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IL-35, a relatively newly discovered cytokine belonging to the larger IL-12 family, shows

unique anti-inflammatory properties, believed to be associated with dedicated receptors

and signaling pathways. IL-35 plays a pivotal role in the development and the function of

both regulatory B (Bregs) and T cells (Tregs). In order to further its therapeutic potential,

a dairy Lactococcus lactis strain was engineered to express murine IL-35 (LL-IL35),

and this recombinant strain was applied to suppress collagen-induced arthritis (CIA).

Oral administration of LL-IL35 effectively reduced the incidence and disease severity of

CIA. When administered therapeutically, LL-IL35 abruptly halted CIA progression with no

increase in disease severity by reducing neutrophil influx into the joints. LL-IL35 treatment

reduced IFN-γ and IL-17 3.7- and 8.5-fold, respectively, and increased IL-10 production

compared to diseased mice. Foxp3+ and Foxp3− CD39+ CD4+ T cells were previously

shown to be the Tregs responsible for conferring protection against CIA. Inquiry into their

induction revealed that both CCR6+ and CCR6− Foxp3+or− CD39+ CD4+ T cells act as

the source of the IL-10 induced by LL-IL35. Thus, this study demonstrates the feasibility

and benefits of engineered probiotics for treating autoimmune diseases.

Keywords: Lactococcus, probiotic, IL-35, therapeutic, IL-10, cytokines, regulatory T cells, CCR6

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic, inflammatory, systemic autoimmune disease that affects
about 0.24% of the worldwide population, and roughly 1% of the general population in Western
countries. RA is two to three times more common in women than in men (1–5). RA manifests
as a chronic synovitis and progressive destruction of the joints, leukocyte infiltrates, and cartilage
destruction and bone erosion. Approximately half of the afflicted patients become disabled over
the progression of this disease (6). RA is mediated predominantly by CD4+ T cells overexpressing
proinflammatory cytokines, particularly in the joints (7).

In order to test the efficacy of potential RA therapeutics and understand mechanisms of
disease, the collagen-induced arthritis (CIA) model is often used (8). CIA is typically induced
by immunizing rodents with bovine or chick type II collagen together with an adjuvant. This
combination leads to immune attack of the host’s native collagen involving components of both
the innate and adaptive immune systems. Emphasis on regulating proinflammatory cytokines,
particularly TNF-α, is key to minimizing disease since TNF-α can be detected in joints of RA
patients (9, 10). Mouse CIA shares several clinical, histopathological and immunological features
with human RA. Clinical features include erythema, edema, synovitis, pannus formation, and
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CD4+ T cell-mediated inflammation with extensive cartilage
and bone damage, resulting in joint deformities (11–13). These
similarities are commonly exploited to use CIA as a model for
RA and as a tool to investigate novel approaches to prevent
and treat RA. Current treatments focus on neutralizing TNF-
α action via anti-TNF-α mAbs and TNF-α receptor antagonists
(14, 15); however, such interventions have been problematic,
making patients more susceptible to opportunistic infections
(14–16). Hence, alternatives that can restore tolerance need to be
sought.

In view of reducing autoimmunity, the use of probiotics
can restore immune homeostasis to reduce autoimmunity
(17–19). Historically, lactic acid bacteria (LAB) represented
the core of probiotic-based interventions, although more
recently nonpathogenic E. coli (20–22), attenuated Salmonella
(23, 24), Bifidobacterium spp. (25), and some yeasts like
Saccharomyces boulardii (26) also proved to be valuable tools
as novel therapeutic and prophylactic interventions. Traditional
molecular genetics, coupled with synthetic biology, provides
an ample selection of promoters and terminators resulting in
dynamic expression levels. Protein synthesis can be induced
in vitro under nisin controlled expression (NICE), or use
a promoter that is silent during in vitro culture, and only
active in vivo subsequent infection of the host (27–29). LABs
are considered ideal vectors for oral or mucosal delivery
since they are inherently nonpathogenic, and they can survive
the harsh conditions of the gastric environment. LABs are
amenable to recombinant expression of passenger antigens
(Ags) to stimulate immunity against a number of pathogens
(30–32), to curb the effects of inflammatory bowel disease
(33, 34), to control the proliferation of cancer cells (35), and
to use for enzyme replacement therapy (36) among other
applications (27, 37, 38). Currently, the only microbiota-based
therapy that is FDA-approved and commercially available is
fecal microbiota transplant (FMT) to treat Clostridium difficile
infections. However, close to 200 microbiome-based therapeutics
and diagnostics are currently in development (39).

The delivery of oral therapeutics represents a significant
advantage of adapting LABs. In this context, we developed
recombinant Lactococcus lactis (LL) for oral delivery to
treat autoimmune disease (40). In a similar fashion, the studies
described here focus on the expression of the immunosuppressive
cytokine, IL-35. Oral administration of probiotic-based
therapeutics is considered ideal because the gastrointestinal
(GI) tract is home to T cells that can be stimulated to become
Tregs and to seed other mucosal and systemic immune
compartments. Another advantage of using genetically-modified
(GM) probiotics is that these have been shown to be both
effective and safe (37, 41–43). Our previous work has shown that
an engineered LL derived from an industrial dairy strain can
ferment commercial milk to a yogurt-like product, and when
applied for treatment of CIA, can maintain the same therapeutic
properties as when grown on a synthetic medium (40). IL-
35 belongs to the IL-12 cytokine family [rev. in (44)]. This
heterodimeric cytokine is composed of IL-12p35 and IL-27EBI3
and, in contrast to most members of the IL-12 family, has potent
anti-inflammatory attributes. This property is mediated via IL-35

binding both IL-12Rβ2 chain and gp130, which results in specific
triggering of STAT1 and STAT4 on T cells (45) and IL-12Rβ2
and IL-27Rα on B cells (46). IL-35 is immunosuppressive for a
number of autoimmune disease models including CIA (47, 48),
experimental autoimmune encephalomyelitis (49, 50), uveitis
(46), type 1 diabetes (51), inflammatory bowel disease (IBD, and
psoriasis (52).

CCR6 was previously shown to be expressed by Tregs (53),
particularly those expressing RoRγt (54, 55). These Tregs have
been shown involved in suppressing autoimmune diseases (56–
58). CCR6+ Tregs have been found more commonly associated
with human Tregs (55, 59), but CCR6 has also been found to be
induced in mice subjected to CIA (55).

Given its potency to treat various autoimmune diseases (46–
52), we queried the effectiveness of live vector delivery of IL-35.
To accomplish this objective, murine IL-35 was expressed in L.
lactis subsp lactis IL1403 (LL-IL35), and tested for its ability to
ameliorate CIA. Results show that LL-IL35 is highly effective in
treating CIA via the stimulation of CCR6+ and CCR6− Tregs
producing IL-10 and suppressing the proinflammatory cytokines,
IL-17 and IFN-γ.

MATERIALS AND METHODS

Bacterial Strain Engineering and
Maintenance
Lactococcus lactis subsp. lactis IL1403 (IL1403) was grown
on M17 plus 0.5% glucose (M17G). Microbiology work was
performed according to NIH guidelines. Initial attempts to
express IL-35 under the control of the constitutive p23 promoter
yielded only rearranged, nonfunctional clones which confirmed
the notion that IL-35 is difficult to express and to stabilize
in a wide panel of hosts [our unpublished observations; (44,
48)]. To express IL-35, a synthetic gene codon-optimized for
LL was designed in-house and then synthesized by Genscript
(Piscathawa, NJ). The fragment contains an optimal Shine-
Dalgarno sequence properly spaced from the ATG start codon,
the usp45 secretion signal, the p35 coding region, a short
flexible linker, the EBI3 coding region, and AgeI and SmaI
sites at both ends. The fragment was excised with AgeI, gel-
purified and cloned into pMSP3535H3 (53; a kind gift of Dr.
DA Mills, University of California, Davis) yielding a construct
named pBzMM150 (LL-IL35). Expression was achieved under
the control of the nisin-inducible promoter borne on the vector.

Collagen-Induced Arthritis (CIA)
All the animal experiments described in the present study were
conducted in strict accordance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health. All animal studies were conducted
under protocols approved by Montana State University’s and
the University of Florida’s Institutional Animal Care and Use
Committee.

C57BL/6 males (B6; 8- to 10-weeks of age; Charles River
Laboratories, Horsham, PA USA) were maintained at Montana
State University Animal Resources Center or the University
of Florida Animal Center Services. Groups of B6 males were
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induced with CIA using 100 µg of chicken collagen II (CII;
Chondrex, Redmond, WAUSA) emulsified in complete Freund’s
adjuvant (CFA) and administered s.c. as previously described
(48, 60, 61). To treat CIA, mice were first orally gavaged with
sterile 50% saturated sodium bicarbonate solution to neutralize
stomach acidity, followed by 5 × 108 CFUs of LL vector or LL-
IL35, or vehicle only, sterile PBS. Two dosing regimens were
tested, three doses administered on days 14, 21, and 28, and
two doses given on days 18 and 25 post-CII challenge. Clinical
scores were measured in a double-blind fashion after treatment,
and mice were monitored to day 40. Each of the four limbs was
evaluated using a scale of 0–3 (48, 60, 61): 0, no clinical signs; (1)
mild redness of a paw or swelling of single digits; (2) significant
swelling of ankle or wrist with erythema; (3) severe swelling and
erythema of multiple joints; maximum score per mouse is 12.

Cytokine Elisa
CD4+ T cells were cell-sorted by negative selection on
magnetic beads (Invitrogen, Grand Island, NY USA) from
axillary, popliteal, and inguinal lymph nodes (LNs) yielding
purity >98%. Purified CD4+ T cells (3 × 106/ml) were
restimulated with 5µg/ml plate-bound anti-CD3 mAb
(eBioscience, San Diego, CA USA) plus 5µg/ml of soluble
anti-CD28 mAb (eBioscience) for 48–72 h at 37◦C and
5% CO2 similar to that previously described (48). Culture
supernatants were collected for cytokine-specific ELISAs
(48, 60, 61).

Flow Cytometry
Splenic and LN cells were stained with fluorochrome-labeled
mAbs to CD4, CD39, Ly-6G, Ly-6C, CD11b, and Foxp3
(eBioscience, San Diego, CA USA), TGF-ß (R&D Systems,
Minneapolis, MN USA), and fluorochrome-conjugated
streptavidin (BD Pharmingen, San Jose, CA USA). For
flow cytometry of Tregs, whole splenic and LN cells (5 ×

106/ml culture) were restimulated overnight with 50µg/ml
of CII (T-Cell Proliferation; Chondrex). The next day,
cells were stimulated with 25 ng/ml PMA and 1µg/ml
ionomycin for an additional 3 h. Cells were harvested,
washed, stained and analyzed as previously described
(48, 60, 61).

To measure inflammatory cells in the arthritic joints,
isolated limb joints were digested with 2 mg/ml collagenase
(Clostridium histolyticum,Type IV; Sigma-Aldrich, St. Louis,
MO) for 30min at 37◦C, and cell suspensions passed
through a 70µm cell strainer similar to that previously
described (40, 62). Leukocytes were stained and analyzed by
forward and side-scatter plots for Ly-6G+ Ly-6C+ CD11b+

neutrophils.

Statistics
Mann-Whitney U-test was applied to statistically analyze
clinical scores. The difference in arthritis incidence between
experimental groups was checked with Fisher’s exact probability
test. One-way ANOVAwas performed to analyze ELISA and flow
cytometry results. Data were considered statistically significant, if
p-value was < 0.05.

RESULTS AND DISCUSSION

RA is a chronic, systemic autoimmune disorder affectingmillions
of patients in the US. Treatment of this progressive, degenerative
disease demands constant use of anti-inflammatory drugs and
often immunosuppressive treatments that increase susceptibility
to infections and neoplasia (4, 15, 16). Instead, intervention
strategies that focus on redirecting or reeducating T cell
responses to produce tolerance instead of inflammation have the
potential of being a superior treatment for RA.

To address the void for such tolerance induction, we queried
whether a probiotic LAB engineered to express the potent
anti-inflammatory cytokine, IL-35 (Figure 1A), would diminish
arthritis. Expression of IL-35 by LL-IL35 was detected byWestern
blot analysis using a rabbit polyclonal serum against an MBP-
IL-35 fusion protein [produced in-house; (61)]. To test the
therapeutic properties of LL-IL35, mice were challenged on
day 0 with CII to induce CIA. Given its similarity, CIA is
often exploited as an investigative tool to test novel strategies
and therapeutics to prevent and treat RA. These mice were
randomly divided into three groups for oral treatment: LL-
IL35 (pBzMM150), LL vector (pMSP3535H3), or sterile PBS.
Two treatment paradigms were tested: beginning intervention
on day 14 resembling Salmonella-CFA/I treatment (60) with two
additional doses on days 21 and 28 (Figure 1B) or beginning
intervention at disease onset on day 18, followed by a second dose
on day 25 (Figure 1C). Clinical scores were performed in double
blind, and followed until day 39 post-induction. We generally
do not see changes in disease severity beyond 39 days post-CII
challenge.

Using the three-dose regimen, 50% of the LL-IL35-treated
mice showed no symptoms and the remaining 50% developed
minor symptoms as opposed to PBS- or LL vector-treated mice,
who all developed severe arthritis by day 24 post-CII challenge.
Notably, the severity of disease symptoms was significantly less
(p < 0.001) in the LL-IL35-treated mice exhibiting an average
clinical score of 1 in contrast to PBS- or LL vector-treated mice
eventually achieving clinical scores of ∼9 (Figure 1B). To test if
LL-IL35 is effective in arresting the disease after disease onset,
additional groups of CIA mice were treated using a two-dose
regimen on days 18 and 25. Under this treatment, 40% of the
LL-IL35-treated mice developed CIA vs. 100% of those treated
with PBS or LL vector (Figure 1C). Compared to the three-
dose regimen, the disease severity was greater for the LL-IL35-
treated CIA mice subjected to the two-dose regimen, although
significantly less (p < 0.05) when compared to similarly treated
PBS- or LL vector-dosed mice. These data show that LL-IL35 can
effectively reduce the symptoms of arthritis and the incidence
of disease via its immunosuppressive capacity. Moreover, these
results show that fewer doses of IL-35 delivered by LL are needed
to curtail arthritis when compared to treatment with soluble
protein (47, 48, 51, 52).

Analysis of knee joints was performed to determine the
extent of neutrophil infiltration. In agreement with these
clinical findings, the LL-IL35-treated mice had markedly reduced
Ly-6G+ CD11b+ cells (neutrophils) infiltrating the joints
(Figure 2A) representing a 7- and 5-fold reduction compared to
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FIGURE 1 | IL-35 inhibits CIA progression following treatment with LL-IL35. (A) Schematic map of the synthetic DNA used to construct pBzMM150 for murine IL-35

expression of IL-35 in L. lactis. The synthetic insert encodes in order: the usp45 secretion peptide genetically fused in-frame to the p35 subunit, a short flexible linker,

fused to the EBI3. The synthetic DNA also features an optimal Shine-Dalgarno (SD) sequence at the optimal distance from the ATG initiation codon, in addition to the

SD sequence present in the vector. The nisin-inducible promoter and a transcription terminator are borne on the expression vector pMSP3535H3. (B,C) CIA was

induced in groups of C57BL/6 males with chick CII emulsified in complete Freund’s adjuvant. Two regimens were tested: orally treated with 5 × 108 CFUs of LL vector

or LL-IL35 or sterile PBS on (B) 14, 21, and 28 days or (C) 18 and 25 days post-induction. Average clinical score per treatment group (left panels) represents severity

of the disease, and incidence of arthritis depicts percent mice with affected joints in each treatment group (right panels). The sum of 10 mice/group is shown: (B) *p <

0.001 vs. PBS-dosed or LL vector-treated mice, and (C) **p < 0.02, ***p < 0.05 vs. PBS-dosed mice and ++p < 0.02 vs. LL vector-treated mice .

PBS-dosed or LL vector-treated groups, respectively (Figure 2B).
Hence, IL-35 can reduce inflammation of the joints in CIA-
challenged mice.

To investigate the possible mechanism of protection conferred
by LL-IL35, CD4+ T cells purified from draining LNs were
anti-CD3 + anti-CD28-restimulated and analyzed for cytokine
production. These CD4+ T cells were obtained from mice
dosed three times with PBS, LL vector, or LL-IL35 as described
in Figure 1B. IFN-γ levels remained elevated between PBS-
dosed and LL vector-treated mice, in contrast to LL-IL35-treated
mice showing 3- to 3.7-fold reduction (p < 0.001; Figure 3A).
Concomitantly, IL-17 levels were significantly less (p < 0.001)
by 3.7- and 8.5-fold for LL vector and LL-IL35-treated groups,
respectively, relative to PBS-dosed mice (Figure 3B). Moreover,
treatment with LL-IL35 significantly reduced IL-17 by 2.3-
fold compared to LL vector-treated mice (p < 0.01). Minimal
stimulation of IL-10 was detected in the restimulated CD4+

T cells from the PBS-dosed mice (Figure 3C). In contrast,
CD4+ T cells from LL vector- and LL-IL35-treated groups
showed significantly increased IL-10 production (p < 0.05) by
1.8- and 2.5-fold, respectively. The difference between the LL
vector- and LL-IL35-treated groups was significant (p < 0.05;
Figure 3C) as well. The stimulation of IL-10 by LL vectors has
been reported by others (56, 57). However, IL-10 induced by
the LL vector-treated group was insufficient to suppress disease
progression (Figure 1) and IL-17 production (Figure 3B). IL-10’s
importance for suppressing CIA was previously demonstrated
in IL-10−/− mice with CIA being refractive to IL-35 treatment
(48), supporting the notion here of IL-10’s relevance to CIA mice
treated with LL-IL35. IL-35 has also been shown to stimulate
IL-10 production (40, 47–49).

We have found that CD39+ CD4+ T cells are the primary
Tregs responsible for resolving CIA (48, 60, 61). CD39
is an ectonucleoside triphosphate diphosphohydrolase-1which
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hydrolyzes ATP into AMP, thus quenching inflammatory
signaling by extracellular ATP (58, 63). We also showed that
CD25+ Tregs remained a subset of CD39+ CD4+ T cells, and
that CD39 encompassed all of the Treg subsets (60). In fact,
CD39+ Tregs were protective against CIA (40, 60). These Tregs
are composed of two subsets, Foxp3+ and Foxp3−, and are

FIGURE 2 | Oral LL-IL35 confers protection against CIA via reduction of

neutrophil influx into joints. Reduced clinical scores and disease incidence

described in Figure 1B are attributed to reduced neutrophil infiltration into the

joints of LL-IL35-treated mice when compared to PBS-dosed and LL

vector-treated mice. (A) Cell suspensions were analyzed by flow cytometry for

Ly-6G+ CD11b+ neutrophils, and (B) quantified per 106 cells. The depicted

plots are representative of 5 mice/group; *p < 0.001 vs. PBS-dosed mice;
##p < 0.005 vs. LL vector-treated mice.

interchangeable (60). Analysis of induction of CD39+ Tregs by
the LL vector revealed no increase in the percentage of these
Tregs in CIA mice (40), and CIA had only a modest impact upon
their induction (40, 61).

To examine the types of Tregs induced by LL-IL35 treatment,
whole splenic and draining LN lymphocytes were cultured
overnight with CII, and then pulsed with PMA + ionomycin
to ascertain the type of Tregs induced in PBS-dosed and LL-
IL35-treated mice. Lymphocytes were then stained for CD39,
Foxp3, and CCR6 to identify the Treg subsets. Since CCR6
has been shown to be expressed by Tregs (53–55), we queried
whether such Tregs may be induced as a consequence of IL-35
treatment. CD39+ CD4+ T cells were evaluated for expression
of Foxp3 and CCR6 (Figures 4A,B). Upon examination of
splenic Tregs derived from PBS-dosed mice compared to those
present in LL-IL35-treated mice, a modest increase (p < 0.05)
in the frequency, but not the total number of CCR6+ Foxp3+

CD39+ CD4+ T cells, was observed (Figures 4C,G). A modest
difference (p ≤ 0.01) was also observed in the frequency and
total number of splenic CCR6+ Foxp3− CD39+ CD4+ T cells
when compared to the PBS-dosed mice (Figures 4E,I). However,
when similar analysis was performed for Tregs obtained from
the draining LNs, a 2.2-fold increase in the frequency (p <

0.001) of CCR6+ Foxp3+ CD39+ CD4+ T cells was stimulated
by LL-IL35 treatment compared to those present in PBS-dosed
CIA mice (Figure 4D). The total number of these LN Tregs was
also significantly (p ≤ 0.01) increased by 2.7-fold (Figure 4H).
Subsequent analysis was performed on LN CCR6+ Foxp3−

CD39+ CD4+ T cells, and both the frequency and total number
increased significantly by 2.9- (p ≤ 0.01) and 5.1-fold (p <

0.001), respectively (Figures 4F,J). These studies demonstrate
that indeed CCR6+ Tregs are induced by IL-35 treatment of CIA
mice.

Additional analyses were performed on both CCR6− Foxp3+

and CCR6− Foxp3− CD39+ CD4+ T cells (Figures 4K–R).
Examination of the splenic CCR6− Foxp3+ CD39+ CD4+ T

FIGURE 3 | LL-IL35 reduces proinflammatory cytokines, IFN-γ and IL-17, with a concomitant increase in anti-inflammatory IL-10 production. CD4+ T cells were

purified from PBS- or LL-IL35-dosed mice that received three treatments as described in Figure 1B. The LN CD4+ T cells were stimulated with plate-bound anti-CD3

and soluble anti-CD28 for 48–72 h, and collected supernatants were analyzed for (A) IFN-γ, (B) IL-17, and (C) IL-10 production. Depicted are the means ± SD of

triplicate cultures as assessed by cytokine-specific ELISA; *p < 0.001, ***p < 0.05 vs. PBS-dosed mice; #p < 0.001, ##p < 0.01, ###p < 0.05 vs. LL

vector-treated mice.
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FIGURE 4 | LL-IL35 induces CCR6+ and CCR6− CD39+ CD4+ T cells in CIA mice. At the termination of the study, whole splenic and LN lymphocytes were

restimulated with 50µg/ml CII overnight, and then subjected to a short-term of PMA + ionomycin. LN CD39+ CD4+ T cells from (A) PBS-dosed and (B)

LL-IL35-treated mice were gated on Foxp3+ and Foxp3− cells, and analyzed for (C–R) for CCR6 expression by (C,E,G,I,K,M,O,Q) splenic and (D,F,H,J,L,N,P,R) LN

lymphocytes. (C,D) Frequency of CCR6+ Foxp3+ and (E,F) CCR6+ Foxp3− and absolute (G,H) CCR6+ Foxp3+ and (I,J) CCR6+ Foxp3− T cells are shown. (K,L)

Frequency of CCR6− Foxp3+ and (M,N) CCR6− Foxp3− and absolute (O,P) CCR6− Foxp3+ and (Q,R) CCR6− Foxp3− T cells are also shown. Depicted are the

means ± SEM of 5 mice/group; *p < 0.001, **p ≤ 0.010, and ***p < 0.05 compared with PBS-dosed mice.

FIGURE 5 | LL-IL35 stimulates IL-10 production by CD39+ Tregs and CCR6+ CD39+ Tregs. CIA mice treated with PBS, LL vector, or LL-IL35 as described in

Figure 4. Intracellular IL-10 was measured for (A) CD39+ CD4+ and (B) CCR6+ CD39+ CD4+ T cells. Depicted are the means ± SEM of 5 mice/group; *p < 0.001,

**p < 0.01 vs. PBS-dosed mice; #p<0.01 vs. LL vector-treated mice.

cells revealed that both the frequency and total number were
modestly and significantly (p < 0.05) reduced for the LL-IL35-
treated mice (Figures 4K,O). The frequency of splenic CCR6−

Foxp3− CD39+ CD4+ T cells was slightly and significantly (p
≤ 0.01) reduced (Figure 4M), but the total number of these
CD39+ CD4+ T cells showed no difference between PBS-dosed
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and LL-IL35-treated CIA mice (Figure 4Q). Similar analysis was
also performed for the LN CCR6− Foxp3+ and CCR6− Foxp3−

CD39+ CD4+ T cells from the same treated CIA mice. While a
slight reduction in the frequency of LN CCR6− Foxp3+ CD39+

CD4+ T cells was observed for LL-IL35-treatedmice (Figure 4L),
the total number of CCR6− Tregs was significantly (p ≤ 0.01)
elevated by 5-fold (Figure 4P). Examination of the frequency of
LN CCR6− Foxp3− CD39+ CD4+ T cells also showed a modest,
but significant (p < 0.001) reduction in LL-IL35-treated mice
relative to PBS-dosed mice (Figure 4N), but the total number
of these LN T cells was significantly (p < 0.001) enhanced by
36% (Figure 4R). Hence, these analyses demonstrate that IL-
35 treatment stimulates diverse subsets of Tregs including both
CCR6+ and CCR6− Tregs. Future studies will need to consider
the longevity of these subsets for protection against CIA.

Inquiring into the activity of these LN CD39+ Tregs, analysis
for IL-10 production was performed (Figure 5). Intracellular IL-
10 measurements were conducted first for all CD39+ CD4+

T cells (both Foxp3+ and Foxp3−). The LL-IL35-treated
mice showed 3.2- and 1.7-fold more IL-10-producing cells
(p ≤ 0.01) than PBS-dosed and LL vector-treated CIA mice,
respectively (Figure 5A). LL vector-treated mice showed 1.9-
fold increase in the number of IL-10-producing CD39+ CD4+

T cells compared to PBS-dosed mice (p ≤ 0.01; Figure 5A).
Examination of IL-10+ CCR6+ CD39+ CD4+ T cells (both
Foxp3+ and Foxp3−) revealed that two-thirds of the total
IL-10-producing cells induced by LL-IL35 treatment of CIA
mice were derived from the CCR6+ subset (Figure 5B). The
CCR6+ CD39+ CD4+ T cells induced with LL-IL35 resulted
in significant 3.2- and 1.8-fold increase in IL-10-producing cells
than those present in PBS-dosed (p ≤ 0.01) and LL vector-
treated CIA mice (p < 0.01), respectively. LL vector-treated
mice showed 1.8-fold increase in the number of IL-10-producing
CCR6+ CD39+ CD4+ T cells compared to PBS-dosed mice
(p ≤ 0.01; Figure 5B). These findings suggest that indeed both
Foxp3+ and Foxp3− CCR6+ CD39+ Tregs are the predominant
source of IL-10, thus contributing to the amelioration of CIA
subsequent LL-IL35 treatment. Such finding may mimic what
is evident with human peripheral blood CCR6+ CD39+ Tregs
(64) and CCR6+ Tregs found in patients with glomerulonephritis
(65).

The data presented demonstrate the potency of IL-35 as an
anti-inflammatory therapeutic. Moreover, this investigation
further supports the multifaceted benefits of adapting
recombinant L. lactis as a vector to deliver therapeutic doses
of IL-35. In fact, previous studies by us (48) or others, using
IL-35 to treat type 1 diabetes model (51), IBD (52), or psoriasis
(52), required daily treatments with recombinant protein
to control disease. In contrast, only two or three oral doses
of LL-IL35 were sufficient to prevent the onset or stop CIA
progression. Oral dosing has the substantial advantage of being
less invasive circumventing the need for injections. LL-derived
IL-35 eliminates the labor-intensive efforts needed to produce
and purify the recombinant protein, dramatically reducing the
cost of manufacturing this therapeutic. Moreover, IL-35 is a
dimeric protein which adds to the difficulty and cost to generate.
The L. lactis used for this study is a lab-adapted recombinant
strain, originally derived from an industrial dairy strain capable
of fermenting milk into a product that has the same textural
and olfactory properties of yogurt (40). We previously have
demonstrated that the curative properties of our recombinant
L. lactis are maintained when grown on a synthetic medium
or used to ferment milk into a yogurt-like product (40). These
attributes make L. lactis an ideal tolerogen delivery platform for
the treatment of autoimmune diseases.
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