
those, uNK cells and macrophages have been delineated as

the most abundant cell types (29). The role of uNK cells has
been extensively investigated throughout the years. Besides their
role in the immunological tolerance of the semi-allogenic fetus,
uNK cells are thought to affect decidual angiogenesis and EVT
function (22, 30). Expression of human leukocyte antigen C
(HLA-C) on EVTs, interacting with killer cell immunoglobulin-
like (KIR) receptors on uNK cells, could play a role in
pregnancy outcome as certain combinations of fetal HLA-C
and maternal KIR alleles might increase the risk of developing
preeclampsia and recurrent miscarriage (31, 32). It is anticipated
that unfavorable HLA-C/KIR interactions impair trophoblast
invasion and as a consequence spiral artery remodeling. The role
of KIRs and their effects in allorecognition of EVTs has been
subject of numerous reviews (22, 33–36) and will be only briefly
discussed herein. Instead, we review how uNK cells influence
EVTs in a paracrine manner. Further, we will also focus on the
other maternal cell types of the decidua and summarize how
they might affect cell column growth of anchoring villi, EVT
formation and motility. Factors secreted by EVTs, controlling
trophoblast migration and invasion in an autocrine manner, have
been extensively discussed elsewhere (37, 38), and will not be
presented herein. Likewise, the paracrine effects of EVT-secreted
factors on decidual immune cell function will not be a topic of
this review.

DEVELOPMENT OF THE EVT LINEAGE
AND ITS DIFFERENT SUBTYPES

EVTs originate from distal cell columns of anchoring villi
at distinct contact sites with the maternal decidua. Numbers
of the latter are a consequence of the frequency of villous
branching (5). Different to growth of vCTBs, that form a
double-rowed epithelium after lateral cell division and fuse
into STBs, pCCTs break through the overlying STB layer and
form multiple layers of proliferative trophoblasts (Figure 1).
Similar to early phases of tumor formation, pCCTs detach
from the basal membrane and lose their polarity. However, in
contrast to cancer cells, growth and invasion of trophoblasts is
highly organized and precisely controlled in a spatiotemporal
manner. At distal sites of anchoring villi, pCCTs differentiate
into non-proliferative dCCTs. Similar to iCTBs which have
deeply migrated into the decidua, dCCTs express numerous
EVT markers such as HLA-G (39), T-cell factor 4 (TCF-4) (40),
integrin α5 (ITGA5) and β1 (41), Notch2 (42), proteoglycan 2
(26). and ErbB2 (43). Hence, formation of dCCTs represents the
first step of EVT differentiation. In comparison to dCCTs, iCTBs
undergo further differentiation by inducing/upregulating specific
proteins, for example ITGA1 (41), matrix metalloproteinase
(MMP) 12 (44, 45) or diamine oxidase (DAO) (46). The latter is
predominantly expressed in EVTs surrounding decidual vessels
and was shown to be decreased in serum samples of early-
onset preeclamptic women (46). In vivo, DAO is only detected
in ∼20 and 45% of iCTBs and perivascular CTBs, respectively,
providing some evidence for the existence of different iCTB
subtypes. Similarly, different EVT populations, identified by
single-cell RNA-Seq, have recently been suggested (47). However,
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FIGURE 1 | Structure of a placental anchoring villus and its different trophoblast subtypes. Precursors, residing in the villous cytotrophoblast (vCTB) layer either

differentiate into multinuclear syncytiotrophoblasts (STBs), surrounded by maternal blood, or give rise to proliferative proximal cell column trophoblasts (pCCTs) upon

attachment of villi to the maternal decidua. After differentiation into distal cell column trophoblasts (dCCTs) extravillous trophoblasts (EVTs) develop, breaking through

the overlying STB layer. EVTs detach from distal cell columns, migrate into the decidual stroma and the maternal spiral arteries replacing maternal endothelial cells. In

the decidual stroma interstitial CTBs (iCTBs) interact with macrophages, B- and T-cells, mast cells, dendritic cells, neutrophils, decidual stromal cells, and uterine

natural killer (uNK) cells. Moreover, iCTBs approach the vessel walls of spiral arteries and promote remodeling from outside. Also, veins (v), lymphatics (l) and glands (g)

are invaded by these cells forming multinucleated trophoblast giant cells (GC) as an end-stage of differentiation.

it remains largely unknown if variations between iCTBs are
specified by the intrinsic genetic program of the placental
anchoring villus or determined by the diverse decidual structures.
Likewise, the exact route of eCTBmigration and the mechanisms
specifying these cells have not been unraveled (11). The different
phenotypes of EVTs could eventually be influenced by the
decidual environment. For example, it was shown that abnormal
gene expression of preeclamptic CTBs was reverted back to
normal physiological levels when cultured in vitro (21). On
the other hand, EVT development per se occurs independently
of the decidual environment and its growth factors. Purified
CTBs and villous explant cultures, seeded on extracellular matrix,
undergo spontaneous EVT differentiation upregulating dCCT,
and iCTB markers in a kinetic manner (48–50). In preeclampsia
this endogenous EVT differentiation program could be disturbed
(51). Anchoring villi and detaching EVTs of tubal pregnancies
show the same pattern in integrin switching as EVTs invading the
decidua basalis (52). Similarly, EVTs migrating from implanted
villous explants and invading the kidney capsule of SCID mice,
were shown to induce HLA-G expression (53).

Although the genome-wide expression profiles of non-
migratory CTBs and invasive EVTs have been unraveled
(54, 55), mechanisms promoting cell column formation
and CTB commitment toward the EVT lineage have been
poorly elucidated. Recently, Notch1 has been detected in a
subset of proliferative pCCTs, indicating that this particular
receptor could mark EVT progenitors (56). Indeed, the active
Notch1 intracellular domain promoted pCCT survival and
marker expression, but suppressed stemness markers of vCTBs

suggesting that Notch1 could convert CTB precursors into
EVT progenitors (57). Low oxygen levels, occurring during
early phases of placental development (58), were shown to
trigger Notch1 expression in primary CTBs (57). Hence, low
oxygen could promote expansion of EVT progenitors and
promote early stages of EVT differentiation and invasion (59).
However, the current literature about the specific role of oxygen
in trophoblast biology is controversial, has been extensively
discussed (60–63), and will not be subject of the present review.
Moreover, changes of the self-renewing conditions of long-term
expanding 3-dimensional cytotrophoblast organoid cultures
promoted outgrowth of Notch1-positive progenitors and EVT
formation (64), further supporting the view that development
of different trophoblast subtypes is largely determined by the
intrinsic differentiation program of the placenta.

THE IMPACT OF THE DECIDUA ON
EXTRAVILLOUS TROPHOBLASTS:
GENERAL ASPECTS

In a few species, spontaneous uterine transformation commences
during the second half of the menstrual cycle. This process,
preceding implantation, is exclusively observed in mammals
with menstruation and deep, haemochorial placentation, such as
humans and higher primates (65, 66). Shortly after implantation
the pregnant uterus undergoes dramatic morphological changes
including extracellular matrix remodeling, vascularization,
increase in uNK cell numbers and secretory activity of glands
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as well as transformation of stromal fibroblasts into polygonal
decidual cells (67). Decidual glands secrete glycoproteins,
such as glycodelin A, carbohydrates and other metabolites
nourishing the embryo during the first weeks of pregnancy
(68–70). During this phase of histiotrophic nutrition glandular
cells also produce various growth factors likely promoting
early placental development such as leukemia-inhibitory factors
(LIF), epidermal growth factor (EGF), vascular endothelial
growth factor (VEGF) and endocrine gland-derived vascular
endothelial growth factor (EG-VEGF) (69, 71–74). Indeed, EGF
(see below) and EG-VEGF were shown to augment proliferation
of vCTBs/CCTs in villous explant cultures (75). Similarly, VEGF
was shown to stimulate growth of trophoblast cell lines and
primary cultures (76). In contrast, LIF may be mainly involved in
the regulation of implantation and trophoblast invasion (77–79).

Differentiation of uterine fibroblasts, commonly referred to
as decidualization, initiates during the luteal phase of the
menstrual cycle and requires the combined action of cAMP
and progesterone on the estrogen-primed endometrium (80).
Besides secretion of growth- and- invasion-controlling factors
(see below) numerous other functions have been assigned to
decidual fibroblasts (DFs). For example, DFs secrete enzymes
clearing reactive oxygen species (67, 81) and thereby might
protect the decidua and/or EVTs from adverse stress response
when local oxygen levels rise between 10th and 12th week of
gestation. Trophoblast-derived human chorionic gonadotrophin
(hCG) could further increase resistance of DFs against oxidative
tissue damage (82). DFs also express various extracellular
matrix proteins, such as fibronectin, emilin-1, decorin, fibulins,
collagens and laminins (83–86), potentially controlling EVT
motility by binding to trophoblast-expressed adhesion molecules
and receptors (87).

In women with placenta accreta, EVTs excessively invade the
maternal uterus, mostly as a consequence of implantation onto or
close to a scar after preceding cesarean section. It is anticipated
that the local absence of decidua facilitates trophoblast invasion
into the underlying myometrium (88, 89). From this pathology,
one might conclude that the decidua restricts migration of
trophoblasts thereby controlling depth of invasion in a temporal
manner and preventing aberrant, tumor-like expansion of the
placenta. Indeed, former concepts suggested that trophoblast-
derived MMPs, known to promote invasiveness, are counter-
balanced by tissue-inhibitors of metalloproteinases (TIMPs)
present in the decidua (90, 91). Similarly, decidual plasminogen
activator inhibitors (PAI) 1 and 2 could control timing and depth
of trophoblast invasion by inhibiting the plasminogen activator
(PA) system expressed by migratory EVTs. However, physiology
of trophoblast invasion is more complex since both EVTs and
DFs express MMPs, TIMPs, PAs, PAIs as well as urokinase
plasminogen activator receptor (uPAR) (90, 92–98). Hence, the
decreasing rate of EVT invasion during pregnancy cannot be
merely explained by the reciprocal expression of MMPs/uPA and
TIMPs/PAI in EVTs and the decidua, respectively. Moreover,
potential changes of inhibitor expression throughout gestation
or in superficial vs. deeper regions of the decidua have not
been measured. Diminished EVT migration at later stages of
pregnancy might also be a consequence of the decreasing growth

rates of cell columns. As follows, defects in invasion/remodeling,
as observed in IUGR, could at least partly be the result of reduced
trophoblast growth in this condition (99).

Other data do not support the concept that the decidua
restricts trophoblast invasion. In contrast to anchoring
villi of normal uterine pregnancies, distal cell columns
of ectopic placental villi, isolated from tubal pregnancies,
were extended in size. This suggests that the decidua could
facilitate EVT detachment from anchoring villi during
physiological development of the placental basal plate (52).
Indeed, decidualized endometrial stromal cells express a tissue-
specific variant of fibronectin favoring trophoblast invasion
(100). Whereas, EVTs, generated by first trimester villous explant
culture, migrated superficially on dermal fibroblasts, their
co-culture with DFs resulted in promotion of interstitial invasion
(100). Therefore, the specific features of the decidua may adapt
to different stages of pregnancy and precisely control invasion of
EVTs by expressing pro- and anti-migratory matrix proteins and
factors (37, 38). In return, DFs have a high migratory capacity
and could promote implantation by actively moving toward the
blastocyst and provoking encapsulation of the conceptus (101).
Indeed, EVT supernatants contain chemotactic signals that
promote endometrial stromal cell migration (102). Genome-
wide expression analyses revealed that trophoblast-conditioned
medium of cultivated CTB preparations, containing a mixture
of different CTB subtypes, could induce mRNAs encoding
chemokines and angiogenic factors in decidualized endometrial
fibroblasts (103). However, compared to EVTs, mixed CTB
isolates may elicit different responses. In a recent study EVTs
increased numbers of resting FoxP3-positive regulatory T cells
(Tregs) upon co-cultivation with CD4+ T cells, whereas vCTBs
were ineffective (104).

CAVEATS OF IN VITRO STUDIES WITH
EXTRAVILLOUS TROPHOBLASTS

Decidua-derived growth factors and their role in trophoblast
motility have been investigated in numerous publications.
However, many of these studies have drawbacks limiting
their scientific value. Access to primary trophoblasts of early
pregnancy is generally restricted, hence different trophoblast-
like cell lines were utilized in invasion and migration assays.
Yet, the specific origin of these cell lines is uncertain and their
genome-wide gene expression profiles and HLA status differ
considerably from purified CTBs (105, 106). Cell lines proliferate
in culture whereas EVTs are non-mitotic cells. Hence, discordant
results were obtained between cell lines and primary cells, for
example inmigration assays under hypoxic conditions (107, 108).
Similarly, transforming growth factor β (TGFB), expressed by
DFs, uNK cells and uterine glands (109, 110), was shown to either
promote or inhibit trophoblast proliferation or invasion (111–
115). Besides divergence between cell lines and first trimester
CTBs, contaminations with highlymigratory placental fibroblasts
and variations between different cell isolations and primary
model systems might account for multiple discrepancies and the
high variances observed in trophoblast-related studies. Invasion
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assays are often performed with pooled fractions of trypsinized
primary CTBs representing a mixture of CCTs, EVTs and vCTBs.
The latter also invade through 8µm transwells in vitro, whilst
undergoing cell fusion in vivo. Moreover, nuclear size is a limiting
factor in invasion/migration assays (116). Indeed, EVTs become
polyploid during differentiation displaying increased nuclear
diameter (117, 118). Therefore, EVTs hardly pass membranes
with 8µmpores (50), a fact which has not been considered by the
majority of trophoblast invasion/migration studies. Moreover,
the high complexity of decidual cell types cannot be mimicked
in vitro. In addition, local concentrations of soluble factors in the
tissue and their variations during pregnancy and between uterine
cell types are poorly studied. Therefore, in vitro assays are usually
performed with saturating levels of recombinant factors. As
follows, the prime target cell of many decidual proteins remains
uncertain since the respective receptors have been identified
on several uterine cell types. As a consequence, opposing roles
for particular factors were suggested. For example, IL10 was
shown to directly impair CTB invasion, but also to abolish
the adverse effects of LPS-treated macrophages on trophoblastic
cell migration (119, 120). Additionally, results obtained with
first trimester villous explant cultures recapitulating attachment,
outgrowth and EVTmigration in vitro (121) are often interpreted
differently by authors. For example, depending on the specific
analyses, outgrowth was suggested to be indicative of both
increased trophoblast motility and elevated proliferative capacity.

Herein, we focus on the abundant decidual factors, cytokines,
and chemokines which have been most convincingly proven to
affect EVT formation and function in reliable trophoblast in vitro
model systems. However, these studies should also be interpreted
in the light of the above-mentioned limitations.

REGULATION OF EXTRAVILLOUS
TROPHOBLASTS BY DECIDUAL
FIBROBLASTS

During decidualization fibroblasts upregulate key markers of the
pregnant endometrium of which prolactin (PRL) and insulin
growth factor binding protein-1 (IGFBP-1) are amongst the
most abundantly expressed proteins (122–124). Both proteins
likely exert pleiotropic effects on different uterine cell types
including regulation of decidualization and EVTmigration (125–
128). Although PRL, also involved in differentiation of the
decidual glandular epithelium (129), was shown to promote
motility of first trimester CTBs (130, 131), the role of IGFBP-
1 is less clear due to the high complexity of the IGF/IGFBP
system. Both migration-activating and -inhibiting effects were
attributed to IGFBP-1 upon binding to the EVT-expressed
fibronectin receptor ITGA5B1 (132–134). However, one of the
main functions of IGFBP-1 could be the regulation of IGF
bioavailability at the fetal-maternal interface, possibly triggered
by EVT-derived IGF-II (135). Upon secretion of IGF-II from
these cells decidual IGFBP-1 might get dephosphorylated and
further cleaved by EVT-specific MMP-3 and MMP-9 thereby
increasing unbound IGFs, the latter stimulating trophoblast
migration (126, 136–139). Yet, proteolytic fragments, generated

by trophoblast-derived MMPs, may also restrain trophoblast
invasion. Endostatin, a cleavage product of decidual collagen
XVIII, was shown to impair IGF-II-induced EVT-motility (50,
140).

Besides the prime markers IGFBP-1 and PRL, other classes
of soluble DF-secreted factors were suggested to control EVT
motility including chemokines, cytokines and ligands of the EGF
and Wingless (WNT) signaling pathways (38, 141). Different
CXCL and CCL chemokines have been identified in DFs. Their
respective receptors are present on uterine leukocytes and EVTs
suggesting a role in immune cell trafficking as well as trophoblast
migration, respectively (142, 143). For example, CXCL14 was
shown to reduce invasiveness (144), whereas CXCL12 promoted
CTB migration and suppressed apoptosis of term trophoblasts
through its receptor CXCR4 (145–147). CCL2, expressed by
DFs, macrophages and EVTs (148, 149), may recruit T helper
17 cells into the decidua, and interleukin (IL) 17 expressed by
these cells could promote trophoblast growth and invasion (150).
Other interleukins, shown to stimulate CTB invasion, are IL1B
(151, 152) and IL8, secreted from uterine NK cells and DFs
(153, 154), whereas IL11 had inhibitory effects (155).

While EGF and heparin-binding EGF (HB-EGF), expressed
by the decidua, were shown to stimulate trophoblast invasion
and outgrowth from villous explants cultures, proliferation
of primary EVTs and trophoblastic HTR-8/SVneo cells was
unaffected (156–159). Recently, however, we could demonstrate
that these factors increased proliferation of vCTBs and CCTs in
villous explant cultures of early placentae (160). Moreover, in
contrast to vCTBs and CCTs, EVTs largely lack the EGF/HB-
EGF-specific receptors EGFR and ErbB4, and induce ErbB2 and
ErbB3 during differentiation (43, 161). Heterodimers of ErbB2
and ErbB3 were shown to interact with neuregulin 1, expressed
by DFs, protecting EVTs from apoptosis and thereby retaining
their differentiation program (43). Therefore, upregulation of
EVT invasion/differentiation by EGF/HB-EGF could largely be a
consequence of increased CCT proliferation, while direct effects
of these factors on EVTs might be negligible.

Like in other developing tissues WNT signaling has been
suggested to play a pivotal role in placental morphogenesis
and differentiation (141, 162). Activation of the pathway by
secreted ligands stabilizes the key mediator of WNT signaling,
β-catenin, and promotes its nuclear recruitment (163). In
the nucleus β-catenin binds to DNA-binding proteins of the
T-cell factor (TCF) family thereby inducing TCF-mediated gene
transcription. Invasive trophoblasts, the secretory endometrium
and first trimester DFs express a variety of WNT ligands
suggesting autocrine as well as paracrine effects of the particular
pathway (164, 165). EVT formation and differentiation is
strongly associated with activation of canonical Wnt signaling
and nuclear expression of β-catenin, TCF-3 and TCF-4 (40,
166). Indeed, migration and differentiation of EVTs requires
TCF-4, whereas survival and proliferation of CCTs is induced
by WNT5A involving non-canonical mitogen-activated protein
kinase (MAPK) activity (166, 167). Moreover, canonical Wnt
signaling might play a dual role in early placental development
controlling both long-term expansion of vCTB progenitors and
EVT differentiation (64).
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IMMUNE CELL DISTRIBUTION IN THE
DECIDUA

The pregnant uterus is mainly colonized by cells of the
innate immune system, of which the most abundant and
by far best characterized cell types are macrophages and
uNK cells. Most available literature refers to numbers ranging
from 50 to 70% uNK cells, 20–30 % macrophages and 10–
15 % T cells of the total CD45+ immune cells in the
decidua; only 2 % account toward the less abundant leukocyte
populations including dendritic cells or Tregs (30, 168–170).
However, the vast majorities of comparative analyses do not
consider regional differences (parietalis vs. basalis) in decidual
immune distribution and may also miss certain cell populations
due to pre-selective isolation methods or due to the lack
of appropriate markers to distinguish certain immune cell
populations from each other. Hence, before describing uNK
cell and macrophage function in detail, we will shortly discuss
decidual immune cell populations which in our opinion
have widely been ignored in the context of reproductive
biology.

Mast cells have been previously described to mainly colonize
the uterine myometrium and were shown to localize around
decidual vessels. Interestingly, mast cell depletion in a mouse
model results in diminished spiral artery remodeling and as
a consequence leads to IUGR. The same study demonstrated
a close spatial distribution of mast cells and EVTs in the
human decidua basalis and reported a mast cell-dependent
positive effect on EVT migration (171). Another study showed
a role for neutrophils in placentation and trophoblastic giant
cell invasion in mice (172). Interestingly, neutrophils seem
to accumulate around spiral arteries and develop a pro-
angiogenic phenotype toward the second trimester of pregnancy
(173). The reason for the oversight of neutrophils might
be explained by methodological issues as most protocols to
obtain tissue leukocytes involve density gradient centrifugation
eliminating all non-mononucleated immune cells, including
neutrophils. Nevertheless, it should be taken into consideration
that neutrophil accumulation in the decidua may at least be
partly a response to blood coagulation and tissue damage
occurring during tissue collection. Although mostly ignored,
some scientific papers describe the presence of B cells in
human term decidua (174). Moreover, a recent study shows
that term decidua basalis contains more B cells when compared
to decidua parietalis tissues (175). The authors of this
study further found that decidua parietalis contains a higher
proportion of mature/naive B cells whereas transitional B
cells were enriched in decidua basalis. Since altered B cell
distributions have recently been associated with preterm
labor (174), more studies are needed to determine the
role of B cells during pregnancy. In addition, distribution
and characterization of B cells in first trimester decidua
tissues has not been studied so far. While macrophages
are considered to be the main phagocytic and antigen-
presenting cell type in the human decidua little is known
about dendritic cell distribution and function during pregnancy.
One reason for the scarce information concerning decidual

dendritic cells is the lack of marker combinations, which
could reliably segregate macrophages from dendritic cells,
since they develop from a common myeloid progenitor and
therefore express common cell surface markers (176, 177).
A good example for the problem to distinguish between
macrophages and dendritic cells are Langerhans cells. These
cells have long been referred to as long-lived dermal dendritic
cells and are now considered tissue-resident macrophages
with features of dendritic cells such as T cell-stimulation in
lymph nodes (178). Despite overlapping cell marker expression
and functional similarities in the skin, dendritic cells have
unique properties. For instance, DCs homeostatically migrate
to draining lymph nodes and are much more potent in antigen
cross-presentation to CD8+ T cells (179). Consequently, DCs are
likely involved in shaping host immune responses toward the
invading EVTs.

PROPOSED FUNCTIONS OF UTERINE
NATURAL KILLER CELLS

Unlike conventional peripheral blood (pb) NK that are
efficient killers, uNK cells in rodents and humans do not
normally mount cytotoxic responses against fetal or placental
tissues. Instead, growing evidence highlights the importance
of uNK in controlling uterine neo-angiogenesis, spiral artery
remodeling, the immune response against fetal antigen, and
trophoblast function (30, 180–182). However, recent work
shows that aberrant inflammation in pregnancy resulting from
infection or fetal-driven alloimmunity programs uNK cells to
acquire cytotoxic properties that promote fetal death and/or
placental dysfunction (183, 184). Therefore, a contemporary
view suggests that appropriate uNK activation is important
for promoting healthy placentation, where inadequate (not
enough) or inappropriate (too much) uNK activity contributes
to defective placentation and related disorders of pregnancy
that may include recurrent miscarriage, preterm birth, and
preeclampsia (185, 186). In women, uNK cell numbers rapidly
expand during the progesterone-dominant luteal phase of the
menstrual cycle (22). Evidence suggests that the decidual
environment, enriched with factors like progesterone and
transforming growth factor TGFB1, promote the differentiation
of NK cell progenitors into mature uNK cells that are
defined phenotypically as CD56superbright/CD16− cells (187, 188).
By contrast, the phenotype of conventional pbNK cells is
predominantly CD56dim/CD16+. Other distinctive features of
uNK include the expression of tissue-residency markers (i.e.,
CD9, CD69, CD49a) (189, 190) and cytolytic proteins (i.e.,
perforin, granzyme, and granulysin) (191), and the expression of
a distinctive natural killer receptor repertoire (192). In particular,
killer immunoglobulin-like receptor (KIR) and natural killer
group 2 (NKG2) receptors are robustly expressed by uNK
cells (189, 192). These and other natural killer cell receptors,
are thought to modulate maternal-fetal recognition, but may
also play important roles in controlling aspects of trophoblast
biology.
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COMMUNICATION BETWEEN INVASIVE
TROPHOBLASTS AND UTERINE NATURAL
KILLER CELLS

In vivo evidence shows that EVTs directly interact with uNK
cells (193), indicating that by EVT- uNK cell interactions these
potentially modulate each other’s functions (194–196). EVTs,
unlike vCTBs that do not express major histocompatibility
complex (MHC) type-I molecules, express a unique combination
of classical HLA-C and non-classical HLA-E, HLA-F, and HLA-
G class-I ligands playing a role in immunological acceptance of
the placenta/fetus (30, 197, 198). This unique MHC composition
enables EVT to directly interact with and modulate uNK
cell processes through specific combinations of natural killer
receptors. However, hard evidence for in vivo or ex vivo natural
killer cell receptor-EVT interactions has been challenging to
generate, due in large part to the ethical boundaries of working
with human samples of pregnancy and to the logistical hurdles
of working with primary CTB cultures and uNK cells isolated
from tissues of the same pregnancy. As a surrogate for primary
EVTs, co-cultivation of trophoblastic HTR-8/SVneo cells with
uNK cells were performed demonstrating elevated uNK cell
survival and downregulation of the activating NKG2D receptor
(199). However, these data have to be interpreted with caution
since HTR-8/SVneo cells express a different repertoire of HLA
proteins, including HLA-A and HLA-B, which are absent from
EVTs (105).

MHC class-I molecules expressed on EVTs can interact
with multiple natural killer receptors that transmit inhibitory
or activating signals to dampen or promote uNK cytotoxicity
and production of cytokines, respectively (30). Perhaps the
best-studied uNK cell receptors are the family of polymorphic
KIRs that are defined by the presence of either 2 (2D) or 3
(3D) immunoglobulin-like domains and long (L) or short (S)
cytoplasmic tails that help initiate inhibitory (L) or activating
(S) signals. Inhibitory KIRs expressed on uNK cells include
KIR2DL1, KIR2DL2, and KIR2DL3, and these receptors transmit
strong inhibitory signals through their immunoreceptor Tyr-
based inhibitory motif (ITIM) (35). Activating uNK KIRs
include KIR2DS1 and KIR2DS4 (186, 200), however the
receptor KIR2DL4, an unconventional KIR that predominantly
localizes to endosomes and not the cell membrane, is also
capable of transmitting activating signals (104, 201, 202).
KIRs bind mainly to HLA-C, expressed by multiple cell types
within decidual tissue, including EVTs (203). The number
of KIR genes in the genome of any given individual varies
within the population, as does the expression of haplotypic
specific HLA-C, making the immunogenic complexities of
uNK cell-EVT responses unique for any given pregnancy
(204).

To date, most research has examined the importance of HLA-
C in controlling uNK cell-related processes through either uNK-
target cell or antibody cross-linking experiments. It is important
to note that, the directionality of uNK cell response to HLA-C
depends largely on the epitope type, designated broadly as C1
or C2. This designation is based on a dimorphism at position
80 of the α1 domain of HLA-C (205). Overall, in mixed uNK

cell populations that express high levels of inhibitory KIR, HLA-
C challenge promotes an inhibitory signal regardless of the
co-presence of activating KIRs (186). KIR-directed inhibitory
signals associate with impaired or blunted degranulation (206)
and reduced secretion of EVT-regulatory factors (i.e. IL8, VEGF,
placental growth factor (PGF) and CXCL10, also known as
IP-10) (153). In uNK cells, expressing activating KIR2DS1
or KIR2DS4, HLA-C promotes uNK cell degranulation and
secretion of granulocyte-macrophage colony-stimulating factor
(GM-CSF) and tumor necrosis factor (TNF) (186, 200, 207).
Production of these factors potentially impacts EVT biology
(discussed below). However, the direct effect of endogenous
HLA-C expressed by EVTs on uNK cell processes has yet to be
determined. Nonetheless, ex vivo EVTs physically interact with
HLA-C-specific KIR2DL1 and KIR2DS1 (204), indicating that
biological functions for these KIR-EVT interaction likely do exist.

HLA-E protein is present in EVTs at the 5th week of
gestation but absent from these cells after the 7th week,
suggesting a predominant role in implantation and/or early
trophoblast development (198). Inhibitory signals elicited by
HLA-E are mediated through the dimeric CD94/NKG2A
receptor (208). Previous work shows that CD94/NKG2A elicits
strong suppressive signals that generally override most activating
inputs (209). However, whether EVT-derived HLA-E’s sole
purpose is to restrain uNK cell cytotoxicity in pregnancy is
currently not well understood. For example, CD94 function-
blocking experiments do not potentiate trophoblast killing (208),
suggesting that CD94/NKG2A may serve other roles within the
maternal-fetal interface that have yet to be elucidated.

The role of HLA-G in controlling uNK cells has been
studied more so than other MHC class-I ligands, due in part
to the relevance of its unique and restricted expression within
EVT (197). Previous studies have identified two receptors
expressed on uNK cells that interact with HLA-G: leukocyte
immunoglobulin-like subfamily B member 1 (LILRB1) (210)
and KIR2DL4 (211, 212). Interpretation of previous HLA-G-
related findings necessitates caution due to the nature and
design of the experimental systems used. For example, most
approaches implement forced ectopic expression of HLA-G
in HLA-null target cell lines, designed to synthesize either
of two major HLA-G isoforms expressed by EVTs, namely
membrane-bound HLA-G1 (213) or the truncated soluble HLA-
G5 (211, 214). Further, many studies have interchangeably used
peripheral blood NK cells or NK-like cell lines as surrogate
readouts of HLA-G-uNK cell interaction within the maternal-
fetal interface. These assumptions have perhaps contributed to
over-interpretation of the role of HLA-G in controlling uNK
cell-related processes in pregnancy. Conflicting findings have
arisen from these studies, indicating that both membrane-
bound and soluble HLA-G enhance the production of pro-
inflammatory (IFN-γ, TNF, IL1B, IL6) and angiogenic (IL8)
factors in endometrial (i.e., not decidual) (213, 215) or pbNK
cells (202, 216). In support of the above findings using pbNK
cells, Li et al. demonstrated that HLA-G treatment of ex vivo-
derived uNK cells induces IL6, IL8, and TNF through processes
dependent upon KIR2DL4 (212). In contrast to this, ex vivo uNK
cells, exposed tomembrane-boundHLA-G, resulted in inhibition
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or had marginal impact on uNK degranulation and cytokine
production (214). Two recent studies, directly examining the
function of HLA-G in primary EVTs and uNK cells, indicated
that HLA-G does not induce cytokine secretion from uNK cells
but instead dampens uNK cell activity (104, 193), a finding
that is consistent with the original paradigm that HLA-G
likely promotes immune cell tolerance within the fetal-maternal
interface.

REGULATION OF EXTRAVILLOUS
TROPHOBLASTS BY UTERINE NATURAL
KILLER CELLS

Uterine NK are robust producers of cytokines and growth
factors, and due to their close proximity to EVTs within the
maternal-fetal interface, these cells likely play roles in regulating
the diverse functions of trophoblasts. In support of this, uNK
cell-generated conditioned media modifies specific biological
processes of primary trophoblast, including the promotion of cell
invasion (153, 154, 217). Notably, the pro-invasive effect of uNK
cell-derived conditioned media is solely attributed to soluble
factors produced by uNK cells harvested from later gestational
age time-points within the first trimester of pregnancy (i.e., 10–
13 weeks’ gestation). By contrast, soluble factors produced by
uNK cells from the earlier first trimester time-points do not
elicit pro-invasive characteristics on EVTs, indicating that the
composition of uNK cell factors is influenced by processes related
to gestational age, and that the impact of uNK cells on EVT
biology is relative to stage of development.

Multiple factors produced by uNK cells have been identified,
and importantly, receptors for many of these substances are
expressed on primary EVTs. For example, uNK cells produce
high levels of IL8, TNF, interferon (INF) γ, TGFB1, CXCL10, as
well as the angiogenic factors such as vascular endothelial growth
factor A (VEGF-A), VEGF-C and PGF (153). Reciprocally,
immunolocalization studies on implantation sites and ex vivo
studies using primary EVTs provide evidence that invasive
trophoblasts populating the maternal-fetal interface produce
receptors for these ligands. For example, EVTs express CXCR1
(an IL8 receptor), CXCR3 (an CXCL10 receptor), TNFR1, as
well as VEGFR-1 and VEGFR-3, the latter binding VEGF-
A and VEGF-C, respectively (110, 153, 218, 219). Notably,
supplementation of IL8 and CXCL10 promoted migration of
primary CTBs (153). Likewise, inhibition of ligand binding to
VEGFR-1 and VEGFR-3 diminished trophoblast invasion (220).
Moreover, downregulation of VEGF in uNK cell-conditioned
media impaired EVT outgrowth compared to controls (221). In
contrast, TNF and IFN-γ inhibited trophoblast migration and
invasion by increasing PAI expression and impacting MMP-
directed proteolysis, respectively (222, 223). Taken together,
factors produced by uNK cells do have the ability to control EVT-
related processes in vivo. Given the interplay between promoting
and restraining invasive characteristics in EVTs, uNK cells could
be an important cellular component of the decidua that controls
depth of EVT invasion as well as extent of trophoblast-mediated
spiral artery remodeling.

CAN THE BREAKDOWN OF
MATERNAL-FETAL TOLERANCE BE
RELATED TO UTERINE NATURAL KILLER
CELLS DYSFUNCTION?

Much research related to uNK-trophoblast interactions has
centered on the possibility that uNK cells, activated by infection
or inflammation, may mount cytotoxic responses toward the
semi-allogeneic fetus and trophoblast, thus contributing to
infection-related miscarriage and other pregnancy disorders
with aberrant inflammation. Surprisingly, most well designed
studies, utilizing primary syngeneic uNK cell and trophoblast co-
cultures, provided convincing evidence that trophoblasts (both
HLA-G- and non-HLA-G-expressing trophoblasts) are highly
resistant to uNK-directed killing (193, 224). Although uNK cells
do not target trophoblasts for killing, even when artificially
activated, uNK still retain pro-cytotoxic features (i.e. granzyme,
perforin) that enable efficient cellular immune responses against
virally-infected maternal uterine stromal cells, highlighting that
trophoblasts are immuno-privileged (193, 225). Nonetheless,
research in mice suggests that uNK cells can adopt anti-
trophoblast characteristics in the right context. For example,
aberrantly activated uNK cells in response to inflammation
induced by bacterial endotoxin (183) or alloimmunogenic
responses (184) target fetal tissues, including the placenta,
and induce fetal resorption. These uNK-driven processes lead
to impairments in uterine artery remodeling and placental
sufficiency, and can be reversed through genetic ablation
strategies (i.e., IL15−/−) (183) or antibody-directed inhibition
of uNK cells (184). It has also been suggested that uNK cell
numbers are altered in pregnancy complications such as PE
and IUGR, although contradictory data have been published.
Reduced numbers of uNK cells in pregnancies with IUGR have
been consistently demonstrated using different methods (226–
229). Some studies also suggest a decrease of uNK cells (229)
or of the CD56+/CD16+ uNK subset (228) in PE compared
to healthy pregnancies. In contrast, others describe an elevated
number of total uNK cells or of the CD56+/CD16+ subset in
PE (230, 231). More recently, research has identified pre-existing
health conditions of the mother that associate with low-grade
inflammation, like obesity, that potentiate uNK cell activity and
modify how uNK cells interact with fetal MHC ligand (207).
However, although the in utero environment likely shapes uNK
cell processes, to date, hard evidence showing that aberrantly
activated uNK cells in humans directly target trophoblasts for
killing has yet to be clearly demonstrated.

REGULATION OF EXTRAVILLOUS
TROPHOBLASTS BY DECIDUAL
MACROPHAGES

Next to uterine natural killer cells, macrophages are thought
to comprise the second largest leukocyte population within
the decidua (168, 232). Besides suggested contributions to
spiral artery remodeling and immune modulation (12, 233),
the function of decidual macrophages, in particular their
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effect on EVT activity, remains largely unknown. Although
historically described for their function in immune defense,
inflammation, and clearance of apoptotic cells, macrophages have
also been recognized to play important roles in the development,
homeostasis, and repair of various tissues (234).

Macrophages are usually classified into M1, representing a
classical pro-inflammatory, anti-microbial activation or into M2,
referring to an anti-inflammatory phenotype promoting wound
healing. A body of growing evidence however suggests that M1
and M2 rather represent two extreme poles of a broad spectrum
of macrophage polarization (235). The non-exclusivity ofM1 and
M2 macrophage phenotypes in vivo has likely several reasons.
Firstly, it has been shown that macrophage activation statuses are
reversible when specific stimuli change. Secondly, macrophages
are often exposed to opposing activating signals in vivo (236).
For instance, the co-existence of pro-inflammatory M1 and anti-
inflammatory M2 profiles has been demonstrated in various
mouse models and during tumor progression (237, 238). In light
of these data it is not surprising that decidual macrophages
also show a unique activation status with a dominating but not
exclusive M2 phenotype. While decidual macrophages express
typical M2 markers such as CD209 and CD206 and secrete
the anti-inflammatory cytokines IL10 and TGFB, they were
also shown to secrete pro-inflammatory cytokines including
IL6 and TNF and the neutrophil chemoattractant CXCL8
(IL8) (239, 240). Nevertheless, the anti-inflammatory M2-related
cytokines IL10 and M-CSF were shown to be important for
inducing a decidual macrophage phenotype in peripheral blood
monocytes (240). In addition, decidual macrophages were
able to suppress T cell activity and induce Tregs in vitro
(194, 241), which further strengthens the notion of an M2-
dominated function. Two independent studies suggested the
presence of two distinct decidual macrophage subpopulations,
characterized by the absence or presence of the cell surface
markers CD11c and ICAM3 (239, 240). Expression of these
markers may at least partly relate to immature macrophages or
blood contamination, as high levels of CD11c and ICAM3 are
also found in blood monocytes. More recently, a study described
three decidual macrophage subtypes, based on the expression
or absence of CCR2 and CD11c. Using RNA sequencing and
functional assays, the authors identified distinct functional states,
including differences in phagocytosis, anti-oxidative, and anti-
inflammatory activities, and proximity to EVTs (242). Whether
these differences indeed account for unique subpopulations
or reflect cellular plasticity and thus relate to phenotypical
alterations awaits further clarification.

Due to their high abundance in the decidua, it is conceivable
that macrophages markedly influence the local paracrine
environment and thus EVT function. As follows, it is interesting
to note that decidual macrophages are more abundant at the
site of implantation and accumulate at the invasive front of
EVTs (243, 244). There is growing evidence for a macrophage-
guided growth-promoting function in various epithelia (245–
247). Interestingly, both placental and decidual macrophages
could promote proximal cell column proliferation by secreting
the M2-associated (248, 249) factors IL33 and Wnt5a (167,
250). These data suggest that paracrine activity of decidual

macrophages could be important for the initial steps in EVT
formation. Furthermore, decidual macrophages have been shown
to secrete a range of factors known to alter EVT motility (239),
albeit with conflicting evidence as to whether they promote
or restrict EVT invasion. For instance, while IL8 (153) was
described as pro-invasive factor in the context of trophoblast
migration, TNF (222) and IL10 (119) have been shown to inhibit
EVT motility. The net effect of these factors on EVTs may be
pro-invasive, anti-invasive, or neither. In addition, it is unclear
under which circumstances decidual macrophages produce these
opposing cytokines in terms of macrophage polarization and
EVT response. Phenotypic macrophage polarization is controlled
by a complex array of soluble factors provided by the local
microenvironment and even dictated by extracellular matrix-
dependent cell morphology (251). Moreover, ligand distribution
within tissues is limited by a wide variety of factors, including
limited diffusion capacities, endocytosis, and interaction with
extracellular matrix proteins. It is therefore also important to
consider the spatial relationship betweenmacrophages and EVTs.

Unfortunately, there is limited information on the difference
in macrophage distribution between decidua basalis and
parietalis, and especially on whether these different tissue
compartments harbor specific macrophage phenotypes.
Immunohistochemical studies provided evidence for an
enrichment of macrophages in the decidua basalis (243, 244),
which has recently been confirmed via flow cytometric analysis
(175), suggesting that macrophages preferentially accumulate
in the vicinity of EVTs. In a similar context, it has been shown
that binding between HLA-G homodimers and macrophage-
associated leukocyte immunoglobulin-like receptor B1 (LILRB1)
upregulates secretion of IL6, IL8, and TNF (212). Although it
is not clear whether these effects relate to membrane-bound
or soluble HLA-G, the presence of EVTs likely influences the
macrophage phenotype and thus could substantially influence
the paracrine activity of decidual macrophages.

ARE DECIDUAL MACROPHAGES ALTERED
IN COMPLICATED PREGNANCIES?

Complicated pregnancies with IUGR or early-onset PE have
repeatedly been associated with compromised EVT function.
Several studies have tried to decipher whether aberrations in
the decidual macrophage population could mediate these EVT
defects, albeit with conflicting results. Some studies suggest an
increase in macrophage numbers in preeclampsia compared to
healthy pregnancies (252, 253). Further, an inverse relationship
between macrophage infiltration and invasion of trophoblasts
into arteries, with a shift toward macrophage infiltration in
preeclamptic pregnancies, was shown (252). On the contrary,
other studies point toward a decrease in the number of
macrophages in IUGR and PE, compared to healthy pregnancies
(229, 254). Still some additional studies found no significant
differences in macrophage distribution and activation patterns
between preeclamptic women and preterm labor controls (255).

In addition, it is unclear whether aberrant macrophage
polarization could be associated with EVT defects in
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FIGURE 2 | Schematical depiction of soluble factors secreted from decidual

macrophages, stromal cells, or glands. Mediators, stimulating proliferation of

proximal cell column trophoblasts (pCCTs) in villous explant cultures are

illustrated. dCCT, distal cell column trophoblast; STB, syncytiotrophoblast;

vCTB, villous cytotrophoblast; iCTB, interstitial cytotrophoblast.

FIGURE 3 | Expression of decidual chemokines, cytokines and other soluble

mediators affecting trophoblast migration and/or invasion. Some of the

depicted factors likely play numerous roles at the fetal-maternal interface

including activation and maturation of immune cells, as well as decidual

angiogenesis and spiral artery remodeling. EVT, extravillous trophoblast; uNK

cell, uterine natural killer cell; DF, decidual fibroblast.

the development of placental pathologies. In detail, some
evidence exists that macrophages could display a more M1-
like polarization in cases of PE, resulting in an exacerbated
production of pro-inflammatory cytokines adversely affecting
EVT function (256, 257). For instance, TNF has been shown
to inhibit trophoblast motility in villous explant cultures (222).

A study utilizing a rat model, demonstrating that systematic
LPS injection results in IUGR and PE-like symptoms, also
reported increased levels of TNF and exacerbated numbers
of uteroplacental macrophages (258). Unfortunately, the
authors did not further elucidate whether LPS-induced
systemic inflammation also changes the phenotype of decidual
macrophages. Nevertheless, whether a shift toward a pro-
inflammatory M1-like macrophage phenotype indeed adversely
affects EVT function has not been proven. As mentioned above,
M2-related anti-inflammatory cytokines such as TGFB or
IL10 were also reported to exert adverse effects on EVTs by
restricting their migratory potential. Conversely, macrophages
isolated from miscarriages showed reduced expression of IL6
and IL8, the latter with pro-invasive potential toward EVTs
(153). In summary, studies investigating the functional interplay
between primary macrophage and EVT cultures are scarce.
Thus, the particular role of macrophages in the context of EVT
function remains unclear both in healthy and complicated
pregnancies. Unfortunately, there is also limited availability
of suitable human in vitro systems to study this interaction.
Immortalized monocytic cell lines, such as THP-1 cells, do not
represent a useful model system for decidual macrophages due
to their massive genomic rearrangements and their phenotypic
and functional differences (259). It is still unclear whether the
decidua-specific macrophage phenotype can be sustained in
isolated primary cells or mimicked by controlled differentiation
of peripheral blood monocytes in vitro. Moreover, more
information is needed on whether macrophages change their
polarization and secretory profile depending on their location
within the human decidua. Finally, the long lasting paradigm
of macrophage differentiation from recruited monocytes has
been challenged by numerous studies demonstrating that
macrophages are also maintained throughout adult life by
a tissue-resident, proliferative population originating from
embryonic or yolk sac-derived precursors (260, 261). In mice,
tissue-resident macrophage populations, such as liver Kupffer
cells (262), epidermal Langerhans cells (263), microglia (264),
and pleural macrophages (265), were shown to be able to
proliferate and renew independently from the bone marrow.
Although very few data have been generated so far to confirm
the existence of tissue-resident macrophages in humans, it is
interesting to note that decidual, tissue-resident CD34+ stromal
cells were described to differentiate into functional CD56+ uNK
cells (266). Moreover, a recent study shows that continuous
pregnancies induce a pregnancy-promoting memory uNK subset
which differentiates from progenitors residing in the post-gravid
endometrium (267). Additional studies, confirming the existence
of tissue-resident NK cells and T cells in other tissues, strengthen
the idea of an organ-specific immunity that is maintained
independently of the bone marrow and secondary lymph nodes
(268, 269). Intriguingly, several reports describe the proliferative
signature of decidual macrophages (270, 271), supporting the
idea that tissue-resident macrophages could be maintained
in the uterus by local proliferation. On the other hand, both
EVTs and decidual macrophages produce monocyte-recruiting
chemokines, such as CCL2 (148, 149) or CCL4 (148, 239)
suggesting a contribution of monocytes to the pool of decidual
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macrophages in early pregnancy. In light of these data it is still
not clear whether the endometrium is continuously populated by
bone marrow-derived monocytes or whether local progenitors
mainly repopulate within the tissue.

SUMMARY

The influence of soluble decidual factors on trophoblast
proliferation, migration and invasion has been intensively
investigated using different trophoblast cell models including
cell lines and primary CTBs containing a mixture of different
trophoblast subtypes. However, studies about the effects of
secreted proteins on cell column proliferation of the anchoring
villus are scarce. Moreover, isolated primary CCTs rapidly
cease proliferation in culture and undergo differentiation (57),
impairing their usability for proliferation assays. Hence, only
few factors were convincingly shown to promote CCT expansion
using first trimester villous explant cultures (Figure 2). Recently
however, self-renewing trophoblast stem cells and organoids
have been developed (64, 272). These culture systems should
allow more reliable investigations on the role of decidual growth
factors in trophoblast progenitor growth, EVT formation and

differentiation. Furthermore, DFs, macrophages and uNK cells
express a plethora of cytokines, chemokines and soluble factors,
some of which are detectable in more than one cell type
(Figure 3). Although the majority of these proteins likely control
trophoblast invasion and/or migration the prime decidual
target cell of an individual factor remains elusive. Besides
their presumptive role in trophoblast motility, chemokines and
cytokines could regulate immune cell recruitment and mutual
activation of macrophages, uNK cells and DFs as well as other
less abundant immune cells of the fetal-maternal interface.
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