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The emergence of clinical isolates associated to multidrug resistance is a serious threat

worldwide in terms of public health since complicates the success of the antibiotic

treatment and the resolution of the infectious process. This is of great concern in

pathogens affecting the lower respiratory tract as these infections are one of the major

causes of mortality in children and adults. In most cases where the respiratory pathogen

is associated to multidrug-resistance, antimicrobial concentrations both in serum and

at the site of infection may be insufficient and the resolution of the infection depends

on the interaction of the invading pathogen with the host immune response. The

outcome of these infections largely depends on the susceptibility of the pathogen to

the antibiotic treatment, although the humoral and cellular immune responses also play

an important role in this process. Hence, prophylactic measures or even immunotherapy

are alternatives against these multi-resistant pathogens. In this sense, specific antibodies

and antibiotics may act concomitantly against the respiratory pathogen. Alteration of cell

surface structures by antimicrobial drugs even at sub-inhibitory concentrations might

result in greater exposure of microbial ligands that are normally hidden or hardly exposed.

This alteration of the bacterial envelope may stimulate opsonization by natural and/or

specific antibodies or even by host defense components, increasing the recognition of

the microbial pathogen by circulating phagocytes. In this review we will explain the most

relevant studies, where vaccination or the use of monoclonal antibodies in combination

with antimicrobial treatment has demonstrated to be an alternative strategy to overcome

the impact of multidrug resistance in respiratory pathogens.
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INTRODUCTION

One third of the annual deaths occurring in the world are estimated to be due to infectious
diseases and notably, infections affecting the respiratory tract are responsible of 4 million deaths
worldwide (1). According to estimates of the World Health Organization, pneumonia kills
more children worldwide than any other disease, even more than acquired immune deficiency
syndrome (AIDS), malaria and measles combined (2–4). In adults, the impact of community
acquired pneumonia (CAP) or nosocomial pneumonia (including hospital-acquired pneumonia
and ventilator-acquired pneumonia) is also very worrisome as they are associated with remarkably
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high morbidity and mortality rates worldwide (5). One the
major causes of these pathologies is Streptococcus pneumoniae
(pneumococcus) that has greater incidence in children under
5 years old and adults over 60 years old, although the
mortality is much higher in elderly population worldwide (4, 5).
Pneumococcus is indeed, the main etiologic agent of CAP, as
well as, non-epidemic bacterial meningitis and acute otitis media
(AOM), but is also one of the major causes of bacterial sepsis (6).
Other frequent causes of CAP include Haemophilus influenzae,
Pseudomonas aeruginosa, Staphylococcus aureus, and also other
pathogens grouped as atypical bacteria (including Mycoplasma
spp, Chlamydia spp, and Legionella spp) (7).

The search of effective treatments to fight against infectious
diseases has been, since many years, among the main challenges
of medicine. Before the discovery of antibiotics, there were
very few choices against bacterial infections. In the last decade
of XX century, therapies based in antibodies to treat these
infections were commonly used (8) and, in the 20’s of last
century, serum therapy was used against many bacterial diseases
including infections affecting the respiratory tract, such as those
caused by S. pneumoniae (9). These treatments reduced in a
50%, the mortality caused by this pathogen (10). However,
when antibiotic chemotherapy emerged in the 30’s decade
of last century, serum therapy was abandoned and it was
substituted by antibiotic treatment due to its higher effectivity
and lower toxicity. Interestingly, the appearance of resistant
strains appeared promptly after the general use of antibiotics.
Resistance to several antibiotics is a common phenotype in
the majority of these pathogens including multidrug resistant
(MDR) strains of pneumococcus. In some cases, such as
extended spectrum β-lactamase producing enterobacteriaceae
and methicillin-resistant S. aureus (MRSA) dissemination of
resistance has become a serious threat worldwide (7). In the
last years, the use of monoclonal antibodies has been proposed
as an alternative for the treatment of MDR pathogens, due to
their marked specificity against the bacterial pathogen, their
limited possibility of creating resistance and their ability to act
synergistically with antibiotics (11). A different approach to
reduce the burden of disease caused by MDR pathogens and
also limit the dissemination of resistance genes is based in the
implementation of effective vaccines with high coverage rates
among the pediatric and adult population (12, 13).

IMPACT OF VACCINATION AGAINST
ANTIBIOTIC RESISTANCE IN
RESPIRATORY PATHOGENS

To control antibiotic resistance, vaccines have been proposed
as promising intervention measures to control the spread and
dissemination of MDR strains. Indeed, existing vaccines against
important pathogens, such as S. pneumoniae or H. influenzae
type b may contribute to reduce the burden of antimicrobial
resistance (14–17). One of the best examples is the reduction
of MDR serotypes after the introduction of pneumococcal
conjugate vaccines. Hence, preventive and therapeutic measures
against infection produced by S. pneumoniae have modified

the resistance pattern of this pathogen. PCV7 and later
PCV10 and PCV13, are pneumococcal vaccines containing
the capsular polysaccharides of the main serotypes causing
invasive pneumococcal disease (IPD) protecting against the
most common serotypes that are resistant to antibiotics. These
vaccines were commercialized at the beginning of this century
to promote immunization against pediatric population, although
PCV13 is also indicated for adults. The general use of these
vaccines induced a drastic decrease of the incidence of IPD
caused by serotypes included in the vaccines and also reduced
the prevalence of non-susceptible serotypes to antibiotics (18–
20). As a consequence, PCV7 and later PCV13 have had a clear
impact in the epidemiology of clinical isolates obtained from
adults, who have been indirectly beneficiated from pediatric
vaccination (18–22). Another example is vaccination against
H. influenzae type b that has reduced the overall morbidity
and mortality by this microorganism showing an impact on
antibiotic resistance by declining ampicillin resistant strains
(23). Additional evidence is the influenza virus vaccine and
how can diminish the impact of antibiotic resistance in
bacterial pathogens affecting the respiratory tract. Although,
the best studied interaction of influenza virus with a bacterial
specimen is with S. pneumoniae (24–26), there are many
studies demonstrating possible associations between influenza
and other respiratory bacterial pathogens, such as S. aureus,
H. influenzae, Streptococcus pyogenes, and Neisseria meningitidis
(27–29). Preventing infection by influenza virus due to vaccine
strategies, may decrease the subsequent infection by some of the
bacterial pathogens mentioned above, which in some cases may
harbor high levels of antibiotic resistance.

IMMUNOMODULATORY EFFECTS OF
ANTIBIOTICS

The emergence of strains with high levels of antibiotic resistance
might jeopardize the success of the antibiotic therapy (30).
Antibiotics play their role against bacteria in a more complex
mechanism when they exert its activity in vivo in comparison
to the in vitro conditions due to the presence of serum
proteins and components of the host immune response (31).
Immunomodulation mediated by antimicrobial drugs can be
explained as an induction of immunity to pathogens triggered
by the chemotherapy compound. In this sense, immunoglobulins
and complement components can improve the activity of β-
lactam antibiotics (32, 33) whereas the presence of albumin
and globulins limit free-drug plasma concentrations affecting
the expected antibacterial in vitro effect (34–38). This effect
is only relevant if the binding to plasma proteins is high
(more common in cephalosporins than in penicillins) (37, 38).
However, other authors using a pharmacodynamic simulation
at physiological conditions including binding proteins levels
similar to those found in humans, demonstrated that the presence
of binding proteins did not impair the anti-pneumococcal
activity of cefditoren (CDN), which is a high binding protein
cephalosporin (39). β-lactam antibiotics display its antibacterial
activity by a direct action against the microorganism. However,
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IPD is associated to high levels of morbidity and mortality
despite an appropriate antibiotic therapy (40). The lack of
antibiotic efficacy is very common being especially evident in
immunocompromised patients, suggesting that the recovery of
these patients depends on the joint action of antibiotics and the
host defense mechanisms.

Alteration of bacterial surface structures caused by certain
antibiotics might contribute to a major exposition of antigenic
epitopes that are deeply or hardly exposed. This greater exposure
might promote the opsonization by different components of the
host immune response, such as acute phase proteins, enhancing
the recognition of the respiratory pathogens by professional
phagocytes. Pentraxins, such as C-reactive protein (CRP) and
serum amyloid P component (SAP) are the main acute phase
proteins in human and mice, respectively (41). CRP levels
increase during different respiratory infections, demonstrating
the importance of this protein as a sentinel molecule (42).
One of the most important functions by CRP and SAP in
host defense against invading pathogens is the opsonization
of microorganisms and later the activation of the phagocytosis
process by Fcγ receptors (41, 43–45). In this sense, it has
been demonstrated that the recognition by CRP and SAP of
different clinical isolates of S. pneumoniae is enhanced when
the bacteria is opsonized with serum containing sub-inhibitory
concentrations of β-lactams, suggesting that these antibiotics
allow these pentraxins to recognize S. pneumoniae in a more
efficient manner increasing the phagocytosis (32, 33). A different
acute phase protein termed pentraxin 3 also has demonstrated
to be very effective in combination with antimycotic drugs
against infections produced by Aspergillus fumigatus, stimulating
the antifungal activity of phagocytes (46). Moreover, the use
of cephalosporins has been associated to an increased in the
serum bactericidal activity against important pathogens, such
as Escherichia coli and P. aeruginosa (47, 48), whereas the
treatment with erythromycin (ERY) seems to produce small
rupture points (breakpoints) in the cell wall, causing the
breakage of the envelope of Legionella pneumophila (49, 50).
In addition, it has been demonstrated that the macrolide
azithromycin (AZM), in concentrations lower than theminimum
inhibitory concentration (MIC), destabilizes the outer membrane
increasing the permeability and producing the death of P.
aeruginosa (51).

As an alternative, antibiotics might reduce the expression
of certain virulence factors involved in the inhibition of
complement activation and phagocytosis. Indeed, a recent
study has confirmed that certain antibiotics in sub-inhibitory
concentrations modify the expression of virulent genes of
S. aureus (52). An additional explanation for the enhanced
activation of the host immune response by macrolides could
be related to its mechanism of action as these antibiotics
interact with the ribosomal 50s subunit inhibiting the protein
biosynthesis (31). This is an important aspect in terms of
pathogenesis as sub-inhibitory concentrations of macrolides
inhibit the production of pneumolysin (Ply) which is an
important virulence factor involved in C3 evasion (53, 54).
Furthermore, certain macrolides, such as ERY, AZM, or
clarithromycin, inhibit negatively the synthesis of Ply and

pneumococcal surface protein A (PspA) (55–57). This is
relevant from the antimicrobial and immunological perspectives
because the combination of both proteins has an additive effect
and is very effective inhibiting the activation of complement
immunity (54). Additional evidence demonstrate that macrolides
exhibit immunomodulatory effects by inhibiting neutrophil
inflammation and macrophage activation, reducing the levels of
Th2 cytokines which might be important for the treatment of
chronic inflammatory diseases using this antibiotic (58).

Overall, antimicrobial drugs can trigger the humoral and
cellular response using a broader range of mechanisms including
the recognition by acute phase proteins and complement-
mediated immunity, inhibition of bacterial virulence factors
involved in immune evasion and reduction of the inflammatory
response.

THE HOST IMMUNE RESPONSE AGAINST
RESPIRATORY PATHOGENS IS BOOSTED
BY THE COOPERATION OF ANTIBIOTICS
AND ANTIBODIES

One of the major risks of respiratory infections is that are
frequently associated to high morbidity and mortality rates
despite appropriate antibiotic therapy with poor prognosis when
the infective pathogen is highly resistant to the antibiotic
prescribed (40). In the absence of antibiotic treatment, the
outcome of the infection depends on the balance of the
interaction between bacterial virulence factors and host defense
mechanisms. Antibiotics normally display their antibacterial
activity by a direct action against the microorganism. Clearance
of respiratory pathogens from the systemic circulation depends
on the opsonization by the complement system and the
phagocytosis process (59, 60). In this sense, it has been
observed that antibodies bound to Cryptococcus neoformans
modify the genetic expression and the metabolism of certain
genes, increasing the susceptibility of the pathogen to different
antifungal drugs (61). Vaccination against respiratory pathogens
including S. pneumoniae, induces the generation of specific
antibodies that can interfere with the growth and metabolism
of different microorganisms, suggesting a novel mechanism
for antibodies mediated immunity (62). The damage produced
on the surface of the pathogen by antimicrobial drugs might
allow certain components of the cellular envelope to be more
accessible and therefore, improve the recognition by complement
components and specific antibodies. For example, exposure of
MDR strains of Klebsiella pneumoniae to serum and β-lactam
antibiotics increased the C3 levels on the bacterial surface (63).

Considering S. pneumoniae, the classical pathway of the
complement system is the most important pathway for
complement activation (64, 65). Activation of this pathway
in S. pneumoniae was significantly increased in the presence
of β-lactam antibiotics confirming that alterations caused by
these antibiotics, even at sub-inhibitory concentrations, improve
the complement mediated immunity by a mechanism that is
dependent on the activation of the classical pathway (33).
Once the complement cascade is activated and after numerous
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enzymatic reactions, the key component C3 is formed. In
the presence of serum containing antibodies to pneumococcus
and sub-inhibitory concentrations of β-lactam antibiotics or
macrolides, C3 deposition on the surface of different MDR
strains was markedly increased (33, 66). Overall, activation of the
recognition by acute phase proteins and complement proteins
by certain antibiotics, such as β-lactams and macrolides in
the presence of specific antibodies has functional consequences
increasing the phagocytosis process and the clearance of
the microorganism (Figure 1) (32, 33, 66). Previous studies
using a sepsis model of infection in mice, have demonstrated
that protective doses of amoxicillin and cefotaxime were,
approximately, eight times lower in the presence of antibodies
than in their absence (67, 68). It is important to mention that
whatsoever, the possible benefit of the synergistic effect mediated
by antibodies will not be based in a reduction of the antibiotic
doses. The benefit would be to obtain a higher efficacy from the
therapeutic perspective after the administration of the common
doses used against IPD cases produced by clinical isolates with
high MIC levels (32, 33, 66, 67). Hence, vaccination reduces the

magnitude of the pharmacodynamics indices (i.e., drug exposure
defined from pharmacokinetic/pharmacodynamic ratio, ft >

MIC, fCmax/MIC or fAUC/MIC), needed to reach a certain
effect. Consequently, in the presence of antibodies, usual doses
of the antibacterial agent would necessarily cover clinical isolates
with higher levels of resistance (32, 67).

The early onset of antibiotic treatment is essential to prevent
the spread of the bacterial pathogens through the respiratory
tract and the dissemination to the systemic circulation because
any delay initiating the treatment may lead to the high fatality
rates associated to respiratory infections (69). This problem
gets worse when the bacterial pathogens harbor high levels
of antibiotic resistance. In this case, treatment with β-lactams
or macrolides may suppose a new strategy to reduce the
possibility of treatment failure in those individuals who have been
previously vaccinated against S. pneumoniae. This assertion is
based in the enhanced efficiency of the host immune response to
clear the bacterial pathogen in the presence of specific antibodies
and these antibiotics (32, 33, 66–68, 70). This cooperative effect
between antibodies and antibiotics it seems to be limited to

FIGURE 1 | Effect of host immune components on bacterial opsonization and phagocytosis. (A) Interaction of the host immune response with a bacterial pathogen in

the absence of antibiotics. (B) Interaction of different components of the host immune response in the presence of antibiotics. In the presence of antibodies, acute

phase proteins (CRP and SAP) and complement components (C1q and C3), the recognition of the bacterial pathogen is greatly enhanced when antibiotics are

present (right panel).
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β-lactams and macrolides because the presence of sub-inhibitory
concentrations of levofloxacin and specific antibodies did not
affect the opsonization by C3 against S. pneumoniae (66).
These results explain why the treatment with sub-inhibitory
concentrations of levofloxacin in mice previously immunized
against S. pneumoniae did not increase the survival rate (71).
Boosting effects on the host immune response by macrolides
have been studied in other bacterial pathogens including Gram-
positive and Gram-negative bacteria (31). Antimicrobial activity
of macrolides is increased against resistant strains of E. coli and
S. aureus when clinical isolates are exposed to sub-inhibitory
concentrations of ERY and AZM in the presence of human
serum. In the case of S. pneumoniae, exposure of resistant
strains to sub-inhibitory concentrations of different macrolides
increased C3 activation on the bacterial surface (66). Moreover,
in the absence of the main autolytic pneumococcal enzyme, the
amidase LytA, C3 deposition remained altered regardless the
presence of opsonic antibodies and antibiotics demonstrating
that LytA play a key role in the recognition by the complement
system (66).

The rise of drug resistance to the majority of all antibiotic
classes is particularly critical from the therapeutic perspective
within the designated ESKAPE pathogens (Enterococcus faecium,
S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and
Enterobacter spp.) (72). To fight these infections, the use
of monoclonal or polyclonal antibodies has been proposed
as antimicrobial alternatives against MDR strains including
ESKAPE pathogens, with several antibodies being tested in
different phase I-IV clinical trials (11, 73, 74). The possibility that
these antibodies might confer boosting effects with antibiotics is
a promising field to explore. In this sense, polyclonal antibodies
to efflux pump proteins of Stenotrophomonas maltophilia have
demonstrated additive or synergistic effects with a variety of
antibiotics including cotrimoxazole, ticarcillin–clavulanate, and
ciprofloxacin (75).

In P. aeruginosa, bispecific antibodies targeting the serotype-
independent type III secretion system (injectisome) virulence
factor PcrV and persistence factor Psl exopolysaccharide
have shown to be very effective increasing the antimicrobial
activity of different antibiotics against MDR strains (76, 77).
Synergistic activity of these antibodies with ciprofloxacin,
meropenem, ceftazidime, and tobramycin was observed,
demonstrating enhanced effect against lung injury and
prevented bacterial dissemination from the lung to the systemic
circulation (76, 77). In addition, the use of panobacumab
which is an IgM/κ monoclonal antibody directed against
the LPS O-polysaccharide moiety of P. aeruginosa in
combination with meropenem significantly increased bacterial
clearance in the lung confirming the benefits of the joint
therapy against MDR strains of this important pathogen
(78).

In the case of S. aureus, monoclonal antibodies targeting
different toxins and virulence factors have demonstrated
synergistic effects in combination with several antibiotics.
Therapeutic administration of a monoclonal antibody against
the pore-forming toxin, alpha toxin in combination with
vancomycin or linezolid resulted in improved survival

against induced pneumonia by reducing inflammation and
lung damage (79, 80). This combination results in a more
robust immune response leading to reduced disease severity
and accelerated healing relative to those with linezolid or
vancomycin monotherapy. As a consequence, addition
of antibodies to alpha toxin to antibiotic monotherapy
may provide a benefit over antibiotics alone through its
complementary mechanism of action (79, 80). Similar results
were observed by other authors using monoclonal antibodies
against different staphylococcal cytotoxins including alpha
hemolysin and leukocidins demonstrating synergistic effects
in the combination with linezolid that allowed a significant
increment in survival rates (81). Among the numerous
staphylococcal toxins, enterotoxin B has been classified as
a class B biological warfare agent. Monoclonal antibodies
to this toxin in combination with vancomycin increased
survival rates and altered cytokine responses, compared with
monotherapy with either monoclonal antibody or vancomycin
alone (82).

Another warfare pathogen for which joint therapy using
antibodies and antibiotics has been proposed is Bacillus
anthracis. The most lethal route of exposure is via inhalation,
and the disease is characterized by extensive bacteremia
and toxemia which, without aggressive prophylaxis or
intervention, results in a high mortality rate mainly due
to anthrax exotoxin-driven pathogenesis. Monoclonal
antibodies to the anthrax toxin protective antigen in
combination with levofloxacin or doxycycline resulted in
increased survival compared to the antibiotic alone and
would provide an effective therapeutic strategy against
symptomatic anthrax, even late in the course of the disease
(83, 84).

Finally, a randomized, double-blind, placebo-controlled
study of two neutralizing, fully human monoclonal antibodies
against Clostridium difficile toxins A (CDA1) and B (CDB1)
demonstrated that the addition of these antibodies to antibiotics
metronidazole or vancomycin, significantly reduced the
recurrence of C. difficile infection (85).

CONCLUDING REMARKS

The use of prophylactic measures including vaccination or
even the use of monoclonal antibodies to treat or prevent
severe infections caused by MDR pathogens is a realistic
approach to fight these infections and reduce the impact
of antimicrobial resistance in respiratory pathogens. The
ability of certain antibiotics of showing an immunomodulatory
effect which is strongly enhanced by the action of the host
immune response is an alternative and promising strategy to
eradicate or at least ameliorate the impact of MDR bacterial
isolates in clinical practice. Further research in this field
will contribute to identify and characterize novel prophylactic
and therapeutic measures that in combination with current
antimicrobial drugs may be effective solutions against the
emergence of MDR pathogens, limiting their impact in public
health.
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