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Immune responses are dependent on the recruitment of leukocytes to the site of

inflammation. The classical leukocyte recruitment cascade, consisting of capture, rolling,

arrest, adhesion, crawling, and transendothelial migration, is thoroughly studied but

mostly in model systems, such as the cremasteric microcirculation. This cascade

paradigm, which is widely accepted, might be applicable to many tissues, however

recruitment mechanisms might substantially vary in different organs. Over the last

decade, several studies shed light on organ-specific mechanisms of leukocyte

recruitment. An improved awareness of this matter opens new therapeutic windows and

allows targeting inflammation in a tissue-specific manner. The aim of this review is to

summarize the current understanding of the leukocyte recruitment in general and how

this varies in different organs. In particular we focus on neutrophils, as these are the

first circulating leukocytes to reach the site of inflammation. Specifically, the recruitment

mechanism in large arteries, as well as vessels in the lungs, liver, and kidney will be

addressed.

Keywords: neutrophil, recruitment, lung, liver, kidney, aorta, inflammation, organ-specific

INTRODUCTION

Inflammation is a tightly regulated process initiated by tissue injury, be that of sterile or pathogenic
origin. To eliminate the pathogenic insult or to remove damaged tissue, a coordinated cascade
of events is rapidly unleashed aimed at restoring tissue homoeostasis (1). The innate immune
system is the first line of host defense and mediates the inflammatory process. The immune
system is activated by damage-associated molecular patterns (DAMPs) discharged from injured
tissue or pathogen-associated molecular patterns (PAMPs) released by invading microorganisms
(2). DAMPs and PAMPs stimulate sentinel cells including mast cells, macrophages, and dendritic
cells resulting in the activation of a cascade of events. One of the first events is the recruitment
of leukocytes, predominantly neutrophils, to the inflamed site. Acute inflammatory responses are
terminated actively, a process known as resolution of inflammation. During resolution, tissue
homeostasis is resorted and progression toward an uncontrolled chronic inflammatory state
prevented (1, 3). The active resolution process is coordinated by the interplay of multiple events,
including inhibition of neutrophil recruitment, promotion of neutrophil apoptosis, macrophage-
mediated apoptotic neutrophil clearance, as well as egress of infiltrated leukocytes from the
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inflamed tissue (1, 4). A failure in cell clearance and egress results
in accumulation of inflammatory cells and might potentially
result in excessive tissue damage and ultimately in chronic
inflammation (1, 5), such as chronic obstructive pulmonary
disease, renal fibrosis, chronic kidney disease, non-alcoholic fatty
liver disease, and cardiovascular diseases.

There has been a substantial public and scientific awareness
in the use of therapeutic agents against chronic inflammatory
diseases. As an example, randomized clinical trials have shown
the beneficial effect of statins, anti-platelet, or anti-hypertensive
compounds for treatment and prevention of cardiovascular
events (6). However, the residual burden of cardiovascular
diseases remains immense. Therefore, during the last 20 years
research focused on the development of anti-inflammatory
strategies to treat atherosclerosis. However, anti-inflammatory
therapies that were reported successful also present considerable
limitations (7). In the case of atherosclerosis, the patients
are often elderly people who frequently cope with additional
inflammatory comorbidities. In such situation, compromising
host defenses might jeopardize the patient.

Interestingly, the neutrophil recruitment mechanism deviates
in different organs. It has been shown that some surface
molecules, which are involved in the recruitment, are tissue-
specific and the lung, liver and kidney show an atypical
recruitment cascade (8). Furthermore, differences are observed
between arterial and venular endothelial sites (9–12), suggesting
the involvement of different mediators of neutrophil recruitment.
In addition, recruitment mechanisms in the same organ can
vary with different inflammatory stimuli (8). Thus, this review
will highlight the available evidence for tissue-specific neutrophil
recruitment in vessels of the cremaster muscle (the model system
to study neutrophil adhesion), the lung, the liver, the kidney,
and the aorta. Furthermore, we will discuss the influence of
endothelial heterogeneity, shear stress, and oxygen tension and
the role of sentinel cells, pericytes and platelets.

THE LEUKOCYTE RECRUITMENT
CASCADE: A PARADIGM ESTABLISHED IN
MODEL SYSTEMS

Research over the last decades has established a uniform
paradigm of leukocyte recruitment into inflamed tissues. The
classical paradigm of leukocyte recruitment and the molecules
herein involved have been established by a combination of in
vitro flow chamber models and in vivo intravital microscopy.
The latter allows direct visualization of the microvasculature
of translucent tissues, including the cremaster muscle. The
optical properties and the relative ease mode of preparation
for microscopy have made the murine cremaster muscle the
backbone for leukocyte recruitment studies worldwide (13).
However, the cremaster muscle is a rather unique organ and
is only fully developed in males. The microvasculature of this
muscle is comprised of arterioles, capillaries and venules. The
arterioles have a diameter of 10–100µm and divide into narrow
capillaries. The exchange of nutrients and gases takes place
in these capillaries, which thereafter drain into post-capillary

venules to return perfusion to the venous circulation (13).
This microvasculature arrangement is common in almost all
tissues, such as intestine, skeletal muscle and skin. In organs
of this nature, interactions of circulating neutrophils with the
endothelial surface almost exclusively take place in the post-
capillary venules. These interactions are predominantly due
to locally-restricted expression of adhesion molecules (14).
Although intravital microscopy studies performed in the murine
cremaster muscle have been indispensable for the development of
the widely accepted rolling-adhesion-transmigration paradigm,
findings made in this tissue cannot be plainly transferred to other
organs.

Classical Leukocyte Recruitment Cascade
The classical cascade of leukocyte recruitment is defined
by the following steps: capture, rolling, arrest, adhesion,
crawling, and transendothelial migration. The primary step
in leukocyte recruitment is to establish adhesive interactions
between neutrophils, and endothelial cells (EC) of inflamed
tissue. Neutrophils circulate passively in the bloodstream and
are swept to the center of the blood vessels by the laminar
blood flow (15). In inflamed post-capillary venules, the rate of
the blood flow is greatly disturbed as a result of local changes
in hemodynamic. The reduced flow increases the chance of
neutrophils to get in contact with the ECs lining of the vessel
and to be primed and become more responsive (15). Neutrophils
circulating in the blood are in a resting state, in which processes
such as transcription, protein, and lipid synthesis, protein
activation do not occur. Their activation is therefore crucial
in the inflammatory response, and this process consists of
multiple steps. Neutrophils become partially activated—a state
also known as primed—when they migrate toward inflammatory
foci. Priming agents, such as cytokines, PAMPs, DAMPs, and
growth factors, as well as interaction with activated EC, awaken
the neutrophil from its latency (16–18). Interestingly, the
neutrophil response to individual chemoattractants varies and
depends on the concentrations and the time of exposure (19–21).
Furthermore, stimulation of the neutrophil by a chemoattractant
often results in endocytosis of the corresponding receptor,
thereby leading to a desensitization of the neutrophil to
repeated stimulation with the same molecule (22, 23). Priming
leads to the activation of a variety of neutrophil responses,
including adhesion, transcription, cytoskeletal reorganization,
expression of receptors and other molecules, metabolic activity,
phagocytosis, and the rate of constitutive apoptosis, hereby
amplifying the inflammatory response (24–27). Neutrophils are
likely exposed to a grade of concentrations of priming agents
as they progress through the multistep process of recruitment,
allowing the cell to acquire functions in an ordered fashion (25).
Full activation seems to be a two-step process, since maximal
neutrophil activation may only occur in cells that have been
primed (28). Upon a secondary stimulus, such as inflammatory
factors, the neutrophil becomes fully active, resulting in ROS
generation, granule release, acquisition of phagocytic capabilities,
and neutrophil extracellular traps (NET) formation (19, 25, 29).

Activation of ECs is a decisive step in the inflammatory
process and can occur in a rapid (within minutes) or slow (within
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hours) manner. The rapid activation is independent of new gene
expression whereas slow EC activation is not (30). Activation,
rapid or slow, is mainly induced by histamine or inflammatory
cytokines, respectively (30), that originate from mast cells and
tissue macrophages—immune sentinel cells. These processes are
further discussed below.

Activation of ECs involves upregulation of P- and E-selectin.
P-selectin can be rapidly translocated fromWeibel-Palade bodies
(endothelium) or α granules (platelets) to the cell membrane
(31). P-selectin is translocated in response to mediators, such
as thrombin, histamine, or activated complement. Contrary,
in most organs, ECs must be stimulated to express E-selectin
(31). Yet on the surfaces of venular hematopoietic tissues, such
as spleen, bone marrow, and cutaneous immunosurveillance
(i.e., skin), E-selectin is constitutively expressed (32–34). This
constitutive expression of E-selectin seems to be important for
homing of hematopoietic stem cells (35).

Neutrophils express L-selectin and other ligands, such as P-
selectin glycoprotein ligand 1 (PSGL-1), CD44, and E-selectin
ligand-1, which bind in high on-and-off-rate to P- and E-selectins
on the ECs (36, 37). This allows the rapid moving neutrophils to
be initially captured from the bloodstream and to bind tentatively
to the endothelium. Due to this binding they can move along
the endothelium, a process called rolling (37). The rolling step
is often reversible, unless followed by endothelial presentation of
chemokines and/or chemoattractants, which activate neutrophil
integrins. Integrins present in neutrophils are: lymphocyte
function-associated antigen-1 (LFA-1) or CD11a/CD18 (present
in all effector leukocytes) and macrophage-1 antigen (Mac-
1) or CD11b/CD18 (present in neutrophils and monocytes)
(38). G protein–coupled receptors on rolling neutrophils bind
chemokines presented on the apical endothelium, leading to
“inside-out” signals that induce conformational changes of
β2-integrins (39), mediating slow rolling (low concentration)
and arrest (high concentration). Chemokines synergize with
selectins to activate β2-integrins when chemokine availability
is limited (40). Engagement of endothelial P- or E-selectin
with neutrophilic PSGL-1 triggers signals that separate LFA-
1 α and β cytoplasmic tails (41), which induces integrin
extension from the bent to an extended intermediate-affinity
conformation (42). Talin-1 is recruited upon parallel Rap1a-
and PIP5Kγ90-dependent pathways activated by selectins and
chemokines (40). The head domain of talin-1 facilitates the
cytoplasmic tail separation (43) and conformational change by
binding to membrane-distal and membrane-proximal sites on
the tail of the β subunit (43–45). A rapid reversible interaction
of LFA-1 with intercellular adhesion molecule-1 (ICAM-1) on
ECs results in slow rolling (46, 47). Binding of endothelium-
presented chemoattractants to their corresponding receptors on
neutrophils triggers signals that convert integrin LFA-1 to an
extended conformation, which mediates neutrophil arrest on
ICAM-1 (46, 48). Kindlin 3 (also known as fermitin family
homolog 3) is a FERM domain-containing protein, which also
binds to the tail of the β subunit. Activation of both talin 1 and
kindlin 3 induces LFA-1 to adopt a high-affinity conformation,
by opening the headpiece of LFA-1, which promotes neutrophil
arrest on the endothelium (49).

Once the neutrophils are stably arrested on the endothelial
surface they flatten, to reduce their surface exposure to the
blood flow, shear force, and collisions with circulating blood
cells. Shear-resistant arrest requires signaling through clustered
E-selectin/L-selectin bonds that result in lymphocyte-specific
protein tyrosine kinase phosphorylation (Lck) and the rapid
activation of β2-integrin to a high-affinity state capable of shear-
resistant bond formation with ICAM-1 (50). Neutrophils then
crawl on the apical surface of the blood vessel until a suitable
extravasation site is signaled. This crawling is guided by gradients
in adhesion receptors, chemokines, and EC stiffness. The apical
neutrophil crawling is particularly mediated by Mac-1 (51).
Chemoattractants induce re-localization of intracellular stored
Mac-1 to the cell surface (52). For neutrophils, ICAM-2 is an
important endothelial ligand for Mac-1-mediated crawling. And
although blocking ICAM-2 function in vivo does not reduce the
number of crawling cells, it results in an increase in the number
of neutrophils with a disrupted stop–and-go crawling profile
(53). Figure 1 summarizes the classical recruitment cascade here
described.

Chemoattractants are key players in the neutrophil
recruitment cascade. These molecules contribute to neutrophil
activation; they are required for firm arrest and they also guide
the neutrophil to the site of inflammation. Neutrophils respond
to chemoattractants in a hierarchical manner. They prefer
“end-target” chemoattractant factors such as bacterial products
and complement components (e.g., N-formyl-methionine-
leucine-phenylalanine (fMLP), C3a and C5a, respectively) over
“intermediate” attractants such as chemotactic stimuli [e.g.,
chemokines (C-X-C motif) ligand 1 (CXCL1), CXCL2, and
leukotriene B4 (LTB4)] (54). Chemotaxis is controlled by the
activation of the PI(3)K and p38 mitogen-activated protein
kinase (MAPK) pathways. Intermediate chemoattractants
activate PI(3)K, while end-target chemoattractants activates
both pathways. The activity of the pathways is pivotal for the
prioritization between opposing signals from end-target and
intermediate chemoattractants (54–57). More recently, in vitro
studies showed fMLP acting as the most potent chemoattractant
followed by interleukin-8 (IL-8) (human), CXCL2, and LTB4
(58). Interestingly, fMLP inhibits C5a-, IL-8- and LTB4-induced
neutrophil chemotaxis and LPS promotes this inhibitory effect
of fMLP via p38 activation. Although C5a was also recognized
as an end-target chemoattractant (59), fMLP was found to be
more attractive for neutrophils. As depicted above different
inflammatory stimuli influence the activation of the signaling
pathways.

Generally, neutrophils transmigrate via endothelial junctions
(paracellular route, ∼90%) rather than directly through the
EC (transcellular diapedesis, ∼10%) (60). It is therefore no
surprise that neutrophils stop for a prolonged time at EC
junctions (53). Interestingly, blocking Mac-1 increases the
number of neutrophils that stop crawling impulsively and
favors transcellular over paracellular migration (51). Two key
structures involved in paracellular migration are the adherens
junctions and the tight junctions. The adherens junctions
contain the vascular endothelial (VE)-cadherin and the tight
junctions consist of junctional adhesion molecules A-C (JAM-A,

Frontiers in Immunology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 2739

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Maas et al. Organ-Specific Transendothelial Neutrophil Migration

FIGURE 1 | Neutrophil recruitment in the post-capillary venules of the cremaster muscle. (1) Neutrophils are primed upon exposure to inflammatory agents, such as

cytokines (e.g., TNF) and DAMPs (fMLP) or PAMPs (LPS), in the context of sterile or non-sterile inflammation, respectively, or interaction with activated ECs. (2)

Neutrophil capture is mediated by P- and E- selectin, (3) followed by rolling, which is also largely regulated via selectin signaling. (4) Subsequently, neutrophils firmly

adhere to ECs. This step is dependent on integrin (LFA-1 and Mac-1) activation, which is mediated by GPCRs interacting with chemokines presented on the

endothelium. (5) Neutrophils then crawl along the endothelium, via ICAM-1 and ICAM-2 interactions with Mac-1 and LFA-1, until they reach their site of TEM. EC,

Endothelial cell; fMLP, N-formyl peptides; GPCR, G protein-coupled receptor; ICAM, Intracellular adhesion molecule; LFA-1, Lymphocyte function-associated

antigen-1; LPS, Lipopolysaccharide; Mac-1, Macrophage-1 antigen; PSGL-1, P-selectin glycoprotein ligand-1; TEM, Transendothelial migration; TNF, Tumor-necrosis

factor.

JAM-B, JAM-C), EC-selective adhesion molecule, and claudins.
Paracellular migration is accompanied by the disruption of
the EC adherens and tight junctions to form a gap, through
which cells migrate. Opening of the adherens junction involves
dissociation of vascular endothelial protein tyrosine phosphate
(VE-PTP) and VE-cadherin. Dissociation is induced by binding
of neutrophils as well as lymphocytes to ECs (61). ICAM-
1 engagement with neutrophilic LFA-1 leads to the activation
of proline-rich tyrosine kinases (Pyk2) and Src kinases (62,
63). These kinases induce phosphorylate of VE-cadherin at
its cytoplasmic tail. Two key tyrosine residues, Tyr731 and
Tyr658, present on this tail have been implicated in this
process. Phosphorylation of VE-cadherin, due to internalization
and often degradation of VE-cadherin (64), promotes junction
opening resulting in an increased vascular permeability and
transendothelial migration (TEM) (65). Several permeability-
inducing mediators, such as vascular endothelial growth factor
(VEGF), histamine and tumor-necrosis factor (TNF), have
also been found to induce tyrosine phosphorylation of VE-
cadherin (66–68). Alternatively, stimuli of endothelial origin
can act on junctional proteins, leading to localized, and
transient junctional disassembly. This is accompanied by the
reorganization of an adhesive platform and the recycling of
adhesive proteins, including platelet endothelial cell adhesion
molecule (PECAM-1, also known as CD31), via the lateral border
recycling compartment (LBRC). LBRC vesicles are mobilized
to the junctional plasma membrane of ECs upon diapedesis of
leukocytes, resulting in increased membrane surface area at such

sites. Homotypic PECAM-1 interactions and CD99 initiate LBRC
vesicle mobilization (69, 70).

The majority of the leukocytes that undergo paracellular TEM
go through the EC junctions in a luminal to abluminal direction.
However, a smaller proportion of transmigrating neutrophils
exhibited reverse TEM. During reverse TEM leukocytes migrate
through EC junctions in opposite direction, disengage from
the junction, and crawl across the luminal surface of the
endothelium away from the junction. Although reported for
other leukocytes, neutrophil reverse TEM is a contentious
subject. However, studies in zebrafish (71, 72) and cultured
human ECs (73) showed evidence of reverse neutrophil TEM.
More recently, it has been shown that under certain conditions
neutrophils do not go into apoptosis after having performed
their key repair functions. The neutrophils can transmigrate
back into the vascular system and relocate to the lung, where
they seem to be reprogrammed or deactivated, and eventually
migrate back to the bone marrow. The neutrophil transmigration
is potentially assisted by chemokinesis and also might be
mediated by proteases (74). Furthermore, neutrophil reverse
transmigration has been observed to be enhanced upon loss of
JAM-C expression or function (60). In venules of the cremaster
muscle, LTB4 can trigger neutrophils to release elastase, which
causes degradation of JAM-C, a response that seems to drive
reverse transmigration (75). Other factors that are suggested
to mediate neutrophil reverse migration include chemokines,
hypoxia inducible factor, and reactive oxygen species (ROS)
(76–78).
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For the final stage of TEM, transient receptor potential
cation channel, subfamily C, member 6 (TRPC6), a calcium
(Ca)2+ channel, is recruited to the endothelial surface, resulting
in increased levels of intracellular Ca2+ (79, 80). Increased
intracellular Ca2+ triggers actomyosin contractility by myosin
light chain kinase and contributes to active opening of junctions
via Ras homolog gene family, member A (RhoA), a RhoGTPase
(81). RhoA activity is the highest during the final stage
of extravasation, and mediates endothelial filamentous actin
remodeling to form ring structures around transmigrating
neutrophils, preventing vascular leakage during neutrophil
diapedesis and promoting pore closure and transmigration (82).

Several factors have been shown to favor transcellular
migration, including the stiffness of ECs or the density of
integrin ligands at the apical endothelial surface (83, 84).
Surprisingly, the adhesive molecules and mechanisms that guide
transcellular migration are very similar to those controlling
junctional migration. An exception is VE-cadherin, which is
only inactivated in paracellular TEM. Whereas, paracellular
migration is always preceded by ICAM-dependent lateral
neutrophil crawling onto the endothelial surface, scanning
for an extravasation site (51, 53), ICAM-1 is also involved
in transcellular TEM. Next to ICAM-1 surface density and
distribution, EC shape contributed to transcellular migration
(84). Mac-1-deficiency in mice showed delayed paracellular
migration and favored transcellular migration (51). Other
important structures for this type ofmigration are transmigratory
cups, rich in ICAM-1, and docking structures (85). Furthermore,
LBRC are recruited to sites of neutrophils-EC contact, carrying
PECAM-1, CD99, and JAM-A (86). Transcellular migration was
found to be dependent on PECAM and CD99, since antibodies
blocking these two molecules resulted in arrest of this type of
migration (86). Hence, although EC junctions remain intact,
junctional molecules are required for TEM.

Once the neutrophil has passed across the endothelial barrier,
it needs to cross the subendothelial basal lamina as well as the
surrounding interstitial tissue to reach the site of inflammation.
This process is generally more time consuming than the TEM
(60). Neutrophils move between the abluminal surface of the
ECs and the basal lamina searching for areas that are deposited
with a low density of collagen IV, and laminin. Indeed this is
the path of least resistance and it also minimizes the amount of
proteolysis necessary to reach the site of injury. Generally, these
areas contain a gap in pericyte coverage allowing the neutrophils
to easily exit the interstitium (87). Upon inflammation, pericytes
are stimulated to produce and release macrophage migration-
inhibitory factor in the interstitium, assisting neutrophils in their
migration. In particular, a murine model of sterile inflammation
showed that DAMPs, and PAMPs stimulated NG2+ pericytes
to produce macrophage migration-inhibitory factor (88). As a
consequence neutrophils interacted extensively with these cells
and migration was facilitated by the interaction between ICAM-1
(expressed by pericytes) and leukocytic LFA-1 and Mac-1 (89).

The general concept of the classical leukocyte recruitment
cascade is not ubiquitous. The expression of molecules
facilitating different stages of cell recruitment seems, to a large
extent, dependent on the leukocyte subtype and the nature

of the inflammation, such as inflammatory stimuli, the organ
of interest and the genetic background of the animal models,
reviewed by Ley et al. (46), Muller et al. (90), Nourshargh et al.
(91), Voisin et al. (92), Vestweber et al. (93). In addition, EC
phenotype, morphology, and junctional composition can vary
between different vascular beds. These differences can impact
on the dynamics and profile of vascular permeability and the
interaction between neutrophils and ECs (13). Furthermore, the
classical leukocyte recruitment paradigm is mainly established
in the microcirculation of the cremaster muscle, which is only
present in men, hence gender aspects are not taken into account.

THE ROLE OF TISSUE-RESIDENT CELLS
AND PHYSICAL PROPERTIES ON
NEUTROPHIL RECRUITMENT

In addition to what was supra described a variety of tissue-
resident cells such as mast cells, macrophages and pericytes as
well as platelets and physical properties including endothelial
heterogeneity, shear stress and oxygen tension influences
neutrophil recruitment. These determinants will be addressed in
more detail below.

Endothelial Heterogeneity
The EC lining shows remarkable heterogeneity. This
heterogeneity can be observed on different levels, such as
morphology, function, gene, and antigen expression. Endothelial
phenotype can differ among organs and is dependent on health
and disease conditions (94). EC heterogeneity can also be
observed within one organ (95–97), such as the kidney, where
three different vascular beds serve different functions in the
filtration of the blood. Phenotypic EC heterogeneity is further
supported by proteomic studies [reviewed by Ruoslahti and
Rajotte (98), Simonson and Schnitzer (99)]. Interestingly, this
EC property can be exploited for therapeutic applications, by
means of targeted delivery (100, 101).

The vessels are lined by a monolayer of ECs. The structural
lining of ECs varies among vessel types. The endothelial lining
in arteries and veins is continuous, uninterrupted, with each EC
interacting with the next by tight junctions. Arterial ECs are
generally thicker compared to ECs in veins, with the exception
of those in high endothelial venules. Arterial ECs also are
long and narrow or ellipsoidal, a reflection of their alignment
in the direction of undisturbed flow, while venous ECs are
short and wide. In capillaries the endothelium can be classified
into three groups: continuous, fenestrated, or discontinuous.
Organs involved in filtration and secretion have a fenestrated
endothelium. These organs include endocrine and exocrine
glands, gastric and intestinal mucosa, choroid plexus, glomeruli,
and a subpopulation of renal tubules. Discontinuous and
fenestrated endothelium share several similarities. However, the
fenestrae in discontinuous endothelium have a larger diameter
(200 nm compared to 70 nm) and lack a diaphragm (102). In
addition, the basement membrane underlying discontinuous ECs
is less dense. This type of endothelium can be observed in
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sinusoidal vascular beds, as for instance in the liver, and facilitates
cell migration and sensing.

ECs also show a significant heterogeneity in function,
including basal and inducible permeability and leukocyte
recruitment. Differences in permeability are observed between
capillaries and post-capillary vessels. In capillaries water,
small solutes and lipid-soluble materials can freely cross the
endothelium, albeit the rates may differ among vascular bed.
Whereas, post-capillary venules are generally impermeable:
permeability is either damage-associated or requires active
transportation. Larger molecules pass the barrier via transcytosis,
which is regulated by specific transporters such as vesiculo–
vacuolar organelles and caveolae. This difference in permeability
is supported by the higher abundance of vesiculo-vacuolar
organelle in post-capillary venules and the relative paucity of
tight junctions. Likely this relative paucity of tight junctions
supports leukocyte recruitment, underscoring the role of
endothelial heterogeneity in this process. Also glycosylation
of adhesion molecule might vary among vascular beds and
hereby be a critical element in the understanding of the role
of endothelial heterogeneity in leukocyte recruitment. As an
example during inflammatory stress, N-glycosylation of adhesion
molecules may be under distinct, and up to date, unknown
modes of regulation, affecting the inflammatory response in a
vascular bed- and disease-specific manner (103). The spatial
and temporal differences in morphology and function of ECs
are the result of microenvironmental as well as epigenetic
influences, which mediate EC gene, messenger RNA (mRNA)
and protein expression (94). The microenvironment is mediating
non-heritable changes in EC phenotype. These changes have
their origin in receptor-mediated posttranslational modification
of protein and transcription factor–dependent induction of
gene expression. Epigenetics mediate heritable changes in EC
phenotype, via DNA methylation, histone methylation, and/or
histone acetylation. In turn, these changes negatively or positively
influence gene expression. Although epigenetic modifications are
triggered by extracellular signals and are dynamically regulated,
they might persist after removal of these external cues, and are
transmitted during mitosis (104).

Genes can be characterized as constitutively expressed or
inducible, grouped as endothelial-specific or unspecific, and their
expression regarded throughout the endothelium or only in
specific EC subsets (105). Remarkably there are few endothelial-
specific genes constitutively expressed across the vascular tree,
two of these genes are VE-cadherin and Robo4. There is a
bigger variety of endothelial-specific genes whose expression,
constitutive and/or inducible, is limited to an EC subset.

RNA sequencing of organ-specific vascular beds revealed a
distinct expression pattern of gene clusters, both in human
and mice. Regarding human samples, Marcu et al. isolated
human ECs three months after gestation from four different
organs, and observed an expression pattern supporting organ-
specific development. Additionally, distinct barrier properties,
angiogenic potential and metabolic rate among organs seems to
support organ-specific functions (106). In adult mice, where ECs
were labeled in vivo and thereafter isolated, Nolan et al. identified
distinct gene clusters of transcription factors, angiocrine factors,

adhesion molecules, metabolic profiles, and surface receptors
expressed on the microvascular ECs of nine organs at steady
state or during regeneration (107). Although the two reports
analyze tissues at different stages of differentiation and assess
in general distinct genes and functions, both studies support
endothelial heterogeneity, at genetic level, and a function hereof
associated to. However, unfortunately none of the articles relates
their findings to leukocyte recruitment. It would be interesting
to study their organ-specific gene profile in relation to potential
organ-specific adhesion protein expression.

The majority of the studies focus on the influence of EC
origin and differentiation on heterogeneity. The relation between
endothelial heterogeneity and leukocyte recruitment is especially
studied in cancer tissues. As a future perspective, protein
expression of adhesion molecules on the endothelial lining of
different organs in homeostatic and inflammatory conditions
could be compared, to establish a better understanding of
neutrophil recruitment into the tissues in health and disease
and have to possibility to generate tissue-specific therapeutic
strategies.

Mast Cells and Perivascular Macrophages:
Sentinels Initiating Neutrophil Recruitment
Mast cells are tissue-resident immune sentinels that reside in
most peripheral tissues. They typically reside in perivascular
locations and have been implicated in sensing of sterile damage
and microbial invasion. Damage is sensed by pattern recognition
receptors, such as TLR or IL-1 receptor-like 1, respectively (108,
109). Mast cells are granule rich cells that store a multitude
of vasoactive (e.g., histamine, prostaglandins, leukotrienes, and
thromboxanes) and inflammatory mediators (e.g., cytokines,
myeloid-attracting chemokines), which are critical for triggering
the onset of acute as well as chronic inflammatory reactions
(110, 111). Mast cell secretion is induced by a variety of stress
signals, including tissue damage, microbial products and the
binding of allergen-coated cross-linked immunoglobulin E to
their Fc receptors (112). Upon inflammation, mast cells undergo
immediate degranulation and slowly release newly synthesized
vasoactive and angiogenic compounds, pro-inflammatory and
nociceptive mediators (113). To illustrate, degranulation leads to
histamine and sphingolipid-1-phosphate release, which through
the histamine 1 and sphingolipid-1-phosphate receptor 3 results
in the capacity to mobilize P-selectin from the Weibel-Palade
Bodies to the luminal endothelial surface (114). Histamine also
induces tyrosine phosphorylation of endothelial VE-cadherin,
resulting in increased of vascular permeability (67).

Perivascular macrophages (PVM) are dendritic-shaped
macrophages in close proximity to the blood vessel wall. Where
present, PVM discontinuously cover post-capillary venules
in close association with pericytes, where they reside outside
the basement membrane. PVM themselves do not directly
contact ECs and are not migratory, however, they influence
the neutrophil recruitment by secreting neutrophil-attracting
CXCL1, CXCL2 and chemokine (C-C motif) ligand 3 (CCL3)
(115). Interestingly, in 80% of the cases, intraluminally crawling
neutrophils extravagate in areas in close proximity to PVMs
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(115). In the absence of PVMs, firm adherence and TEM are
markedly reduced. Moreover, the discontinuous association
pattern of PVMs with basement membrane is consistent with
the patchy arrest of neutrophils to the post-capillary venule
wall. These observations strongly support the existence of “hot
spots” with increased chemokine deposition (115), although such
hotspots can also occur due to other circumstances, including
pericyte gaps (89), the presence of tricellular junctions (116),
or regions of low basement-membrane protein expression (87).
Nevertheless, as supra described, a number of observations
underscores the enrolment of PVMs in neutrophil extravasation.

Pericytes: Assistants of Paracellular
Migration
The venular wall is composed of two cellular components,
ECs and pericytes, and a noncellular matrix protein structure
called the vascular basement membrane. Pericytes are essential
components of the vessel wall and occupy a strategic position,
since they are wrapped around ECs, and are the interface between
the circulating blood and the interstitial space. Pericytes are
long cells (∼70µm in length) (117), and a single pericyte can
cover multiple ECs. Between 10 and 50% of the abluminal side
of the blood vessel is covered by pericytes (91). Pericytes are
responsible for communication of signals between multiple cells,
for providing nutrients and regulating the transit of circulating
immune cells into underlying tissues. Of relevance to neutrophil
recruitment, these cells express toll-like and cytokine receptors
and release chemokines and cytokines in response to stimulation
(88, 89). In the microvascular bed, different populations of
pericytes can be discriminated: neural/glial antigen 2 (NG2)−α-
smooth muscle actin (SMA)+pericytes have been located along
post-capillary venules and NG2+α-SMA+ pericytes are found
along arterioles and capillaries (118). In the cremaster muscle,
movement of neutrophils across the basement membrane is
regulated by post-capillary NG2− (88, 89).

In the abluminal space, neutrophils crawl along pericytes to
reach gaps between adjacent pericytes. These gaps colocalize
with regions within the venular basement membrane, which
contain lower levels of certain basement membrane constituents,
such as laminin-8, laminin-10, and collagen type IV. These
sites are known as low expression regions (LERs) and are the
preferred regions for neutrophils to transmigrate (119, 120).
After neutrophil transmigration, these gaps enlarge in size
although not in number (119), a phenomenon not observed
in monocyte transmigration (120). Interestingly, neutrophils
follow other neutrophils and the following neutrophil exhibites
markedly reduced meandering. There extremely coordinated
chemotaxis and cluster formation is reminiscent of the swarming
behavior of insects. Multiple neutrophils exit the venular wall
through the same LER gap. Mechanisms that potentially facilitate
migration of the follower-cells include the release of leukotriene
B4 and other chemoattractants, from the leading neutrophil
(45), and the remodeling the venular basement membrane in a
protease-dependent manner (89, 121).

TEM of neutrophils occurs rather fast (∼4–6min) (60),
while crawling in the layer between the ECs and pericytes,

the abluminal space, takes considerably more time (∼15–
20min) (122). Abluminal crawling appeared to be supported by
pericyte-expressed ICAM-1 and integrins Mac-1 and LFA-1 (89).
Furthermore, enhanced levels of ICAM-1 and the chemokine
CXCL1 were observed on ECs and pericytes after TNF-
stimulation as compared with non-stimulated tissues. These
results indicate that, neutrophil crawling on pericytes is driven by
pericyte-expressed ICAM-1 and chemokine release (89). Other
pericyte-associated adhesion molecules might also contribute to
crawling on the abluminal surface, since inhibition of ICAM-1
only partially reduced the neutrophil crawling (89).

Several studies have shown, in vitro, that pericytes are
contractile cells and they have the ability to change shape
after stimulation with vasoactive mediators, such as histamine
(123, 124). These observations might provide an explanation
for the increase in gaps between adjacent pericytes seen in
the cremaster muscle upon TNF and IL-1β stimulation (89).
The signaling pathway regulating pericyte shape change is still
unclear, however, both TNF and IL-1β are known to activate
small GTPases that play a key role in actin cytoskeleton
rearrangement (125), providing a plausible explanation to the
increased gap size.

In conclusion, pericytes were until relatively recent under-
appreciated and their function down-played. However, the
observations discussed above strongly support a role for these
cells in assisting the arrival of neutrophils to the site of
inflammation.

Shear Stress: When Less Is More
ECs are constantly exposed to vascular forces, such as shear stress,
a frictional force exerted by blood flow. The flow patterns differ
based on vessel type and geometry. These patterns range from
uniform undisturbed laminar flow to disturbed oscillatory flow.
ECs are able to sense and differentially respond to these flow
patterns, that create a restricted and unique microenvironment
(126).

Laminar flow is observed where geometry of the vessel is
straight and uniform. Responses to laminar flow include EC
alignment in the direction of flow, low EC proliferation, the
formation of stress fibers, and upregulation of transcription
factors—all contributing to anti-inflammatory gene expression
(126). The transcription factors nuclear factor erythroid 2-like
2 (NRF2) and the flow-dependent transcription factor Krüppel-
like factor 2 (KLF2) are activated via mitogen-activated protein
(MAP) kinase/extracellular-signal-regulated (ERK) kinase and
PI(3)K/Protein kinase B (PKB) signaling pathways and maintain
endothelial phenotype (127, 128) and metabolic state (129). They
inhibit nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) and activator protein-1, contributing to a quiescent
state of the ECs (130).

Disturbed flow primarilymanifests in bifurcations or curves of
the vessel. This type of flow is characterized by low and oscillatory
flow patterns. Under disturbed blood flow, ECs sense different
blood flow directions, cells do not align so tightly (131, 132), ECs
are more proliferative (133) and produce more ROS compared
to those cells in areas of laminar flow (126). This activation of
ECs is accompanied by pro-inflammatory properties, including

Frontiers in Immunology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 2739

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Maas et al. Organ-Specific Transendothelial Neutrophil Migration

the activation of transcription factor NF-κB (126). NF-κB is
stimulated through the activation of a mechanosensory complex,
consisting of VEGF receptor 2, PECAM-1 and VE-cadherin,
extracellular matrix, and integrins (134). Under disturbed flow
conditions, ROS production by the endothelium occurs via
Rac-1-mediated p67phox NOX2 activation (135). Increased
expression of NADPH oxidase 2 leads to an increased expression
of VCAM-1 (136). Furthermore, ROS degrades NF-κB inhibitor,
IκB kinase, and translocates activated NF-κB to the nucleus,
hereby aiding to the increased transcription of cell adhesion
molecules including ICAM-1 and VCAM-1 (137).

The glycocalyx, consisting of a mixture of glycoproteins,
hyaluronin, and proteoglycans, also plays an important role
in the mechanosensing process. Mechanical forces acting on
ECs are primarily transmitted to the glycocalyx layer. The
glycocalyx is thereby reducing the shear gradients that the
cell surface experiences. However, disrupted flow impairs the
glycocalyx layer properties contributing to the increased ability of
neutrophils to adhere to ECs and inducing an unstable pattern of
flow forces gradients acting on the endothelial surface (138, 139).

Once the neutrophils adhere to the endothelium, adhesion
forces are generated, mainly by leukocytic ligands binding to
ICAM-1 and VCAM-1 expressed on inflamed endothelium.
This interaction is able to resist the convective hemodynamic
forces imparted by flowing blood. Neutrophils show a rolling
behavior, when forces are almost balanced. This balance is a main
determinant of cell rolling velocity (140, 141).

Platelets: Small but Mighty Players in
Neutrophil Recruitment
Interactions of platelets with neutrophils as well as with ECs
are important mediators of the inflammatory response (142–
144). Platelets express adhesion molecules and can therefore
bind to the endothelium as well as neutrophils. The most
abundant adhesion molecule expressed on platelets is the αIIbβ3
integrin (145, 146). This integrin can bind fibrinogen, which
is able to bind the neutrophilic Mac-1, thereby facilitating the
formation of neutrophil-platelet complexes or aggregates (147,
148). Such complex formation also takes place upon interaction
of neutrophilic Mac-1 with glycoprotein Ib on platelets (149),
complemented by the interaction of neutrophil LFA-1 with
platelet ICAM-2 (150) or JAM-A (151). Aggregate formation can
also be mediated by the interaction between platelets CD40 and
neutrophil CD40L. This is a two-way interaction, which results
in the activation of both cells (152). Heterotypic neutrophil-
platelet interactions are also supported by selectins. In this
case, upon platelet activation, P-selectin is incorporated into the
plasma membrane, and is then available to bind PSGL-1 present
on neutrophils (48). Since platelets can bind ECs as well as
neutrophils, platelet-neutrophil aggregates can be recruited to
activated endothelium (153).

Activated platelets can also directly simulate neutrophils by
releasing a variety of growth factors, chemokines and cytokines
into their microenvironment (154). These stimuli support
apoptosis and NET formation as well as leukocyte recruitment
(155–157). Platelets can further influence recruitment by altering

the adhesive, chemotactic and proteolytic properties of ECs (158,
159).

Apart from their role in neutrophil recruitment, platelets
can also be involved in maintaining the integrity of the
vascular endothelium. In particular, they are able to influence
vascular permeability and thus indirectly modulate neutrophil
recruitment (160, 161).

Low Oxygen Tension: An Intrinsic Relation
With Inflammation
Inflammation is a metabolically costly process and oxygen
demands exceed its supply. Neutrophils are in particular
relevant to the concept of “inflammatory hypoxia.” Neutrophilic
functions like release of ROS, granule proteins and NETs locally
deplete molecular oxygen, consequently creating a hypoxic
microenvironment sensed by neighboring cells (162).

The master regulator of oxygen homeostasis is hypoxia
inducible factor-1 (HIF-1), a transcription factor turned on in
response to hypoxia. HIF has emerged as a major player in
neutrophil function and survival. Under normal conditions, HIF-
1α is hydroxylated by oxygen-sensing prolyl hydroxylase domain
enzymes (PHD1, −2, and −3) (163), followed by ubiquitination
and proteasomal degradation. HIF-1α activity is also mediated
by factor inhibiting HIF, since it is able to fine tune HIF
activity by asparagine hydroxylation (164). However, during
hypoxic conditions, PHDs and factor inhibiting HIF are inactive,
allowing HIF-1α to stabilize and translocate to the nucleus,
where it dimerizes with HIF-1β. Dimerization, results in the
formation of a functional active transcriptional complex, which
transcribes genes involved in angiogenesis, glycolysis, and cell
migration (163). Regarding cell migration, HIF-1α acts as a
transcriptional regulator of the β2-integrin beta subunit, hence,
affecting the neutrophil process of migration (165). HIF also
regulates neutrophil responses to proinflammatory stimuli (166,
167), mediates their phagocytic ability, regulates adaptation of
neutrophils to hypoxia and influences neutrophil lifespan by
delaying apoptosis (168). However, by delaying cell apoptosis
HIF is also adjourning resolution of inflammation by propagating
effete neutrophils (169). For this reason, in order to prevent
chronic inflammation and limit tissue damage, there must be a
balance between the fully competent neutrophils at the onset of
the inflammation and the removal of damaged cells (170).

Altogether, these observations underscore an essential role of
HIF-1 in the function, survival and recruitment of the neutrophil
cell under inflammatory conditions.

NEUTROPHIL RECRUITMENT IN
DIFFERENT ORGANS

Mechanisms described above can vary among organs. For
example, the vasculature of the lung, liver, kidney, and the
aorta are characterized by structural specializations, which are
required for their functions. Therefore, it comes as no surprise
that neutrophil recruitment might differ within these organs.
Lungs, kidneys, the liver and the aorta play an important role in
frailty in older adults. Developing interventions to prevent frailty
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in older adults is a priority in aging societies as it increases the risk
for disability, hospitalization and mortality (171, 172). A better
understanding of distinct mechanisms of neutrophil recruitment
in different organs would set a basis for tailored intervention in
the future, without compromising host defenses. In the following
sections we will describe organ-specific neutrophil recruitment
and a summary of different molecules involved in the different
stages of neutrophil recruitment in several organs can be found
in Table 1.

How Neutrophils Travel on Air
The lung is characterized by a unique anatomical architecture,
intrinsic to its vital function as oxygen provider. The vasculature
is highly branched compared to peripheral circulation. The lung
has a dual circulation: the bronchial vasculature, with high-
pressure, low-volume, which delivers oxygen to the bronchial
tree; and the pulmonary vasculature, with low-pressure, high-
volume, which is involved in gas exchange (201). Both vascular
beds are composed of a continuous layer of ECs. Most of the
leukocyte migration takes place in pulmonary capillaries, as
compared with their bronchial analogs. A possible explanation
relies on the increased blood pressure in the bronchial circulation
and/or the wider diameter of bronchial capillaries (202). In the
bronchial circulation recruitment takes place in the post-capillary
venules, whereas in the pulmonary circulation in the capillaries.
Air-filled alveoli are separated from the extensive pulmonary
microvasculature system by a thin interstitial tissue membrane,
the alveolar space (202). Furthermore, they possess an unusually
high number of caveolae, which are membrane structures that
have important roles in cell signaling and transcellular transport
(13).

The lung constantly samples the air we breathe. It oxygenates
the blood by taking up oxygen and releasing carbon dioxide
(201). The lungs are supporting the entire cardiac output,
however, the blood flow velocity in the capillary network of the
lung is relatively low. Interestingly, the diameter of the capillaries
(ranging from 2 to 14µm) is smaller than that of the neutrophilic
cell (13.7µm) (203). For this reason, these cells do not roll,
as in post-capillary venules, instead they are forced to change
their shape to progress in the capillaries and find a suitable
transmigration site (204). This phenomenon might be supported
by the low blood flow.

Unlike the majority of organs, the lungs possess a neutrophil
reservoir, often termed “marginated pool,” that are readily
recruitable and in dynamic equilibrium with those in local
circulation (205). This TLR4-Myd88-and abl tyrosine kinase-
dependent niche can provide immediate CD11b-dependent
neutrophil responses to Lipopolysaccharide (LPS) and Gram-
negative bloodstream pathogens, clearing the inflammatory
insult (206). The need for such reservoir might be closely
related to the proximity and exposure of the lungs to pathogens,
allergens, irritants and toxins, which make the lung vulnerable to
inflammation (207).

The first-line of defense is provided by tissue resident
alveolar macrophages, that phagocyte and eliminate pathogens
without directly initiating leukocyte recruitment (208, 209).
Macrophages, together with ECs and epithelial cells, secrete

chemokines, cytokines and other inflammatory mediators, which
promote local inflammation and neutrophil accumulation.
Alveolar macrophages can also aid neutrophil transmigration.
In a murine model of sepsis, alveolar macrophages increased
neutrophil TEM by producing platelet-activating factor and
hydrogen peroxide, which led to endothelial superoxide
production and consequent oxidant EC stress (210). Neutrophils
provide the second-line defense. Upon inflammation,
neutrophils migrate out of the pulmonary capillaries and
infiltrate the air spaces (209, 211).

Neutrophil recruitment to the pulmonary microvasculature
does not follow the conventional paradigm (Figure 2).
Mechanical trapping of neutrophils was proposed to contribute
to neutrophil extravasation and naturally obviates the need for
rolling on the endothelium (212). Nevertheless, the involvement
of selectins and integrins in neutrophil recruitment seems to
be dependent on the experimental model of lung inflammation
(8). Neutrophil recruitment under Streptococcus pneumoniae-
induced lung inflammation is independent of E- and P-selectin
(174). On the other hand, neutrophil recruitment in the lung
in LPS treated mice was dependent on E- and L-selectin.
Additionally, PSGL-1 and platelets played a role in their
recruitment (180). A different selectin dependent neutrophil
recruitment pattern was observed in lung injury following
systematic activation of the complement system (L- and P-
selectin dependent) and an IgG immune complex model of
lung injury (E-, L-, and P-selectin dependent) (175). Similar
to selectins, the role of integrins on neutrophil recruitment in
experimental lung inflammation varies and depends on the
type of inflammatory stimuli. Neutrophil migration can occur
in a β2-integrin dependent way when lung inflammation is
induced by Streptococcus pneumoniae, hydrochloric acid, C5a
complement fragments (176) or LPS (177). Integrin independent
neutrophil recruitment takes place upon lung injury following
administration of Escherichia coli, Pseudomonas aeruginosa,
phorbol ester, IgG immune complexes or IL-1 (176).

Once the neutrophils are sequestered, both L-selectin and
LFA-1 are critical to keep these cells within the capillary bed
for more than 4–7min (178, 179). Neutrophil adhesion in the
lung seems to be influenced by connexin 43 (181) and the
glycoprotein, gp130. Gp130 is a subunit of the IL-6 receptor
family. Loss of endothelial gp130 in mice results in upregulation
of CXCL1 at endothelial junctions of the microvascular cells.
Neutrophils from these mice show impaired adhesion most likely
by disrupting chemotactic gradients (213).

Neutrophil recruitment in the lungs is also assisted by
monocytes. Blood monocytes often colocalize in vessels near
sites of neutrophil extravasation and reports support a role
for these cells in neutrophil recruitment. As an example,
CCR2+ circulating monocytes were shown to be essential
for neutrophil recruitment (214). And in agreement with
these observations, clodronate-liposome-mediated depletion of
monocytes dramatically impaired neutrophil transendothelial
migration (211).

Platelets are tightly associated with lung injury. They
increase vascular permeability and neutrophil activation, NET
formation and migration, due to platelet-derived CCL5-CXCL4
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FIGURE 2 | Neutrophil recruitment in the lung. Unlike most organs, in the lung neutrophils are sequestered in the capillaries, instead of post-venules. (1a) In the

capillaries, neutrophils are activated by platelets releasing chemokines and the recruitment is promoted by endothelial stress. Due to the diameter of the capillaries,

neutrophils are subjected to mechanical entrapment and the involvement of selectins for the recruitment process is not always occurring. The involvement of selectins

and integrins is dependent on the inflammatory stimulus. (2a) For LPS-treated mice neutrophil recruitment is selectin and integrin dependent. Integrin activation occurs

as described in the classical recruitment cascade. (1b) However, in mice treated with S. pneumoniae neutrophil recruitment was shown to be selectin independent.

And recruitment was described as integrin-independent in mice administered with E. coli. In any case, L-selectin and LFA-1 can keep neutrophils within the capillary

for several minutes, supporting the cell transmigration. (3) Neutrophil recruitment proceeds with transmigration to the interstitium or to the alveolar space. (4) In the

alveolar space, alveolar macrophages and EpiCs are essential for guiding the neutrophil by the secretion of inflammatory mediators (e.g., cytokines and chemokine’s).

E. coli, Escherichia coli; EC, Endothelial cell; EpiC, Epithelial cell; GPCR, G protein-coupled receptor; ICAM, Intracellular adhesion molecule; LFA-1, Lymphocyte

function-associated antigen 1; LPS, Lipopolysaccharide; Mac-1, Macrophage-1 antigen; PSGL-1, P-selectin glycoprotein ligand-1; S pneumoniae, Streptococcus

pneumoniae.

Frontiers in Immunology | www.frontiersin.org 11 November 2018 | Volume 9 | Article 2739

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Maas et al. Organ-Specific Transendothelial Neutrophil Migration

(RANTES-Platelet Factor 4) chemokine heteromers (215).
Furthermore, TLR4+platelets can detect TLR4 ligands in blood
and induce platelet binding to adherent neutrophils, resulting in
neutrophil activation and the formation of NETs (216).

How Neutrophils Navigate in the Liver
Similar to the lung, the liver also has as dual blood supply. The
arterial system, via the hepatic artery, provides the liver with
well-oxygenated blood and delivers approximately one-third of
the blood supply to this organ. The portal system, via the portal
vein, delivers blood from several abdominal locations to the liver.
This blood represents two-thirds of the blood supply that is
nutrient-rich, lipid droplet-rich and poorly oxygenated. Both the
hepatic artery and portal vein drain into capillary-like hepatic
sinusoids. Eventually, the blood flows into the terminal hepatic
(post-sinusoidal) venules, continues through the hepatic vein and
thereafter the inferior vena cava, that supplies the heart’s right
atrium (201).

Under homeostatic conditions granulocytic cells, such as
neutrophils, are largely absent in the liver. However, the
neutrophil population can be rapidly increased in response
to a pathogenic (217) or sterile stimulus (218). Numerous
infectious pathologies as well as sterile insults affect the liver by
causing tissue injury (182). Interestingly, Wang et al. observed
the beneficial effect of neutrophils on the healing of a sterile
thermal hepatic injury. Neutrophils penetrate the injury site
and dismantle injured vessels and create channels for vascular
regrowth. Upon completion of their task, they neither die nor are
phagocytized. Instead, many of these neutrophils undergo reverse
transmigration and travel to the lung where they regain CXCR4,
followed by re-entering the bone marrow where they undergo
apoptosis (74).

The neutrophil recruitment in the liver differs per anatomical
location. In the post-capillary venules neutrophils undergo
selectin-dependent rolling. However, in the sinusoidal vascular
bed these neutrophils adhere via a selectin-independent
mechanism, which is rolling independent (182, 183).
Interestingly, liver sinusoids support the majority of leukocyte
trafficking, 70–80%, while the remaining traffic takes place
in the post-capillary venules, in accordance with the classical
recruitment cascade (182). Similar to the capillaries in the
lungs, anatomical features of the liver, namely the diameter of
the sinusoids, of 6.4–15.1µm, also influence the recruitment
(219). Originally, it was thought that migration was mediated
by physical trapping of the neutrophil in the narrow channels,
however recently other recruitment mechanisms were identified.
Sinusoid endothelium expresses a different portfolio of adhesion
molecules, with little E- and P-selectins present (182) as well
as low expression of VCAM-1. Instead, ICAM-1 and vascular
adhesion protein (VAP)-1 are found to be highly expressed in a
constitutively manner (220, 221).

The sinusoidal vasculature, composed of liver sinusoidal ECs
(LSEC), has a unique morphology. The LSECs are discontinuous
and fenestrated, lacking tight junctions and basal lamina (222).
Openings in the endothelial layer, fenestrations (100 nm) (223),
allow plasma to flow freely into the sub-endothelial Space of
Disse, where it comes in direct contact with hepatocytes. The

fenestrae size is dynamically regulated in response to drugs,
toxins, vascular tone, disease and aging (224).

The inflammatory process is initiated by the release of
DAMPs from damaged and necrotic cells. Kupffer cells (KCs,
tissue resident macrophages) are the first cells to detect
these damage signals, and respond with the production of
cytokines, chemokines and ROS, resulting in the homing,
activation, and adhesion of neutrophils (225). Activated KCs can
also promote recruitment by altering the shear forces within
the microvasculature (226). Depending on the inflammatory
stimulus, neutrophils undergo different recruitment pathways.

Under sterile inflammation, DAMPs, such as extracellular
ATP, released from damaged or necrotic cells, bind to TLR9 on
neutrophils, and promote neutrophil recruitment and activation.
This initiates a positive feedback loop, where neutrophils
sense and react to DAMPs by activating the TLR9/NF-κB
pathway, further sustaining neutrophil recruitment (227, 228).
Extracellular ATP also signals to KCs, stimulating these cells
via P2X purinoceptor 7 to produce caspase-1 and IL-1β. The
presence of IL-1β induces the up-regulation of ICAM-1 on
LSECs (186). Neutrophils can adhere via an endothelial ICAM-
1 leukocytic Mac-1-dependent adhesion mechanism (145). TLR2
plays an important role in ICAM-1/Mac-1-dependent neutrophil
recruitment. TLR2 and myeloid-related protein 14 (S100A9)
are key regulators of CXCL2 release by KCs (185). An initial
chemotactic gradient of CXCL2 stimulates, via CXCR2, the
influx of neutrophils into the liver. CXCL2 is expressed as
an intravascular gradient that leads toward the injured area.
Expression starts at approximately 650µm distance from the
injury and gradually increases till 150µm. However, the CXCL2
gradient on the luminal surface of the sinusoids abruptly ends
at approximately 100–150µm proximal to the border of necrotic
tissue. Neutrophils continue to migrate into the area of necrosis
independently of CXCR2 (186). Platelets then take over from
the chemokines-dependent neutrophil crawling. Immobilized
platelets physically “pave the way” for neutrophils to enter the
liver and aid repair. The platelets adhere to the injured LSECs
by GPIIbIIIa and pave the last 200µm of the sinusoids toward
the necrotic area by completely encapsulating the injury site
(145). Neutrophils crawl on the immobilized platelets through
Mac-1, independently of LFA-1 (186). Additionally, migration of
neutrophils through the last 200µm requires formylated peptide
receptor 1 (FPR1) to be expressed on neutrophils, to follow a ECs
mitochondria-derived formyl-peptide gradient, which promotes
precise neutrophil migration into the necrotic zones (186).
Figure 3A summarizes the neutrophil recruitment under sterile
inflammation.

During gram-negative-induced sepsis, or endotoxemia, high
levels of bacterial LPS are circulating and stimulate KCs.
Stimulation of KCs results in the production of large amounts
of IL-10, inducing down-regulation of neutrophilic Mac-1 (229).
However, in LPS-treated mice, neutrophils are still recruited
and arrest in the sinusoids, where they act as filters for
systemic infections (230, 231). Initially it was hypothesized that
the neutrophils’ migration was merely mechanically instigated,
due to physical entrapment (232). Nevertheless, a systematic
examination of several candidate molecules revealed that CD44
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FIGURE 3 | Neutrophil recruitment in the liver. (A) Sterile inflammatory stimuli. (1) During sterile inflammation, DAMPs are released from apoptotic ECs or cells in the

tissue. DAMPs can directly activate neutrophils via interaction with TLR9 or stimulate KCs to produce inflammatory mediators such as IL-1β. (2) In turn, IL-1β

upregulates ICAM-1 expression on the sinusoids, resulting in the adhesion of neutrophils mediated by ICAM-1-Mac-1 interaction. (3) KCs also release CXCL2, and

create a gradient that increases toward the site of injury, guiding the neutrophils. This gradient starts ∼650µm and ends at 100–150µm away from the injury site. (4)

From here on, neutrophils are guided by platelets and a formyl-peptide gradient (FPG) (released by the endothelium), in a Mac-1 and FPR1-dependen manner,

respectively. (B) Pathological inflammatory stimulus. (1) During endotoxemia or Gram-negative sepsis, high levels of LPS stimulate KCs and ECs to produce large

amounts of the anti-inflammatory cytokine IL-10. (2) The exposure of neutrophils to high levels of IL-10 results in down regulation of Mac-1 surface expression, yielding

CD44 as the dominant adhesion molecule for recruitment. (3) CD44 then interacts with the HA/SHAP complex on the endothelium mediating the adhesion process,

(4) eventually leading to neutrophil extravasation. CXCL2, Chemokine (C-X-C motif) ligand 2; CXCR2, Chemokine (C-X-C motif) receptor 2; DAMP,

Damage-associated molecular pattern molecules; EC, Endothelial cell; FPG, Formyl-peptide gradient; FPR1, Formyl peptide receptor 1; HA, Hyaluronic acid; ICAM-1,

Intercellular adhesion molecule-1; IL, Interleukin; KC, Kupffer cell; LPS, Lipopolysaccharide; Mac-1, Macrophage-1 antigen; SHAP, Serum-derived

hyaluronan-associated protein; TLR9, Toll-like receptor 9.
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deficient mice lack neutrophil accumulation in the sinusoids
following LPS challenge (233). Therefore, neutrophil recruitment
seems CD44 dependent. LSECs are enriched with extracellular
matrix glycosaminoglycan hyaluronan, which is a ligand for
CD44, a cell surface glycoprotein found on most leukocytes,
including neutrophils (184, 233). LPS activates LSECs to undergo
transesterification of HA, resulting in the production of serum-
derived hyaluronan-associated protein (SHAP). SHAP binds to
the sinusoidal endothelium, forming a HA/SHAP complex. The
complex facilitates CD44-dependent neutrophil adhesion in the
sinusoids (184). Interestingly, hyaluronidase pre-treatment in
the liver sinusoids attenuated LPS-induced neutrophil arrest, an
effect that was not observed in the post-capillary venules (233).
Therefore, these studies support a role for CD44 in sinusoid-
specific neutrophil recruitment. Intravital immunofluorescence
imaging demonstrated that stimulation of endothelial TLR4
alone was sufficient to induce the deposition of SHAP within
sinusoids, which was required for CD44/hyaluronan-dependent
neutrophil adhesion (184). This validated that LPS stimulation
is TLR4-dependent. Figure 3B summarizes the neutrophil
recruitment under gram-negative-induced sepsis.

Neutrophils themselves appear to recruit platelets to sites
of infection. And in turn, platelets modulate the recruitment,
activation and adhesion of neutrophils (152, 230, 234). The
interaction of platelets with neutrophils seems to occur via
interactions with LFA-1 (231). The bacterial and viral trapping,
normally executed by KCs, is greatly increased as neutrophils and
platelets are recruited and induce NET formation (235).

To summarize, neutrophil trafficking mechanism in the liver
is stimuli dependent and the recruitment differs from the
classic paradigm in two fundamental ways: (1) the majority of
infiltrating neutrophils adhere within the capillary-like sinusoids
rather than the post-capillary venules; (2) a selectin-mediated
rolling step is not apparent and the adhesion of neutrophils
within sinusoids is mainly described as selectin-independent.

Neutrophils in the Human Filter Unit
The kidney receives 15–20% of the cardiac output (201) and has
three distinct capillary networks, a feature unparalleled by any
other organ. With this complex capillary networks, the kidney
functions as a filter, for liquids and small particles (including
nutrients), cleaning the body from toxins as well as needless
components, and keeping the water and nutrients (236). Blood
enters the first capillary network, located in the cortex, via
the renal artery that then branches into the interlobar artery.
In turn, the interlobar artery is followed by the arcuate and
interlobular arteries which later drain into afferent arterioles.
From the afferent arterioles the blood arrives to the capillaries
located in the glomeruli (201, 236). These capillaries participate
in the production of plasma ultrafiltrate, which enters the
nephrons. The blood leaves the glomeruli via efferent arterioles
and enters the second and third renal capillary network.
The second network, the peritubular capillaries, surrounds the
nephrons, and is often described as part of the renal cortex.
This second network further assists in the filtration process, by
reabsorbing solutes and water from the proximal tubular lumen
and returning them to general circulation (237). Peritubular

capillaries are also in close proximity to the tubules and serve
as a supply for oxygen and nutrients. The third network is
reached via the descending vasa recta, which gives rise to the
small capillary network that supplies oxygen and nutrients to
the inner medulla and maintains the medullary concentration
gradient. The blood from the peritubular capillaries and vasa
recta ascending from the third network eventually drains into
venules and thereafter veins, which parallel the arterial system
(8, 236).

The glomerular capillaries are lined by specialized highly
fenestrated ECs. The fenestrae have a diameter of ∼60 nm
(238) and seem to facilitate filtration of small solutes and
water. The ECs on the luminal side are covered by glycocalyx,
glomerular basement membrane, and podocytes, all further
supporting the EC barrier function (239–241). Podocytes are
specifically expressed in kidneys and are mainly found covering
the glomeruli. Apart from preserving the glomerular ECs barrier
function, these cells regulate the tight spatial control of fenestrae,
both via the production of VEGF-A (242, 243).

In the kidney, inflammation is induced by activation of
immune cells as well as of intrinsic renal cells (such as podocytes,
mesangial or epithelial cells). This process can result in the
production and consequent release of profibrotic cytokines and
growth factors that drive fibrosis, which when uncontrolled
leads to end-stage renal disease (244). Neutrophil recruitment
occurs in all capillary networks: in the cortex [in the capillaries
of the glomeruli (192) as well as in peritubular capillaries
(245)], and in the medulla [in the dense capillaries network
that arises from the descending vasa recta (246, 247)]. To
dissect the process of neutrophil recruitment direct visualization
of the neutrophil interaction is required. However, the kidney
is a very dense organ and its anatomy and features are a
challenge for such studies. Even superficial glomeruli are found
as deep as at 100µm below the surface (13). Likely due to
this reason, early studies reported that leukocyte adhesion in
glomerular capillaries shared much in common with adhesion
in “conventional” post-capillary venules (248–251). However,
later on, and with the introduction of the murine model of
hydronephrosis, it has been observed that neutrophil recruitment
is not dependent on rolling (191). By ligating one of the ureter,
in this animal model, the kidney becomes easier to image.
These studies then showed that in unstimulated glomeruli,
and unlike in other organs, neutrophils, as well as monocytes,
patrol the capillaries. Particular to the kidney, while patrolling,
these cells have short adhesion periods (also termed “dwell
time”). Upon encounter with an acute inflammatory stimulus,
these patrolling neutrophils are activated and respond by
increasing their “dwelling time” on the endothelium. Under
acute inflammatory conditions, activated neutrophils can remain
attached to the endothelium for long periods of time, up to
20min (192). These increased adhesion time was shown to
be Mac-1 dependent (192). The activated neutrophils initiate
ROS production, which in turn increases Mac-1 expression
and hence the cell adhesion times. Consequently, Devi et al.
postulated that rather than affecting the number of recruited
cells, acute inflammation increases the duration of neutrophil
retention in the capillaries. To what extent this increased
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FIGURE 4 | Kidney: the neutrophil actions in different capillary beds. (A) Tethering and adhesion/retention of neutrophils in the glomeruli. (1) In the glomeruli P-selectin

is required for neutrophils recruitment. As neutrophils do not express this molecule, P-selectin has to be provided by other sources, such as platelets. Platelets adhere

to the endothelium, in a GPVI and αIIbβ3/fibrinogen/ICAM-1-dependent fashion, and neutrophils are thereafter recruited by interaction of leukocytic PSGL-1 with

P-selectin. (2) Upon acute inflammation, neutrophils have been found to be retained in the vasculature for increased periods of time (also referred to as “dwell time”),

via Mac-1-β2-integrins interaction. Whether this “dwell time” is preceded or followed by P-selectin-dependent tethering remains to be described. (3) Neutrophils

retained in the endothelium by Mac-1-β2-integrins interaction release ROS upon activation, which in turn increases Mac-1 expression and consequently expands the

cell adhesion times. (4) Neutrophil “dwell time,” recruitment and ROS production can also be fostered by patrolling monocytes due to release of TNF or direct

interaction with the neutrophil. (B) Neutrophil recruitment in the peritubular capillaries. (1) In the peritubular capillaries, neutrophil recruitment is initiated by ICAM-1, P-

and E- selectin interactions. (2) Neutrophils can, however, also be recruited in a CD44-HA dependent manner. Under homeostatic conditions, CD44 is poorly

expressed by ECs, but upon injury its expression strongly increases. (3) Neutrophil transmigration is assisted by pericytes, which express VAP-1 that generates a local

hydrogen peroxide gradient, guiding the neutrophil to the TEM site. (4) In addition, migrating neutrophils release cytokines that further guide other neutrophils and

induce vascular permeability facilitating the extravasation. EC, Endothelial cell; GPVI, Glycoprotein VI; HA, Hyaluronic acid; HP, Hydrogen peroxide; ICAM-1,

Intercellular adhesion molecule 1; Mac-1, Macrophage-1 antigen; PSGL-1, P-selectin glycoprotein ligand 1; ROS, Reactive oxygen species; SHAP, Serum-derived

hyaluronan-associated protein; TEM, Transendothelial migration; VAP-1, Vascular adhesion protein.
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retention time influences the inflammatory response remains to
be addressed.

Neutrophil recruitment in the glomeruli occurs via immediate
arrest and requires P-selectin and ICAM-1 and leukocytic
PSGL-1 and β2-integrins (191). Notably, glomeruli ECs do
not express P-selectin, but platelets act as a source of P-
selectin on the inflamed glomerulus endothelium, once again
underscoring the relevance of the cooperative mechanism
between platelets and neutrophils in the recruitment of these
leukocytes (191, 193). Platelet recruitment was shown to be
dependent on the combined actions of Glycoprotein VI and
the αIIbβ3/fibrinogen/ICAM-1 pathway (193). Monocytes can
also stimulate neutrophil dwell time in glomerular capillaries,
as well as recruitment and ROS generation, in particular by
TNF production. This observation suggests that monocyte-
neutrophil interactions within the glomerular microvasculature
might lead to increased neutrophil recruitment (252). Figure 4A
summarizes the neutrophil recruitment in the glomeruli.

In the peritubular capillary, also aligned by fenestrated
endothelium, neutrophil recruitment depends on E-selectin, P-
selectin, and ICAM-1 (187). More general, and in the context
of a model of renal ischemia reperfusion, endothelial CD44 was
shown to be relevant for neutrophil recruitment (190). Under
physiological conditions ECs barely express CD44. However,
after renal injury, expression of CD44 on these cells sharply
increases (190, 253). Endothelial CD44 then binds to hyaluronic
acid on neutrophils and assists their recruitment. Transmigration
of neutrophils from the vascular to the interstitial compartment
is, as anticipated, directly associated with increased vascular
permeability and assisted by cytokine release. Cytokine release
can mediate changes across the vascular endothelial layer, hence
promoting neutrophil adhesion as well as transmigration (188).
Interestingly, intracellular levels of the cytokines interferon-γ, IL-
6, and IL-10 are lower in interstitial neutrophils than in vascular
neutrophils, suggesting that transmigration, per se, leads to
cytokine release (188). In corticomedullary junctions, neutrophil
infiltration is also aided by pericytes, namely by the expression
of VAP-1. VAP-1 generates a local gradient of hydrogen
peroxide that guides the neutrophils to the extravasation site
(189). Figure 4B summarizes the neutrophil recruitment in the
peritubular capillaries.

Knowledge concerning neutrophil recruitment in the dense
capillaries network, which arises from the descending vasa recta,
is limited, and published reports are controversial. As an example,
Awad et al. reported observations made in the outer medulla as
processes occurring in the peritubular capillaries (188). However,
others suggest that the peritubular capillaries are located in the
cortex instead of the medulla (236, 254). This associated to the
anatomy of this organ contributes to the difficulty in clarifying
neutrophil recruitment in the kidney.

The Neutrophil in the Main Stream
The vessel wall of the arteries is covered with a continuous non-
fenestrated endothelial layer and displays a well-developed tight
junctions system (104)—of great importance to its function, as
a fluid conductor, and to manage the exposure to a broad range
of shear stress forces throughout the entire body. Dysfunction of

the endothelial lining of the arteries is the initiator of the chronic
inflammation named atherosclerosis, the main underlying cause
of cardiovascular disorders (255). The atherosclerotic disease
is characterized by an intricate pathophysiology but one of
its main features is the continuous leukocyte recruitment to
the damaged endothelium. Despite respiratory and pulsatile
movements hampering in vivo visualization (9, 256), intravital
microscopy studies, focused on the carotid arteries, have been
major contributors to the better understanding of this arterial
disease, and leukocyte recruitment in particular. However, most
studies investigating the inflammatory process in larger vessels
mainly focused on the role of monocytes andmacrophages—cells
with a well-accepted role in atherosclerosis (257). Neutrophils,
despite being the first circulating leukocytes to infiltrate the
inflammatory site, were only recently shown to be an important
mediator in atherosclerosis (9, 258).

Several animal studies demonstrated that regions at high
risk for atherosclerotic plaque development are exposed to
disturbed flow, low or oscillatory shear stress (131, 132, 137, 259).
These regions are primarily in bifurcations or curves (131),
where low shear stress induces activation of ECs. Thereafter,
several processes take place: reduced production of nitric
oxide (NO), increased EC apoptosis and phonotypical changes,
and subendothelial accumulation of low-density lipoproteins
(LDL) followed by LDL oxidation (255). Notably, the presence
of oxidized LDL can activate neutrophils, leading to ROS
production and further aggravated endothelial dysfunction
(260, 261). Indirectly, low shear stress also contributes to the
neutrophil recruitment, via NF-κB and TNF pathway, which in
turn upregulates the expression of cytokines, such as CCL2 (262).

As already mentioned, the classical leukocyte recruitment
cascade has been defined in the microcirculation, however, to
a large extent, this paradigm holds true in the larger arteries
(46, 263). As in the microcirculation, Sager et al. also observed
the involvement of P-selectin, E-selectin, VCAM-1, ICAM-1, and
ICAM-2 in monocyte and neutrophil recruitment. They showed
a reduction in recruitment after delivery of small interfering
RNAs, which disturbed the translation of all five molecules (194).
Neutrophils firmly adhere to the endothelium via the interaction
of leukocytic CC chemokine receptors 1 (CCR1), CCR5 and
with CCL5, which is seeded on the arterial endothelium by
platelets (9). Interestingly, the involvement of CCR1 and CCR5
in the CCL5-mediated firm adhesion is only observed in arteries
and not in veins (9). Another interesting fact is that myeloid
cells adhere to atherosclerotic lesions in a circadian manner.
Neutrophils and monocytes were observed to deposit CCL2
rhythmically on the arterial endothelium, resulting in their
recruitment in a CCR2-CCL2-dependent fashion (199).

Neutrophil activation results in rapid release of secretory
vesicles, containing granule proteins such as myeloperoxidase,
azurocidin, proteinase-3, and cathelicidins. The cathelicidin
related antimicrobial polypeptide CRAMP, has been shown
to promote neutrophil adhesion in large arteries in a FPR-
dependent fashion (200). More recently another granular
protein, cathepsin G (CatG), has been identified as a guiding
cue favoring myeloid cell adhesion, including neutrophils,
specifically under conditions of high shear stress and in large
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FIGURE 5 | Neutrophil recruitment in the aorta. (1a) Neutrophil recruitment can be directed by platelets activated by oxidized LDL. The activated platelet adheres to

the neutrophil, forming a platelet-neutrophil-aggregate. This aggregate formation is mediated by P-selectin. (1b) Neutrophils can also be activated by CCL5 released

by activated platelets. (1c) Alternatively, upon damaged endothelium circulating neutrophils tether with ECs in a selectin-dependent manner, followed by their

activation. (2) Activated neutrophils can release granular proteins, such as CRAMP and CatG, which can further support neutrophil recruitment. (3) CRAMP supports

the recruitment via FPR (4) while CatG, seeded on the endothelium, facilitates firm adhesion of the neutrophil by engaging integrin clustering. (5) Platelets can also

seed CCL5 on the endothelium, which can interact with CCR1 and CCR5 present on neutrophils, leading to the firm adhesion of neutrophils to the endothelium, and

(6) eventually resulting in neutrophil extravasation. CatG, Cathepsin G; CCL, Chemokine (C-C motif) ligand; CCR, Chemokine (C-C motif) receptor; CRAMP,

Cathelicidin related antimicrobial polypeptide; FPR, Formyl peptide receptor; ICAM-1, Intercellular adhesion molecule-1; oxLDL, Oxidized LDL.

arteries, as opposed to veins (10). The release of CatG from
neutrophils was shown to be triggered by CCL5 of platelet
origin. In turn, platelets were stimulated to release CCL5 under
high shear stress conditions, which are absent in veins, results
in the specificity of CatG to assist neutrophil recruitment in
large arteries. Platelet-neutrophil interplay during neutrophil
recruitment is well reported in the literature (264). Another
example is the neutrophil recruitment directed by platelets
activated by oxidized LDL. The activated platelet adheres to
the neutrophil, forming a platelet-neutrophil-aggregate. This
aggregate formation is mediated by P-selectin (265). Figure 5
summarizes the neutrophil recruitment in the aorta.

Similar to CatG, but important for cell transmigration,
also JAM-A was suggested to direct monocyte and neutrophil
recruitment in the artery, specifically at sites of disturbed
blood-flow (198). However, the same molecule, JAM-A, was
also reported to mediate neutrophil transmigration in mice
cremasteric venules. In this case, the function of JAM-A was
studied in the context of a sterile inflammatory stimulus, IL- 1β,
or upon ischemia/reperfusion injury (173).

Notably, neutrophils are positioned in distinct areas of
the atherosclerotic plaques (266). The distribution pattern of
neutrophils in the atherosclerotic plaque suggests recruitment
routes via the arterial endothelium as well as via neovessels in
advanced lesions. Intravital microscopy in mice showed that,
in early stages of atherosclerosis, neutrophils are recruited in
a transarterial-fashion (9, 256). Whereas, in humans in later
stages, it was suggested that formation of neoangiogenesis and

adventitial vessel takes place, leading to a new and preferred
neutrophil entry route (267).

FUTURE PERSPECTIVES

Neutrophil recruitment is a hallmark in all acute and chronic
inflammatory disorders and hence appears as a process that is
worth targeting to alleviate symptoms and disease progression.
Interference with leukocyte accumulation in inflammatory
conditions has previously focused on targeting of cell adhesion
molecules, integrins, and chemokines. However, clinical
studies have been largely unsuccessful and thus far the only
approved interventions are the blockade of very late antigen-4
(VLA-4) and lymphocyte Peyer’s patch adhesion molecule
1 (LPAM-1) with the monoclonal antibodies natalizumab
or vedolizumab for treatment of multiple sclerosis and
inflammatory bowel disease (ulcerative colitis and Crohn
disease), respectively. Possible reasons for failures of clinical
studies are manifold. The redundancy of adhesion molecules
is well documented, and so is the apparent indiscrimination
between a number of chemokines and their shared receptors.
These facts increase the likelihood for rendering interference
with just one molecule insufficient, as well as prominent off-
target effects due to cross-reactivity with receptors of similar
structure. In addition, stimulus-dependent effects have to
be taken into consideration as well as the importance of the
targeted molecule in host defense. And finally, of relevance
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when taking therapeutic strategies into the clinic, is to never
avert the discrepancy between animal models and human
diseases.

Thus, a refined understanding of how neutrophils enter
different tissues may set the basis for tailored intervention in the
future.
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