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CD8T cells comprising the memory pool display considerable heterogeneity, with

individual cells differing in phenotype and function. This review will focus on our

current understanding of heterogeneity within the antigen-specific memory CD8T cell

compartment and classifications of memory CD8T cell subsets with defined and discrete

functionalities. Recent data suggest that phenotype and/or function of numerically stable

circulatory memory CD8T cells are defined by the age of memory CD8T cell (or

time after initial antigen-encounter). In addition, history of antigen stimulations has a

profound effect on memory CD8T cell populations, suggesting that repeated infections

(or vaccination) have the capacity to further shape the memory CD8T cell pool. Finally,

genetic background of hosts and history of exposure to diverse microorganisms likely

contribute to the observed heterogeneity in the memory CD8T cell compartment.

Extending our tool box and exploring alternative mouse models (i.e., “dirty” and/or

outbred mice) to encompass and better model diversity observed in humans will remain

an important goal for the near future that will likely shed new light into the mechanisms

that govern biology of memory CD8T cells.

Keywords: CD8 T cell, memory, subsets, heterogeneity, protection, outbred mice, age of memory, history of Ag

enounters

INTRODUCTION

At the most basic level, a memory CD8T cell can be defined as a CD8T cell that has responded
to cognate antigen (Ag) and persists long-term. Such a simple definition does little to account for
immune-mediated protection, however, and hosts possessing memory CD8T cells are often better
protected against solid tumors and infection with intracellular bacteria, viruses, and protozoan
parasites than their naïve counterparts (1–8). To encompass protective capabilities, our definition
would need to expand to include quantitative and qualitative aspects of CD8T cell memory and
how these differ from naïve and effector CD8T cells. Compared to naïve cells of the same antigen-
specificity, memory CD8T cells persist in greater numbers (9); can populate peripheral organs (10);
are poised to immediately proliferate, execute cytotoxic functions, and secrete effector cytokines
upon Ag re-encounter (11–16); and exist in different metabolic, transcriptional, and epigenetic
states (17–20). Despite some similarities between effector andmemory CD8T cells at themolecular,
epigenetic, metabolic, and functional levels (17–23), memory cells persist long-term while effector
cells undergo robust contraction (18, 24), and unlike effector cells they are capable of vigorous
proliferation following Ag re-encounter (25).

Expanding our definition to account for functional differences between naïve, effector, and
memory cells helps to clarify why immune hosts are better protected than naïve hosts, but it does
not begin to explain why some memory CD8T cell responses are more protective than others.
While a correlation between the numbers of memory CD8 T cells and the level of protection is
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firmly established (26, 27), quality (or functional ability) of
memory CD8T cells also determines the degree of memory
CD8T cell-mediated protection. Characteristics of memory
CD8T cell responses best-suited to provide protection against
infection vary depending upon the nature of the pathogen, and
over the past 20 years it has become clear that the memory CD8T
cell pool consists of a heterogeneous population of cells that
differ in phenotype, function, and protective capacity (28–34). A
complete definition of CD8T cell memory, then, should account
for this diversity, and immunologists have categorized cells of
distinct functional abilities into subsets to better understand
memory CD8T cell heterogeneity. Heterogeneity withinmemory
CD8T cell subsets uncovered by recent subsetting strategies
discussed in this review also highlights the limitations of
ascribing discrete functions to memory CD8T cells expressing
one or two phenotypic markers. However, despite these
limitations, current subset classifications do provide valuable
predictive information on the likelihood that cells of a given
phenotype will be able to perform a defined function in response
to a particular pathogen.

CD8T cells of memory phenotype and function can arise in
response to self-peptide and/or in a lymphopenic environment
in response to cytokines that trigger homeostatic proliferation
(“virtual” and “innate” memory) (35, 36). However, this
review will focus solely on memory CD8T cells generated in
response to infection. Specifically, we will discuss (1) current
subset classifications of memory CD8T cells, (2) how subset
composition is shaped following time after infection and upon
additional Ag encounters, (3) how memory CD8T cell subsets in
humans compare to those in mice, and (4) how mouse studies
that better model human biology inform our knowledge of
memory CD8T cell biology.

MEMORY CD8T CELL SUBSETS

Effector (Tem) and Central (Tcm) Memory
Although the number of memory CD8T cell subsets has
expanded (Table 1), the first characterization of heterogeneity
within a memory CD8T cell pool of undefined origin
in humans described two subsets—CD62Llo/CCR7lo effector
memory (Tem) and CD62Lhi/CCR7hi central memory (Tcm)
cells (37). Expression of CCR7 and CD62L on Tcm cells
facilitates homing to secondary lymphoid organs, while Tem
cells are more cytolytic and express integrins and chemokine
receptors necessary for localization to inflamed tissues (37). This
description led to the paradigm that the memory CD8T cell
population consists of specialized cells that uniquely participate
in the immune response to confer host protection. Mechanistic
studies in mice showed that Tem cells were more prevalent in
tissues, while Tcm cells were more prevalent in lymph nodes and
better equipped to persist following infection and to produce IL-
2 and proliferate in response to Ag (30). Transcription factors
promote the development and function of Tem and Tcm cells,
and T-bet, Blimp1, ID2, and STAT4 expression is associated
with Tem cells, while Eomes, TCF1, BCL-6, ID3, and STAT3
expression is associated with Tcm cells (38–42, 45–49). Tcm
cells provide enhanced protection against chronic infection

with LCMV-clone 13 (30), while Tem cells provide superior
protection against infection with vaccinia virus, and in some
instances Listeria monocytogenes (31, 63). These studies led to
the hypothesis that Tcm cells are specialized to handle systemic
infections due to their centralized location within secondary
lymphoid organs and superior proliferative abilities, and that
Tem are specialized to handle infections arising within peripheral
organs due to their cytotoxicity and ability to localize to tissues.

With identification of memory subsets came questions of
when CD8T cells of discrete function form during a response
and how effector cells survive to populate the heterogeneous
memory CD8T cell pool. Interleukin 7 is required for the survival
of naïve cells and promotes the survival of memory CD8T
cells (64), and initial reports suggested that the expression of
CD127, the alpha chain of the IL-7 receptor, could be used to
identify memory precursor effector cells (MPECs) that display
increased ability to form long-lived memory cells and short-lived
effector cells (SLECs) that are poor at giving rise to long-lived
memory cells (65). Additional studies suggested that expression
of costimulatory molecule CD27, could identify effector cells
that were more likely to survive contraction (66). Later,
expression of KLRG1 in addition to CD127 was used to identify
SLECs (CD127−/KLRG1+) and MPECs (CD127+/KLRG1−)
(38). However, despite promoting survival of effector CD8T
cells to memory, CD127 expression and IL-7 signaling are not
sufficient to drive formation of memory CD8T cells, as forced
expression of CD127 expression did not rescue survival of
KLRG1hi cells into memory (67). In addition, priming of naïve
CD8T cells in low inflammatory environment (ex. peptide-DC
immunization) will generate CD127 expressing effector CD8T
cells prone to vigorous contraction (25, 68). Of note, displaying
the expression pattern of markers used to identify SLECs
(CD127−/KLRG1+) does not absolutely preclude long-term
memory formation, as a small percentage of CD127−/KLRG1+

cells can be found months after infection (69, 70). Thus, the
expression pattern of CD127 and CD27 on effector CD8T cells
mark cells with differential probability to survive contraction,
but also highlights the notion that those markers cannot be used
with certainty to predict effector cells that will become long-lived
CD8T cell memory.

Tissue Resident Memory (Trm)
Tissue surveillance was a function first ascribed to circulating
Tem cells (71). However, elegant parabiosis experiments have
made it clear that some cells within tissues are not circulating,
but are permanent residents (50, 51, 72). Efforts to identify
tissue resident memory T cells (Trm) have shown that, unlike
circulating cells, Trm cells are not labeled by intravenous
injection of antibodies (73), with the noted exception of liver
Trm cells, which are exposed to the circulation (74). In addition
to tissue residence, Trm cells often are identified based on
expression of integrins CD103 and CD49a, which aid in tissue
entry (52, 53), and CD69, which promotes tissue retention (54).
However, expression of these proteins can vary depending on
tissue of residence. Trm cells are also described as expressing
CXCR3 and lacking expression of KLRG1, CCR7, and CD62L,
and having intermediate or low expression of Cx3Cr1 (33, 43, 52).
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TABLE 1 | Memory CD8T cell subsets.

Subset Phenotype Function Location/Trafficking Transcription factors References

Tem CCR7lo/CD62Llo

Cx3Cr1hi/CD27lo

CD127hi

CD27−/CD45RA− (humans)

++ Cytotoxicity

+- Proliferation

Circulation Tbethi

Blimp1hi/ID2hi/STAT4hi
(30, 37–44)

Tcm CCR7hi/CD62Lhi

Cx3Cr1lo/CD27hi

CD127hi

CD27+/CD45RA− (humans)

+− Cytotoxicity

++ Proliferation

Circulation

Lymph nodes

Tbetlo

Eomeshi/TCF1hi/Bcl6hi/

STAT3hi/ID3hi

(30, 37–39, 42–49)

Temra (humans) CCR7−/CD27−/CD45RA+

CD127lo
++ Cytotoxicity

+− Proliferation

Circulation (44)

Trm CD69hi/CD103hi/CD49ahi

(depending on tissue)

CXCR3hi/KLRG1lo/CCR7lo/

CD62Llo, CD127hi

Cx3Cr1lo/int

Sensing and alarm

+ proliferation

Tissue resident KLF2−/lo/Eomes−/lo

Tbetlo/TCF1lo

Hobithi/Blimp1hi

(33, 43, 50–60)

Tpm CCR7+/−/CD62L+/−/CD127hi

Cx3Cr1int/CD27hi
+ Cytotoxicity

+ Proliferation

Circulation

Tissue trafficking

Lymph nodes

Tbet+/− (43, 61, 62)

Others CD27lo/CD43lo

KLRG1hi, CD127lo
++ Cytotoxicity

+− Proliferation

Tissue trafficking Tbethi/Eomeslo (32, 62)

However, it was recently reported that cells that previously
expressed KLRG1 can form Trm cells, and such ex-KLRG1
cells may delineate heterogeneity within the Trm population,
as they express higher levels of granzymeB than Trm cells
that never expressed KLRG1 (75). Responsiveness to TGF-β
in most cases is necessary for Trm development (55, 76), and
expression of transcription factors play an important role in
promoting TGF-β responsiveness and retention of Trm cells
within tissues. Transcriptionally, Trm cells are noted for reduced
expression of KLF2 and Eomes (55, 56), low expression of
T-bet and TCF1 (55, 57), and elevated expression of Hobit
and Blimp1 (57). Trm-mediated protection in peripheral tissues
is primarily mediated through sensing and alarm functions.
This requires Ag recognition and IFN-γ production by Trm
cells, results in global modification of gene expression within
inflamed tissues and increased expression of chemokine ligands,
and promotes recruitment and effector functions of cells of
the innate and adaptive immune system (58, 77–79). Trm cells
provide protection against diverse microorganisms in an array
of tissues including the lungs (33), salivary glands (80, 81),
female reproductive tract (58, 78), skin (28), and liver (74).
Because of this, attempts to generate Trm cells with site-directed
vaccinations are being pursued.

Tcm, Tem, and Peripheral Memory (Tpm)
Subsets Based Upon Cx3Cr1 Expression
Recently, characterization of Tem and Tcm subsets was further
refined, and an additional memory subset was described
following the identification of Cx3Cr1int peripheral memory
(Tpm) T cells (43). Staining for CD27 or CXCR3 and
Cx3Cr1 (fractalkine receptor) permits identification of Cx3Cr1−,
Cx3Cr1int, and Cx3Cr1hi populations at a memory time point.
Cx3Cr1hi cells do not migrate toward CCR7 ligand CCL19, do

not re-express CD62L, are absent in lymph nodes but abundant
in the circulation and tissues, proliferate and produce IL-2
poorly in response to Ag, and are efficient killers of target
cells. These characteristics overlap with Tem cells and imply
that expression of Cx3Cr1 may identify a homogeneous Tem
population. Conversely, Cx3Cr1− and Cx3Cr1int populations are
found in the lymph nodes and migrate in response to CCL19,
suggesting that expression of Cx3Cr1 can be used to distinguish
two populations among cells that would be defined as Tcm cells.
Cx3Cr1− cells display characteristics of classically defined Tcm
cells in that they are more prevalent in lymph nodes, re-acquire
CD62L faster and to a greater extent, and are better producers of
IL-2 but less cytotoxic than Cx3Cr1int cells. Therefore, Cx3Cr1
may allow identification of a more homogeneous population of
Tcm cells. While the majority of Cx3Cr1− cells express CD62L
1 year after infection, approximately half of Cx3Cr1int cells
express CD62L, and formation of Cx3Cr1int cells is reduced
but not eliminated in T-bet deficient mice, suggesting further
heterogeneity within the Tpm population. This distinction may
be important, as a large percentage of inflationary memory
CD8T cells in mice and humans generated in response
to adenovirus-vectored vaccines or natural cytomegalovirus
(CMV) infection are Cx3Cr1int (82), and it was suggested that
a CD62Lhi/Cx3Cr1+ population within the lymph nodes is
important in providing protection against chronic infection (61).
Importantly, Tem, Tcm, and Tpm populations identified based
on Cx3Cr1 expression display different migratory patterns (43).
Contrary to previous descriptions as tissue surveyors, Tem cells
were excluded from tissues, but were highly represented in the
circulation. Instead, the tissue surveyor role was ascribed to Tpm
cells, which could traffic to the tissues and return to lymph
nodes via afferent lymphatics. These data call for a refinement
to the hypothesis of the role of memory CD8T cell subsets in
providing host protection and suggest that immuno-surveillance
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is mediated by discrete actions of Tem cells, which are cytotoxic
and present in the circulation and can be easily recruited to
sites of inflammation; Tcm cells, which are centrally localized
within lymph nodes and are highly proliferative following Ag
re-encounter; Trm cells, which respond to infections arising
in peripheral tissues and proliferate and recruit other immune
cells following infection; and Tpm cells, which survey peripheral
tissues and may be important for mediating protection against
chronic infections.

Additional Memory Cell Subset
Classifications
Classifications of memory CD8T cells into, Tem, Tcm, Trm,
and Tpm subsets informs our understanding of immuno-
surveillance provided by CD8T cells of discrete functionality, but
it does not capture the complete diversity within the memory
CD8T cell pool. Additional subsets have been described based
upon expression of CD27 and CD43, a glycosylated form of
sialic acid (32, 62). CD27lo/CD43lo memory cells are KLRG1hi,
CD127lo, T-bethi, and Eomeslo (32), an expression pattern that
overlaps with, but is not identical to either Tem or Trm cells.
Importantly, CD27lo/CD43lo memory cells provide superior
protection against Sendai virus and Listeria monocytogenes
infection, perhaps due to an ability to localize to tissues. Thus,
Tem, Tcm, Trm, and Tpm classification does not completely
capture memory CD8T cell diversity. Examination of additional
markers may improve resolution of existing subsets and expand
the number of identifiable subsets in the future, and lead to
an improved understanding of memory CD8T cell-mediated
immuno-surveillance.

EFFECTS OF TIME AND AG-ENCOUNTERS
ON MEMORY CD8T CELL POOL
COMPOSITION

Time
Long-lived hosts can re-encounter pathogens at any time,
and studies have indicated that the phenotype, function, and
protective abilities of Ag-specific memory CD8T cells change
with time following infection. The percentage of circulating
pathogen-specific memory CD8T cells expressing CD27 and
CD62L increases with time after infection, (30, 83–85), and the
percentage expressing Cx3Cr1 decreases (43, 75), indicating that
representation of Tcm cells among pathogen-specific memory
CD8T cells increases with time after infection. As would be
expected of Tcm cells, aged or late memory cells proliferate and
produce IL-2 to a greater extent than early memory cells in
response to Ag (69, 70, 86, 87), and provide enhanced protection
against chronic viral infection (69, 70). Changes observed in
late memory cells extended beyond phenotype and functions
normally attributed to Tcm cells, including increased ability
to up-regulate expression of FasL and CD40L and to produce
XCL1; decreased expression of many cytokine and chemokine
receptors including IL-10R, components of IL-12R and IL-
18R, CCR2, and CCR5; and decreased ability to produce IFN-
g in response to inflammatory cues in the absence of cognate

antigen recognition (bystander activation) (70, 88). Strikingly,
phenotypic heterogeneity of Tcm cells was diminished with
time after infection, and progressive changes in transcriptomic,
phenotypic, and metabolic profiles of Tcm cells indicated an
improved proliferative capacity of Tcm cells with time after
infection, leading to an increased ability to provide protection
against LCMV-clone 13 infection (69). In contrast, the percentage
of CD62Llo cells decreases with time after infection (69, 70,
83, 84), indicating decreased representation of Tem cells. Of
note, the CD62Llo subset is comprised of not only functional,
IFN-g producing Tem but also of recently identified T death
intermediate memory (Tdim) cells (89). Tdim arise from
the process of memory CD8T cell homeostatic proliferation,
are non-functional, and are destined to die, (89) and their
representation increases among CD62Llo Tem subset with time
after infection (69).

Like Tem cells, numbers of Tpm cells decrease initially after
infection, but following an initial period of decline, they are
maintained at stable numbers (43). However, the percentage
of CD62Lhi Tpm cells increases with time after infection. Few
studies have examined the properties of long-term Trm cells,
and it is unclear how the functions of Trm cells are affected by
time. Trm cells in the skin persist for >300 days after infection
and are long-lived (28). However, influenza-specific Trm cells
in the lungs are shorter-lived (90) and require replenishment
by circulating CD62Llo memory cells (91). Together, these
studies indicate that with time after infection, the circulating
Ag-specific memory CD8T cell population is comprised of a
more homogeneous population of Tcm cells with enhanced
proliferative capacity, which impacts host CD8T cell-mediated
protection against infection (Figure 1).

Ag-encounters
Hosts are often exposed to the same pathogens throughout
life, and prime-boost vaccination protocols intended to increase
memory cell numbers result in memory CD8T cells that have
encountered Ag multiple times. Initial experiments utilizing
adoptive transfer of purified TCR transgenic or tetramer positive
memory cells of known Ag-encounter history showed that
additional Ag-encounters result in decreased representation
of circulating memory CD8T cells expressing CD62L, CD27,
and CD127, and increased representation of cells expressing
KLRG1 and GranzymeB (83, 84) (Figure 1). Phenotype of
secondary memory CD8T cells is also greatly impacted by
systemic inflammation elicited during the infection/vaccination
(92). Successive Ag-encounters also result in stepwise changes
in transcriptomic signature of memory CD8T cells, but not in
progressive enrichment in Tem associated genes (93), suggesting
that additional Ag-encounters result in generation of a more
transcriptionally diverse Tem population. Differences in memory
CD8T cell composition and function with additional Ag-
encounters translate to differential ability to provide protection
against re-infection, with memory CD8T cells that have
encountered Ag multiple times being more protective against re-
infection with Listeria monocytogenes, LCMV-Armstrong, and
Vaccinia Virus, and less protective against re-infection with
MHV and LCMV-clone 13 (29). However, recurrent homologous
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FIGURE 1 | Phenotypic and functional changes within the circulating Ag-specific CD8T cell pool with time after infection and with additional Ag encounters. Following

infection or vaccination, rare naïve CD8T cells that recognize their cognate Ag robustly proliferate and give rise to an effector CD8T cell population. Following

contraction of the effector pool, memory CD8T cells are stably maintained at numbers greater than the naïve pool. Upon re-infection or booster vaccination, primary

memory CD8T cells proliferate and generate a secondary effector and memory CD8T cell pool that is larger in size than the primary memory pool. Properties of cells

comprising the Ag-specific CD8T cell pool, including expression of phenotypic markers and subset representation, ability to traffic to and localize within tissues, ability

to execute effector functions, and ability to provide protection against infection with diverse pathogens differ between naïve, effector, and memory CD8T cells, and

among memory CD8T cells of different age relative to initial Ag-encounter and of different number of Ag-encounters. – symbols indicate reduced quantity or ability,

while + symbols indicate increased quantity or ability. aVirtual and/or innate memory cells within the naïve CD8T cell pool are not considered here.

boosting preserves numerical stability and increases phenotypic
and functional complexity of the memory CD8T cell pool (94),
and sequential heterologous infection results in a pool of Ag-
specific memory CD8T cells with a phenotypic profile reflective
of Tcm cells that are metabolically fit, proliferate robustly
following re-infection, and provide protection against LCMV-
clone 13 (34). Although homologous and heterologous infection
strategies likely result in mixed memory populations with cells
that have encountered Ag a different number of times, and thus
are not reflective of pure memory populations of known number
of Ag-encounters, they may more accurately reflect sequential
infections in humans.

Recent examinations of Trm cells that re-encounter Ag have
shown that Trm cells proliferate within tissues and contribute
to formation of secondary Trm cells (95, 96), and can migrate
to, and form Trm populations within tissue-draining lymph
nodes (97). Importantly, although Ag-exposure history defines
CD8T cell dynamics and protection during localized pulmonary
infections (98) lung Trm derived from repeatedly stimulated
influenza-specific circulatory memory CD8T cells exhibit
extended durability and protective heterosubtypic immunity
relative to primary lung Trm (99). Parabiosis studies reveal
that repeated antigen encounters resulted in generation of long-
lasting circulating effector memory (Tem) cells that maintained
their ability to be recruited to the lung parenchyma and converted
to Trm (99). Thus, successive Ag-encounters also results in
diversification of the Trm subset, which impacts their ability
to provide protection against subsequent infections arising at
peripheral locations.

MEMORY CD8T CELL HETEROGENEITY
AND SUBSETS IN HUMANS

Humans are exposed to an array of infections throughout
life and often re-encounter the same infection. Additionally,
it is often difficult to determine precisely when infection was
encountered, and due to obvious difficulties in acquiring human
tissue samples, the majority of human studies rely on analysis
of CD8T cells in peripheral blood. These considerations have
presented difficulties for examining memory CD8T cells of
known age relative to Ag-encounter and of known number of Ag-
encounters in humans, but recent studies have provided insight
into subset composition and heterogeneity present within the
memory CD8T cell population of humans. Most human studies
rely on analysis of bulk CD8T cell populations, and similar
to mice, Tcm and Tem subsets can be identified in humans,
along with a terminally differentiated subset that expresses
CD45RA (Temra). Initial characterization of these subsets
was based on expression of CD45RA and CD27 (44), while
later studies distinguished Tem and Tcm subsets based upon
expression of CCR7 (37), and staining for CD45RA and either
CD27 or CCR7 identifies naïve (CD45RA+/CD27+/CCR7+),
Tem (CD45RA−/CD27−/CCR7−), Tcm (CD45RA−/CD27+/
CCR7+), and Temra (CD45RA+/CD27−/CCR7−) CD8T cells.
Memory CD8T cells of distinct phenotypes accumulate with age,
and accumulation of Temra cells in humans is influenced by
chronic infections, such as CMV (100, 101).

Recent studies with organ donors of diverse ages have
provided some clarity on the compartmentalization of human
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memory subsets, describing large populations of Trm cells,
and regional surveillance by Tem, Tcm, and Temra cells that
varied depending on the tissue and were not reflective of
subset representation within the blood (59, 60). As in mice,
protection against infection is likely mediated by cells of discrete
phenotype and function that cannot be fully described based
upon classification of Tem, Tcm, Temra, and Trm subsets.
Recently, human memory subsets were described based on
Cx3Cr1 expression, and a highly cytotoxic Cx3Cr1+/CD62L+

subset that resides within the lymph node was suggested to be
important for mediating protection against chronic infections
including CMV (61).

Due to the endemic nature of most pathogens that humans
are vaccinated against, it is difficult to examine Ag-specific
memory CD8 cells of known age relative to initial activation
and number of Ag-encounters in humans. However, experiments
with vaccines for small pox and yellow fever virus (YFV), which
are not endemic within the United States, have allowed for
examination of primary memory CD8T cells of known age
relative to initial Ag-encounter. Expression of CD45RA, CD127,
and CCR7 on Ag-specific memory CD8T cells increased, while
expression of perforin and granzymeB decreased with time
after infection, suggesting that similar to mice, representation
of Tcm cells within the Ag-specific human memory CD8T
cell population increases with time after infection (22, 102).
However, while cytotoxic functions of memory CD8T cells
appeared to decrease with time after infection based upon
expression of perforin and granzymeB at steady state, memory
cells retained open chromatin configurations at locations relevant
for cytotoxicity and cytokine production, suggesting that genes
encoding for effector functions are readily open for transcription
following Ag re-encounter (19, 22). Recent reports in mice have
also shown dynamic epigenetic regulation of genes driving CD8T
cell localization and function during differing differentiation
states (23). DNA methylation patterns of Sell (the gene encoding
CD62L) were restrictive in effector cells, but demethylated in
naïve and memory cells. Conversely, GzmB (the gene encoding
granzymeB) displayed restrictive methylation patterns in naïve
cells, but were demethylated in effector cells and memory
precursor cells (23). These recent studies have indicated that, as
in mice, the memory CD8T cell pool in humans is composed
of subsets with discrete functionalities, and subset composition
likely impacts host immuno-surveillance in response to diverse
pathogens.

CD8T CELL RESPONSES IN ALTERNATIVE
MOUSE MODELS

Human studies have pointed to many similarities between CD8T
cell responses in mice and humans. However, differences that
exist between mice and humans may limit translational value of
mouse research. Recent efforts to extend mouse models outside
of traditional inbred mice housed in specific pathogen free (SPF)
facilities have provided valuable insight into CD8T cell biology.
In contrast to the CD8T cell compartment of SPF laboratory
mice, which consists primarily of naïve T cells and is similar to

that of a neonatal human, sequential infections with common
pathogens or co-housing laboratory mice with wild/pet store
(“dirty”) mice generates a CD8T cell compartment that is similar
to adult humans and is comprised of a large number of Ag-
experienced CD8T cells with increased representation of cells
in peripheral tissues (103). Additionally, a greater percentage
of memory phenotype CD8T cells of “dirty mice” displayed
phenotypic markers expressed by Tem cells and were more
cytolytic than memory phenotype cells of SPF laboratory mice
(103). De novo immune responses in “dirty mice” resulted in
reduced Ab production compared to SPF mice, and displayed
transcriptional similarities to adult human blood in contrast
to SPF mice, which displayed transcriptional similarities to
neonatal humans (103, 104). Furthermore, memory CD8T cells
of “dirty mice” that developed following infection with Listeria
monocytogenes were more skewed toward a SLEC phenotype
compared to SPF mice, and “dirty mice” were better protected
against infection with Listeria and Plasmodium berghei (103).
These studies suggest that “dirty mice” may more closely model
the immune system of adult humans, and that history of
pathogen exposure shapes the immune system and impacts
phenotype of memory CD8T cells generated and protection
provided following de novo infection. Future studies should more
closely examine the innate and adaptive immune factors that are
shaped following sequential infection with unrelated pathogens,
and how these interact to generate a qualitatively different CD8T
cell response following de novo infection.

Additional insight has been gained from studies utilizing
outbred mice to model genetic diversity present in the human
population. Ag-driven changes in expression of CD8α and
CD11a have been used as “surrogate activation markers”
approach to track pathogen-specific CD8T cell responses to
infection in outbred mice without a priori knowledge of MHC
class I restriction and/or specific epitopes (105). Data revealed
that compared to uniformity in size of the effector and memory
responses generated in inbred mice, magnitude of effector and
memory CD8T cell responses are highly variable in individual
outbred mice (105, 106). Furthermore, while memory CD8T
cells in inbred mice progressed linearly from a Tem to Tcm
phenotype with time, percentages of memory cells expressing
Tcm markers (CD62Lhi, CD27hi, CD127hi, KLRG-1lo) did not
increase or increased very slowly with time after infection in
some outbred mice (106). Importantly, differences in CD8T
cell responses generated to a primary infection in outbred mice
led to differences in CD8T cell-mediated protection provided
against a secondary infection, and degree of protection did not
always correlate with size of the memory CD8T cell pool prior to
secondary infection (105, 106). These studies suggest that vaccine
strategies that generate a memory CD8T cell pool of sufficient
size and quality to provide protection against re-infection in
inbred mice may not generate a protective memory CD8T cell
response in all outbred mice, a finding that has direct relevance
to the outbred human population.

Differences in memory CD8T cell response size and
phenotype following infection in individual outbred mice could
have been caused by a number of immunologic factors including
differences in cells of the innate compartment or differences in
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Th bias of the CD4T cell compartment. However, underlying
causes for divergent CD8T cell-mediated immune outcomes
were unable to be fully explored in the studies discussed
due to a lack of tools available for study in outbred mice.
Collaborative cross mice, a recombinant inbred panel of mice
that displays vast genetic diversity due to unique inheritance
from eight founder strains (107, 108), and diversity outbred
mice, which are generated by outcrossing collaborative cross
strains at various stages of the inbreeding process (109),
may prove to be useful models for deciphering the answers
to this question. Studies with collaborative cross mice have
revealed a range of immune cell composition, phenotype,
and function among strains prior to infection that is more
representative of the human population (110), and post-
infection outcomes relevant to the human population that
are not observed in traditional inbred mice (111). Genetic
tools uniquely suited for collaborative cross mice, including
quantitative trait locus mapping (QTL) (112), may provide
additional insight into factors underlying divergent memory
CD8T cell outcomes in genetically diverse organisms, and
how memory CD8T cells of diverse phenotype and function
arise and participate in immune-mediated protection against
re-infection.

CONCLUSION

Protection against diverse pathogens that have evolved for
unique interactions with hosts, different points of host entry,
and colonization and replication within particular host cells

requires a diverse and adaptable immune system. Heterogeneous
memory CD8T cells that can persist in and localize to different
areas within the host, and that are functionally adapted to
respond in discrete ways within their host niche, contribute to
the diversity and adaptability needed to efficiently provide host
immuno-surveillance. The effects of time following infection
and additional Ag encounters further shape diversity of the
memory CD8T cell pool, which impacts efficacy of CD8T
cell-mediated protection against re-infection. Efforts to subset
memory CD8T cells have informed our knowledge of how
CD8T cells with discrete functionalities contribute to host
immuno-surveillance against diverse microbial pathogens, and
improved animal models that more accurately reflect the
human immune system may improve our understanding of
the origins and functions of memory CD8T cells of diverse
phenotype and improve translational value of current animal
studies.
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