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Easy-to-achieve interventions to promote healthy longevity are desired to diminish the

incidence and severity of infections, as well as associated disability upon recovery.

The dietary supplement palmitoylethanolamide (PEA) exerts anti-inflammatory and

neuroprotective properties. Here, we investigated the effect of prophylactic PEA on the

early immune response, clinical course, and survival of old mice after intracerebral E.

coli K1 infection. Nineteen-month-old wild type mice were treated intraperitoneally with

two doses of either 0.1mg PEA/kg in 250 µl vehicle solution (n = 19) or with 250 µl

vehicle solution only as controls (n = 19), 12 h and 30min prior to intracerebral E. coli

K1 infection. The intraperitoneal route was chosen to reduce distress in mice and to

ensure exact dosing. Survival time, bacterial loads in cerebellum, blood, spleen, liver,

and microglia counts and activation scores in the brain were evaluated. We measured

the levels of IL-1β, IL-6, MIP-1α, and CXCL1 in cerebellum and spleen, as well as of

bioactive lipids in serum in PEA- and vehicle-treated animals 24 h after infection. In

the absence of antibiotic therapy, the median survival time of PEA-pre-treated infected

mice was prolonged by 18 h compared to mice of the vehicle-pre-treated infected group

(P = 0.031). PEA prophylaxis delayed the onset of clinical symptoms (P = 0.037). This

protective effect was associated with lower bacterial loads in the spleen, liver, and blood

compared to those of vehicle-injected animals (P ≤ 0.037). PEA-pre-treated animals

showed diminished levels of pro-inflammatory cytokines and chemokines in spleen 24 h

after infection, as well as reduced serum concentrations of arachidonic acid and of one of

its metabolites, 20-hydroxyeicosatetraenoic acid. In the brain, prophylactic PEA tended

to reduce bacterial titers and attenuated microglial activation in aged infected animals (P

= 0.042). Our findings suggest that prophylactic PEA can counteract infection associated

detrimental responses in old animals. Accordingly, PEA treatment slowed the onset of

infection symptoms and prolonged the survival of old infected mice. In a clinical setting,

prophylactic administration of PEA might extend the potential therapeutic window where

antibiotic therapy can be initiated to rescue elderly patients.
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INTRODUCTION

Aging is a natural process accompanied by a progressive
deterioration of physiological and cognitive functions (1). The
age-related decline of the immune function is responsible for
reduced vaccine responses and increased incidence and severity
of infections in elderly persons (2, 3). For example, the mortality
rate of acute bacterial meningitis is 1.5–3 times higher in
individuals >65 years than in young adults (4–7). Elderly
persons frequently consume immunosuppressive drugs such as
corticoids, which in turn aggravates their immunodeficiency (8).
Moreover, atypical clinical manifestations complicate the correct
diagnosis of infections and delay the start of antibiotic therapy in
the geriatric patient, contributing to an adverse outcome (4, 5).
The risk for complications arising from treatment delay may
increase by up to 30% per hour (9). To optimize the treatment
efficiency, the German Society of Neurology recommends the
initiation of antibiotic therapy within 1 h after admission and
immediately after sampling of blood cultures and lumbar
puncture (LP). When LP is delayed for any reason, antibiotics
shall be administered prior to LP (10). When antibiotic therapy
is started after the point of no return, the patient will die
irrespective of the therapy chosen (11). Accordingly, new avenues
to prevent the emergence of infections and to extend the
therapeutic window for potential antibiotic therapy in the elderly
population are required.

Nutritional interventions have been broadly used to boost
immunity in the aged population (12). Besides their potential
in promoting healthy longevity, supplements strengthening
the immune defense constitute a complementary approach to
reduce and improve antibiotic use (and to diminish the risk
of antibiotic resistance) in the elderly population, especially
in those living in long-term care facilities (LTCFs) (13).
Endogenous and dietary lipids such as palmitoylethanolamide
(PEA) contribute to the maintenance of homeostasis including
modulation of the immune response (14). We have shown
that exogenous PEA promotes pathogen uptake by microglial
cells in young animals without the concomitant release
of pro-inflammatory mediators that contribute to brain
damage in bacterial meninigitis (15). During aging, senescent
dysfunctional microglia acquire a chronic pro-inflammatory
phenotype (16, 17). Primed/reactive microglial cells amplify
and prolong inflammation upon infection, and exacerbate
neurocognitive disability in elderly patients (18). According to
the immunocompromised status of the elderly, aged murine
microglia showed impaired bacterial clearance compared to
young cells (19). Immunomodulation to strengthen the immune
response against infections, including microglial function, is
therefore clinically relevant in geroscience (20).

PEA acts as a lipid messenger. Besides being a dietary
supplement, PEA is also abundantly synthesized in the
mammalian brain (21). PEA is considered an endocannabinoid
(eCB)-like compound; it shares with the endogenous eCB
anandamide (AEA) enzymes involved in their biosynthesis and
degradation, and can act on similar targets (22). The eCB system
regulates the body’s inflammatory response, and particularly
in the central nervous system (CNS), it modulates microglial

activation. Chronic infusion of an agonist of cannabinoid
receptors (CBs) 1 and 2 increased neurogenesis, reduced the
pro-inflammatory response in the brain, and improved memory
in aged rats (23, 24). However, using compounds that target
neuronal CB1 entails the risk of collateral undesired psychoactive
effects (25). PEA does not bind to CB1/CB2, thus does not
possess psychotropic activity (26), rendering it an attractive
therapeutic agent. Other bioactive lipids, such as arachidonic acid
(AA, an intermediate product of the metabolism of AEA and
2-arachidonoylglycerol [2-AG]) and eicosanoids (eiCs, resulting
metabolites of the oxidation of AA), are also key effectors in
neuroinflammation (27–29).

PEA as nutraceutical has been used to successfully
treat over 3,000 patients for neuropathic pain, chronic
inflammation, and inflammatory bowel disease (30, 31).
PEA showed a neuroprotective role in several animal models
of neurodegeneration and attenuated neuroinflammation in
a mouse model of epilepsy (32). Here, we aimed to study the
immunomodulatory potential and life-prolonging effect of
prophylactic exogenous PEA in aged mice after intracerebral E.
coli infection without antibiotic treatment. We investigated the
potential of PEA to reduce bacterial spread, attenuate the release
of pro-inflammatory cytokines and chemokines, and diminish
the levels of AA and the subsequent production of eiCs.

MATERIALS AND METHODS

Bacteria
The E. coli strain K1 (serotype O18:K1:H7) originally isolated
from a child with meningitis was used in all experiments (33).
Bacteria were grown over-night on blood agar plates, harvested
in 0.9% saline and stored at −80◦C. All experiments were
performed with aliquots of the same bacterial culture stored at
−80◦C. In each experiment one of these aliquots was thawed and
diluted in saline to the required bacterial concentration.

In-vitro Growth Curves Assessing the
Effect of PEA on Bacterial Growth
Freshly prepared bacteria from a cryo-conserved aliquot were
added to different tubes containing brain heart infusion and (i)
PEA 0.01µg/ml, (ii) PEA 0.1µg/ml, (iii) PEA 1µg/ml, and (iv)
0.017% DMSO (same amount of DMSO as in tubes with PEA
0.01, 0.1, and 1µg/ml). Each condition was tested in triplicates.
Tubes were incubated at 37◦C under rotation (100 rpm). At
different time points, the number of viable bacteria was assessed
by performing 10-fold dilutions in 0.9% NaCl and plating on
sheep blood agar. Viable bacteria were quantified after overnight
incubation at 37◦C.

Experimental Design
All procedures were reviewed and approved by the Animal Care
Committees at the University Medical Hospital of Göttingen and
at the government of Lower Saxony, Germany. Thirty-eight aged
C57Bl/6 mice (18–19 months old, Janvier, France) were divided
in two groups, one treated with PEA (n = 19) and the other
with vehicle solution (n = 19), and later infected. Moreover, 8
non-infected mice were sacrificed 24.5 h after injection of vehicle
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solution to assess the morphology of microglia in aged healthy
mice. PEA (0.1 mg/kg in 250 µl 0.9% saline containing 0.47–
0.55% dimethyl sulfoxide [DMSO] according to the body mass)
and vehicle (250 µl 0.9% saline containing 0.47–0.55% DMSO)
were administered intraperitoneally 12 h and 30min prior to
the induction of meningoencephalitis defined as time point 0 h.
The intraperitoneal administration route of PEA was chosen to
reduce distress in mice and to ensure exact dosing. Previous
studies have demonstrated the neuroprotective properties of
intraperitoneal (ip) PEA (34, 35). The animals were anesthetized
by ip injection of 2mg ketamine and 0.2mg xylazine. Then,
meningitis was induced by the injection of 10 µl 0.9% saline
containing E. coli K1 into the superficial right frontal cortex
and subarachnoid space through the right fronto-lateral skull
(19, 33). Animals were weighed and scored daily as previously
reported (19, 33), and euthanized when they showed severe
lethargy and impaired mobility (clinical score [CS] = 3), or
presented a decrease of ≥20% of the initial body weight. None
of the animals died spontaneously. Mice were housed in groups
of up to 4 per cage in a 12 h light/dark cycle with full access
to food and water. No sample or outlier value was excluded.
Clinical scoring, weighing, measurement of the mediators of
inflammation, and bioactive lipids, and histological evaluation
were done in a blinded way.

In survival studies, PEA- and vehicle-treated animals received
0.8 × 103 colony-forming units (CFU) E. coli/mouse, and
were followed-up for 14 days after infection (n = 9/group).
Differences in the course of the disease were analyzed by Kaplan–
Meier curves of overall survival and symptom-free (CS = 0,
no apparent behavioral abnormality) survival times. In short-
term experiments (n = 10/group), PEA- and vehicle-injected
mice were challenged with 3 × 103 CFU E. coli/mouse and
were sacrificed 24 h after infection. Non-infected mice were
sacrificed 24.5 h after the second vehicle administration to allow
comparisons with infected animals. Survival studies and short-
term experiments were performed twice, respectively.

Sample Processing
Blood was obtained in anesthetized mice (same doses as
described above) by cardiac puncture (up to 0.6–0.9ml
blood/mouse according to body mass). Death was confirmed by
cervical dislocation. Tenmicroliters of blood were serially diluted
in 0.9% saline for the determination of bacterial concentrations.
The rest was stored at 4◦C for 30min and then centrifuged at
3,000 × g for 10min at 4◦C. Serum was used for quantification
of the levels of AA and eiCs. The brain, spleen, and liver were
isolated. The cerebellum was manually dissected from the brain.
The left half of the cerebellum, half of the spleen, and liver were
weighed, immediately diluted in 0.9% NaCl at a ratio of 1:10
for cerebellum, 1:5 for spleen, and 1:2 for liver, respectively to
then be homogenized using a sterile micropestle. For the direct
quantification of bacteria, 1:10 dilutions were performed and
plated on blood agar. The rest of cerebellar/splenic homogenates
were stored at −20◦C to assay cyto-/chemokine concentrations.
We measured bacteria and inflammatory mediators in the
cerebellum, because of the higher ratio of meninges/brain tissue

compared with the neocortex. The cerebrum was fixed in 4%
paraformaldehyde and used for histology.

Targeted Quantification of Endogenous
Lipids
Serum levels of PEA and AA, as well as of representative
eiCs generated from oxidation of AA via two major metabolic
pathways were determined 24 h after infection: prostaglandin
E2 (PGE2) as product of cyclooxygenase (COX)-2, and 20-
hydroxyeicosatetraenoic acid [20 (S)-HETE] obtained upon
cytochrome P450 (CYP) epoxygenases. PEA, AA, and eiCs were
co-extracted using a previously developed and described liquid-
liquid extraction method (36). Briefly, following animal sacrifice,
blood, brain, and peripheral organs were sampled in this order.
Seventy-fivemicroliters of the serum prepared as described above
(see Sample Processing section) were used for the extraction
of lipids. The serum samples were allowed to quickly thaw on
ice. Then ice-cold ethylacetate/n-hexane (9:1, v/v) containing
deuterated standards of the targeted eiCs, PEA, and AA,
respectively, followed by 0.1M formic acid were added. Samples
were then vortexed for 2min, centrifuged for 20min (13,000 rpm,
4◦C) and then frozen for 10min. The upper phase containing
the lipids was recovered, evaporated to dryness, and reconstituted
in 50 µl of acetonitrile/water (1:1, v/v) for quantitative analysis.
The quantification of the lipid levels was carried out by liquid
chromatography-multiple reactionmonitoring (LC-MRM) using
a targeted, multiplex assay involving positive and negative ion
mode switching to achieve analysis of these compounds in a
single run. All sample processing and extraction steps were
carried out at 4◦C to minimize ex-vivo alteration of lipid levels,
and the time course from sampling to analysis was maintained
similar for all animals in order to reduce sample variability
sources, hence ensure reliable comparative study (36, 37).

Cyto-/Chemokine Measurements
Pro-inflammatory cytokines (interleukin [IL]-1β, IL-6) and pro-
inflammatory chemokines (macrophage inflammatory protein-
1α [MIP-1α], chemokine [C-X-C-motif] ligand 1 [CXCL1])
were quantified by DuoSet enzyme linked immunosorbent assay
Development kits in cerebellar and splenic homogenates of
infected old animals. For all tested compounds, the sensitivity
was 37.5 pg/g in the spleen and 75.0 pg/g in the cerebellum.

Histological Analyses
Paraffin-embedded, 2-µm coronal brain sections were used
to visualize microglia by staining of ionized calcium-binding
adapter molecule 1 (Iba-1) with the rabbit anti-Iba-1 polyclonal
antibody (Wako Chemicals) (33). The number of Iba-1+ cells
was determined in six different neocortical regions and the
hippocampal fissure and then divided by the number of scored
regions by a blinded observer. The Iba-1 staining revealed
four divergent cell morphologies according to gradual steps
of microglial activation (38, 39). Based on the most abundant
morphology at a magnification of 20, a microglia activation
score (AS) was given to each scored brain region in a blinded
way. Microglial activation is a multi-step process that starts with
hyper-ramification and subsequent enlargement of the cell body
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and more pronounced thickness and gradual retraction of the
ramifications until acquisition of an ameboid morphology (38).
Microglia with relative big somata but fine ramifications were
scored as an AS of 1 (40). An AS of 2 was given to hypertrophic
cells with thicker branches, while AS3 and AS4 were assigned to
bushy and ameboid cells, respectively (39).

Statistical Analyses
Overall and symptom-free survivals were compared using
the log-rank test. Other comparisons between PEA and
vehicle groups were performed by the Mann–Whitney U-test.
Correlations between (i) bacterial titers and microglial activation
scores, and (ii) bacterial titers and cytokine/chemokine levels
were analyzed using the Spearman’s rank correlation coefficient
(rs). The levels of pro-inflammatory cytokines (joint test on IL-1β
and IL-6) and pro-inflammatory chemokines (joint test on MIP-
1α and CXCL1) were analyzed by multivariate rank-sum tests in
the spleen and cerebellum, respectively (41).

For all analyses, GraphPad Prism (version 5; GraphPad
Software) and R software (version 3.2.2; www.cran.r-project.org)
were used. Adjustment of the p-values for multiple comparisons
in the same organ was performed by the Holm–Bonferroni
method. Differences between two groups were considered
statistically significant at P < 0.05.

RESULTS

Prophylactic PEA Delays Onset of Clinical
Symptoms and Prolongs Survival in Old
Mice
Aged mice receiving two ip doses of PEA (0.1 mg/kg) prior to
infection exhibited longer survival after intracerebral injection of
E. coli compared to vehicle-treated mice (median survival time
48 vs. 30 h; P = 0.031, log-rank test; n = 9/group; Figure 1A).
Mortality rate assessed 14 days after inoculation was lower
in animals receiving PEA than in controls without reaching
statistical significance due to the relatively small group number
(55.6% [5/9] vs. 88.9% [8/9]; P = 0.29, Fisher’s exact test). PEA-
injected animals displayed the first symptoms of disease (CS =

1) later than animals treated with vehicle (median symptom-free
survival time 36 vs. 28 h; P = 0.037, log-rank test; Figure 1B).
Body weight loss within 28 h post-infection (p.i.) was significantly
lower in the PEA pre-treated group compared to the vehicle
group (P = 0.015, comparison of the areas under the curves
[AUCs] of the individual weight loss 0–28 h p.i. by Mann–
Whitney U-test; Figure 1C).

PEA Significantly Diminishes Bacterial
Load in the Bloodstream, Spleen, and Liver
and Tends to Reduce Bacterial
Concentrations in the Brain
We examined next whether PEA-driven protection was related
to restricted pathogen growth in the brain and reduced spread
of bacteria into the systemic circulation. For this, bacterial
concentrations in cerebellum, spleen, and liver, as well as in
blood samples, were determined in aged mice 24 h post-infection

FIGURE 1 | PEA prophylaxis delays the onset of symptoms and improves

outcomes of old animals with E. coli meningoencephalitis. (A) Kaplan-Meier

overall survival and (B) symptom-free survival curves after the intracerebral

injection of 800 CFU E. coli K1/mouse in aged mice (n = 9/group, data from

two independent experiments). (C) Median body weight loss until the first

mouse died (28 h p.i.). Data from two independent experiments are shown as

medians ± interquartile range (25th/75th percentile). Statistic analyses in (A,B)

were performed by using the log-rank test, and in (C) by using the

Mann–Whitney U-test after calculation of the individual AUCs of the weight

loss 0–28 h p.i.

(n = 10/group, Figure 2). Bacteremia was significantly less
severe in PEA-treated mice compared to control animals (P =

0.037, Mann–Whitney U-test). In PEA-treated animals bacterial
concentrations were also significantly decreased in the spleen (P
= 0.018, Mann–Whitney U-test) and liver (P = 0.006, Mann–
Whitney U-test). Bacterial counts in the cerebellum tended to be
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FIGURE 2 | Exogenous PEA reduces bacterial spread in aged mice after the

induction of E. coli K1 meningoencephalitis. Concentrations of E. coli K1 were

quantified in (A) cerebellum, (B) spleen, and (C) liver (as log10CFU/g), as well

as in (D) blood (as log10CFU/ml) of animals sacrificed 24 h after infection with

3,000 CFU E. coli K1/mouse (n= 10 mice/group, data from two independent

experiments). Each symbol represents an individual mouse and bars indicate

median values. **P < 0.01, *P < 0.05 between PEA and vehicle groups, using

the Mann–Whitney U-test.

lower in PEA-treated than in control animals (P = 0.065, Mann–
Whitney U-test). We performed in-vitro growth curves with
different concentrations of PEA to assess whether PEA showed
antibacterial activity (Figure 3). No differences in the bacterial
concentration-time curves were found, and therefore any direct
antibacterial effect of PEA on E. coli K1 was excluded.

PEA Pre-treatment Decreases the Release
of Pro-inflammatory Markers in the Spleen
of Infected Aged Mice
In the present study, bacterial concentrations in the spleen
correlated with the levels of IL-6 (rs = 0.45; P = 0.049), but not
with the concentrations of IL-1β, MIP-1α, and CXCL1 (−0.05
≤ rs ≤ 0.09). The spleen of PEA-pre-treated animals had a
decreased concentration of pro-inflammatory cytokines (P =

0.045, multivariate rank-sum test followed by Holm-Bonferroni
correction; Figure 4A) with a significantly diminished IL-6
production (P = 0.038, Mann–Whitney U-test followed by
Holm-Bonferroni correction). IL-6 levels were below the level of
detection in 9 out of 10 PEA-treated infected animals. Moreover,
prophylactic PEA tended to reduce chemokine release (P =

0.055, multivariate rank-sum test followed by Holm–Bonferroni
correction; Figure 4B).

In the cerebellum, bacterial burden positively correlated with
levels of IL-1β (rs = 0.61; P = 0.004), IL-6 (rs = 0.77; P <

0.0001), MIP-1α (rs = 0.87; P < 0.0001), and CXCL1 (rs =

0.84; P < 0.0001; n = 20). Consistent with a more effective
bacterial elimination in cerebellum, animals pre-treated with

FIGURE 3 | Growth curves of E. coli K1 in brain heart infusion in the presence

of different concentrations of PEA and control medium without PEA (0.17%

DMSO). At different time points, serial dilutions were plated on blood agar and

viable bacteria (CFU/ml) were quantified after overnight incubation. Data are

presented as median ± range (n = 3/condition).

PEA showed a trend toward lower chemokine levels compared
to controls (P = 0.10, multivariate rank-sum test followed by
Holm–Bonferroni correction, Figure 4D). Cytokine levels in
cerebellum were comparable between PEA-treated and vehicle-
treated animals (P = 0.38, multivariate rank-sum test followed
by Holm–Bonferroni correction, Figure 4C).

PEA Attenuates Microglial Activation in
Infected Aged Mice
We quantified Iba-1-stained cells in seven different brain
regions of non-infected vehicle pre-treated and infected (24 h
post-infection) PEA/vehicle-treated aged mice. Four different
morphologies of Iba-1+ cells could be distinguished according
to a gradual process of activation (38). Therefore, a blinded
investigator assigned an activation score (AS) from 1 to 4 to
ramified, hypertrophic, bushy, and ameboid cells, respectively.
Non-infected aged mice showed uniformly distributed Iba-1+

cells with fine ramifications (AS 1, Figure 5A). Representative
examples of activated hypertrophic, bushy, and ameboid Iba-1+

cells of infected old animals (AS 2–4, respectively) are shown in
Figures 5B–D).

The quantification of Iba-1-stained microglial cells revealed
equal numbers of microglia in PEA- and vehicle-treated groups
24 h post-infection (Figure 5E). However, the median score
of microglial activation was significantly higher in vehicle-
treated compared with PEA-injected infected old animals
(Figure 5F, P = 0.042, Mann–Whitney U-test). PEA-treated
infected aged animals mostly exhibited cells with a ramified-
hypertrophic appearance (median AS [25th/75th percentile]: 1.5
[1.38/2.0]), while vehicle-injected animals more often showed a
hypertrophic-bushy morphology (2.25 [1.88/2.5]). Furthermore,
higher microglial activation scores tended to correlate with high
concentrations of E. coli K1 in the brain (rs = 0.42, P = 0.06;
n= 20).
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FIGURE 4 | PEA pre-treatment attenuates inflammation in the spleen of aged animals at the early phase of meningitis. Concentrations of (pro-inflammatory cytokines

interleukin (IL)-1β and IL-6, and pro-inflammatory chemokines macrophage inflammatory protein (MIP)-1α and C-X-C-motif ligand 1 (CXCL1) were measured in (A,B)

spleen and (C,D) cerebellum from old infected animals pre-treated with PEA or vehicle (n = 10/group). The levels of cytokines and chemokines are expressed as pg/g

of tissue. *P < 0.05, examining whether PEA pre-treatment exerted a common effect on: (i) pro-inflammatory cytokines (joint analysis of IL-1β and IL-6) and (ii)

chemokines (joint analysis of MIP-1α and CXCL1), using the multivariate rank-sum test with Holm-Bonferroni adjustment of the P-values for multiple comparisons in

the same organ.

PEA Decreases AA Levels and Subsequent
Production of 20-HETE in Serum of
Infected Aged Animals
The levels of PEA, AA, PGE2, and 20-HETE in serum of
PEA- and vehicle-pre-treated infected animals (n = 10/group)
were assessed 24 h after infection. PEA pre-treatment decreased
the concentrations of AA compared to vehicle (P = 0.036,
Mann–WhitneyU-test followed by Holm-Bonferroni correction,
Figure 6A). We found no significant changes in PGE2, the
selected end product of the COX pathway. Levels of PGE2
(median [25th/75th percentiles]) were 1.17 (0.75/2.89) pmol/ml
in PEA-pre-treated, and 1.18 (1.04/2.39) nmol/ml in vehicle-
administered old animals. Concentrations of PEA (median
[25th/75th percentiles]) were 78.2 (53.3/112.8) pmol/ml in PEA-
pre-treated and 89.8 (83.6/109.9) pmol/ml in vehicle-injected
aged animals.

However, the concentrations of circulating 20-HETE (final
product of the CYP450-mediated oxidation of AA) were
significantly reduced in PEA-treated mice compared to vehicle
(P= 0.032, Mann–WhitneyU-test followed by Holm-Bonferroni
correction, Figure 6B).

DISCUSSION

After the increased availability of vaccines to avert many cases
of meningitis in children, priority was given to the development

of preventive interventions in elderly persons, in whom the
disease burden-associated fatality and disability rates remain
dramatically high (4, 5). Specific nutritional interventions can
reduce this risk and reverse some of the immune dysfunction
associated with aging (12, 42, 43). PEA is available as a
nutraceutical, but is also highly present in some foods such as
egg yolk, soybean, soy lecithin, peanut oil, and alfalfa, and in
smaller amounts in peas and tomatoes (44). In the 70s, six clinical
trials enrolling children and young adults showed that PEA
(under the brand name of Impulsin, administered up to 1,800
mg/d) decreased the incidence and severity of acute respiratory
infections and influenza without reported side effects (45). Since
then, no other trials have addressed the potential of PEA as an
immunomodulatory agent in the setting of an infection.

In a recent report, we showed that PEA pre-treatment
increased the survival rate and bacterial clearance of
immunocompetent young mice challenged intracerebrally
with E. coli (46). In vitro studies confirmed that PEA stimulates
the phagocytosis of pathogens by macrophages and microglia
(15, 47). Here, we demonstrated the efficacy of prophylactic
PEA in prolonging the survival of aged infected animals in
the absence of antibiotic treatment. At the early phase of
infection, PEA-pre-treated mice showed lower bacterial titers in
spleen, liver, and blood than vehicle-injected animals. To our
knowledge, this is the first report documenting a life-prolonging
and anti-bacterial effect of PEA in immunocompromised, old
mice. The present study was performed in aged mice, which

Frontiers in Immunology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 2671

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Heide et al. PEA-Driven Immunomodulation in the Aged Host

FIGURE 5 | PEA prophylaxis does not modify microglial density, but attenuates microglial activation in aged infected mice. (A–D) Illustrative examples of the different

cell morphologies (circled in yellow) and the corresponding activation scores in neocortex. A single activation score (AS) was given by a blinded investigator according

to the most abundant cell morphology for each analyzed region: (A) microglia with small size and very fine ramifications (AS 1), (B) hypertrophic with thicker branches

(AS 2), (C) bushy (AS 3), and (D) ameboid (AS 4); scale bars, 100µm (magnification, ×20). (E) Number of Iba-1+ cells in brains of PEA- and vehicle-treated aged

mice sacrificed 24 h after infection. (F) AS of Iba-1+ cells in brains from the same PEA- and vehicle-treated aged mice. In (E,F), each symbol represents an individual

mouse and bars indicate medians. *P < 0.05, using the Mann–Whitney U-test.

develop higher bacterial concentrations and a higher mortality
compared to young adult mice after intracerebral infection with
equal amounts of E. coli K1 (19). Because systemic complications
are the leading cause of death in elderly patients with bacterial
meningitis (7), reducing pathogen spread in the systemic
circulation has the potential to broaden the therapeutic window,
whereby the initiation of antibiotic therapies can rescue the
patient, thus potentially improving survival of these patients in a
clinical setting (11).

To identify possible mechanisms underlying PEA-induced
protection in aged mice, we measured pro-inflammatory

mediators such as cyto-/chemokines and certain bioactive
lipids. Administration of exogenous PEA in old mice prior to
infection effectively alleviated the excessive systemic release
of pro-inflammatory mediators (IL-6, IL-1β, CXCL1, and
MIP-1α), which are known to cause cerebral edema, vasculitis,
and neuronal and axonal injury, leading to death or long-
term sequelae in meningitis patients (48). Similarly, the
administration of matrix metalloproteinase inhibitors in
experimental meningococcal meningitis was accompanied by
a reduction of pro-inflammatory mediators and attenuation
of brain damage (49). In contrast to previous studies where a
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FIGURE 6 | PEA reduces AA serum levels and its subsequent oxidation into 20-HETE in aged mice with meningitis. (A) Concentrations of arachidonic acid (AA, in

nmol/ml), and (B) levels of 20-hydroxyeicosatetraenoic acid (HETE, in pmol/ml) were lower in the serum of aged infected animals pre-treated with PEA than in infected

mice pre-treated with vehicle (n = 10/group). Serum levels of PEA and PGE2 were not significantly altered. *P < 0.05 between PEA and vehicle groups, using the

Mann–Whitney U-test followed by Holm–Bonferroni correction for multiple testing.

protective effect of PEA was confirmed at doses of 1–10 mg/kg
(31, 50), here we show that also low doses of PEA (0.1 mg/kg)
can prolong the life of old animals after infection.

As part of the host response against infection, lipid responses
receive increasing attention in the scientific community (51).
Little is known about how exogenous PEA can modulate other
lipid mediators involved in neuroinflammation. Administration
of exogenous PEA reduced COX-2 expression and PGE2
production in an animal model of epilepsy and colitis (32, 52).
No data are available during infection. Here, we used targeted
quantification of lipids to evaluate whether PEA couldmodify the
levels of several bioactive lipids (51). In the systemic circulation,
prophylactic PEA significantly reduced concentrations of two
pro-inflammatory mediators: AA and one of its metabolites,
20-HETE which unveils a novel anti-inflammatory mode of
action of PEA during infection. Because 20-HETE is a potent
vasoconstrictor of brain microvessels that contributes to the
development of vasospasm (53), the PEA-exerted effect on the
production of this eiC is highly relevant in clinical practice.
Cerebrovascular alterations as a result of vasculitis, vasospasm, or
intra-arterial thrombosis are common complications occurring
in one fourth of patients with meningitis and constitute a
major risk factor for permanent neurological deficits and death,
especially in geriatric patients (54). The serum levels of PEA were
not elevated in the PEA pre-treated group, which may be due to
the low concentration used in this study its quick metabolization
and short half-life. In fact, after oral administration of PEA
to rats (at dose of 100 mg/kg), the plasma concentration was
highest after 15min, and then dropped 2 h after administration
to concentrations very close to the basal ones (44), while in
mice peak plasma concentration were achieved 2.5 h after ip
administration of 40 mg/kg PEA (32).

Microglial cells are key effectors in the resolution of CNS
infections. Upon pathogen recognition, microglia undergo
progressive morphological changes and accordingly acquire a
plethora of new functions. Activated microglia show an increased
soma and retraction of thickening processes and potentially
augment the secretion of pro-inflammatory molecules (55).

Brain aging is accompanied by a mild pro-inflammatory state
that may increase basal microglial activation and worsen
outcomes after infection (16–18). The ability of non-stimulated
microglial cells from aged animals to phagocytose E. coli K1
was significantly impaired compared to cells isolated from
young animals [median of 39.3 vs. 100%, (19)]. In the brain
of our old infected animals, high bacterial loads correlated
with increased microglial activation scores and an elevated
release of inflammatory cytokines and chemokines. In the
brain of PEA-pre-treated animals, a tendency toward reduced
bacterial titers and diminished chemokine levels was observed.
Concomitant to this reduced inflammatory response, microglia
displayed significantly less morphological signs of activation in
PEA-pre-treated than in vehicle-pre-treated infected animals.
Similarly, PEA normalized increased microglial activation in
neurodegenerative and neuropathic animal models supporting
its neuroprotective properties (34, 35).

One limitation of our study is the use of a single pathogen as
representative of bacterial meningitis. We chose to evaluate the
effect of PEA in E. coli K1 meningitis, because this is one of the
predominant causative agents of meningitis in elderly persons
(4, 5) and at present no vaccine is available. Further studies
are needed to address, whether PEA also mediates protective
immune responses in meningitis caused by other bacteria.

Our findings support the therapeutic potential of PEA in the
clinical setting as an immunomodulator. PEA could be used
as a dietary complement to reduce the number of infections,
broaden the potential therapeutic window for the successful use
of antibiotics, counteract detrimental inflammation, and improve
outcomes of elderly persons upon infection. In our experimental
setting, comprising of an infection with a concomitant excessive
inflammatory response, PEA promoted bacterial clearance and
alleviated the associated inflammatory response, extending the
survival of old animals without additional weight loss. PEA
acted on the host immune response at three levels: (i) systemic
pro-inflammatory cytokine/chemokine signaling, (ii) systemic
production of AA and 20-HETE, and (iii) the step-wise activation
of microglia.
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The mechanisms responsible for the anti-inflammatory and
neuroprotective effects of PEA remain unclear. PEA exerts the
so-called “entourage effect” (56): an increase in PEA levels
could enhance the physiological effects of AEA and 2-AG by
preventing their enzymatic-mediated hydrolysis. PEA has been
shown to act on several targets, including the transient receptor
potential vanilloid type-1 (TRPV1), the peroxisome proliferator-
activated receptor-alpha (PPAR-α) and the orphan G-protein
coupled receptor GPR55 (57, 58). Another mechanism proposed
to explain PEA action is the downregulation of mast cell (MC)
activation. MC are important effectors not only in acute/chronic
inflammation but also in infection, being capable of modulating
the host immune response (59, 60). It is believed that PEA-
related therapeutic effects might not bemediated by one exclusive
mechanism of action but instead by the synergistic effect on
several receptors (44).

Marketed PEA formulations for human use include capsules
and PEA as a cream to treat atopic eczema. New formulations
with micronized and ultra-micronized PEA are available for oral
therapy and have shown improved bioavailability and efficacy
compared to naïve PEA (61). In geriatric patients, the efficacy
of ultra-micronized PEA (as capsules of 600mg) is currently
under investigation for treatment of chronic pain (62). Given
the excellent tolerance and the fact that no adverse effects have
been reported after PEA administration (30, 31, 45), a clinical
trial should examine whether the use of PEA as a prophylactic
agent can reduce the risk of CNS or systemic infections in
the immunocompromised geriatric patient. This strategy could
additionally help to limit the exposure of the aged population to
antimicrobial agents contributing to antimicrobial stewardship,
especially relevant in LTCFs (63).When prophylactic PEA cannot
prevent an infection, it may be useful to prolong the therapeutic
window, in which antibiotic therapy can rescue the aged patient.
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