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The nuclear factor of activated T cells (NFAT) family of transcription factors, which

includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell

activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor

and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however

is not shown to be expressed in T cells and NFAT5 has not much highlighted in T

cell functions yet. Recent studies demonstrate that the NFAT family proteins involve

in function of lineage-specific transcription factors during differentiation of T helper 1

(Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been

studied to make physical interaction with the other transcription factors like GATA3 or

Foxp3 and they also regulate Th cell signature gene expressions by direct binding on

promotor region of target genes. From last decades, NFAT functions in T cells have

been targeted to develop immune modulatory drugs for controlling T cell immunity in

autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side

defects, only limited application is available in human diseases. This review focuses on

the recent advances in development of NFAT targeting drug as well as our understanding

of each NFAT family protein in T cell biology. We also discuss updated detail molecular

mechanism of NFAT functions in T cells, which would lead us to suggest an idea for

developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.
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INTRODUCTION: CLASSICAL NFATS

Nuclear factor of activated T cells (NFAT) is a family of transcription factors identified in
activated T cells, which promote the expression of interleukin-2 (IL-2) and the IL-2 receptor
(1–3). Ligation of the T cell receptor (TCR) with antigen: major histocompatibility complex
class II (MHCII) mediates multiple signaling cascades, including phospholipase C (PLC)-
dependent pathways, which generates the secondary messengers inositol-1,4,5-triphosphate (IP3)
and diacylglycerol (DAG). IP3 binds to IP3 receptor in the endoplasmic reticulum (ER) and
releases Ca2+ ions to the cytoplasm (4, 5). Calmodulin captures free Ca2+ ions and activates the
serine/threonine phosphatase calcineurin. Calcineurin dephosphorylates multiple serine residues
in NFATs, resulting in their translocation into the nucleus (5, 6). NFAT proteins differentially
regulate the expression of genes related to T cell development, activation, and differentiation
(1, 7–11).
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The NFAT family proteins share a conserved N-terminal
NFAT-homology region (NHR) and REL-homology region
(RHR). The NHR is moderately conserved among NFAT
family members and contains several serine-rich regions (SRR)
and a transactivation domain. The NFAT family consists of
five proteins: NFAT1 (NFATc2 or NFATp), NFAT2 (NFATc1
or NFATc), NFAT3 (NFATc4), NFAT4 (NFATc3 or NFATx),
and NFAT5 (TonEBP or OREBP) (Figure 1) (12). NFAT1 is
constitutively expressed in normal human T cells, whereas
NFAT2 is induced by activation (13). NFAT1 and NFAT2 are
regulated by calcineurin, which dephosphorylates NFATs and
promotes their nuclear translocation (12). NFAT3 is rarely
expressed in T cells because of lower chromatin accessibility
and enhancer activity of its promoter (14). NFAT4 is weakly
expressed in unstimulated cells and its expression is not enhanced
by activation (13). NFAT1 and NFAT2 are the most-studied
NFAT family members because of their high expression level
in T cells. NFAT1 and NFAT2 surpass the ability of NFAT4 to
bind to their target cytokine promoters (15). NFAT5 is expressed
by almost all cells and is activated in response to osmotic
stress (16). Translocated NFAT proteins interact with different
transcription factors (such as AP1, FOXP3, and BATF) (1, 17–
19). Depending on partner proteins, NFATs can either enhance
immune responses or induce immune tolerance. AP1, the most
widely known partner protein of NFATs, forms a complex with
NFATs and induces various cytokines (such as IL-2, IL-4, and
IFN-γ) and other T cell activation-induced proteins (7).

As NFATs are involved in diverse molecular interactions,
they are tightly regulated by post-translational modifications in
the normal state (12). Several kinases, including casein kinase
1 (CK1), glycogen synthase kinase 3 (GSK3), JUN N-terminal
kinase (JNK), and p38, phosphorylate the serine-rich motifs
located in the NHR domain of NFAT proteins andmaintain them
in inactive state (20–23). In addition to phosphorylation, NFAT
can be regulated by protein acetylation, proteolytic cleavage,
and SUMOylation by the small ubiquitin-like modifier (SUMO)
(24–26).

Considering the important role of NFAT proteins in
regulation of T cell activation, several therapeutic approaches
were developed to inhibit NFAT signaling. Calcineurin
inhibitors, such as cyclosporine A (CsA) and tacrolimus
(FK506), have been used to treat graft rejection and autoimmune
diseases, including atopic dermatitis, rheumatoid arthritis, and
lupus nephritis (27–32). More inhibitors specifically targeting
NFATs (such as VIVIT peptide, INCA-1, ST-1959, and UR-1505)
were developed and are being verified; however, they are yet to
be analyzed in suitable animal models of autoimmune diseases
to investigate their potential of ameliorating diseases (33–36).

NFAT IN T CELL SUBSETS: TH1, TH2,
TH17, TREG, AND TFH

Th1: Although NFAT was originally identified to play important
roles in the activation of T cells, it has also been shown that NFAT
proteins differentially affect T helper (Th) cell differentiation
(Figure 2) (37–41). Each differentiated T subset is characterized

by the expression of their specific master regulator transcription
factors and signature cytokines. Th1 cells are essential effector T
cells against intracellular bacteria and virus infections (42, 43).
Th1 differentiation is induced by TCR signaling and priming
cytokines such as IFN-γ and IL-12 (44, 45). Together with antigen
stimulation, cytokine-mediated signal transducer and activator
of transcription 1 (STAT1) activates T-bet (TBX21), a master
transcription factor of Th1 (46, 47). The expression of NFAT2a,
an isotype of NFAT2, is more elevated in Th1 and Th2 than in
Th17 and Treg (48). NFAT1 binds to IFN-γ promoter region
(11, 49). Loss of NFAT1 promotes mild bias toward Th2 cell
differentiation with decreased production of IFN-γ and increased
production of IL-4 (38, 39, 44, 50–52). In double knock-out
(DKO) mice, the levels of Th2-related cytokines such as IL-4 and
IL-5 increased 25- to 75-fold compared to in wild type mice with
increased IgG1 and IgE titers (39). Recent studies showed that
Ca2+ response is more intense and sustained in Th1 and that
NFAT nuclear localization is shorter in Th2 than in Th1 (53),
suggesting that NFAT1 and/or NFAT4 are positive regulators of
Th1 inflammation.

Th2: In contrast, Nfat2-deficient mice show impaired
production of IL-4 and Th2 cytokines and reduced IgG1 and
IgE levels (40). Th2 cells express IL-4, IL-5, and IL-13, which
stimulates mucosal immunity against parasite infections (54–
56). Various transcription factors, namely, GATA3, STAT6,
RBPJκ, MAF, IRF4, and JUNB, have been implicated in Th2
differentiation and function (10, 57–61). GATA3 forms a
chromatin hub with NFAT1 in Il4 and Il13 promoter regions
(62). IRF4 synergizes with NFAT1 and c-Maf to augment
Il4 promoter activity (10, 40). Ubiquitin-specific peptidase 4
(USP4) interacts with IRF4 and NFAT1 to enhance NFAT-
mediated Il4 promoter activity (63). RUNX3 physically interacts
with NFAT2 and suppresses IL-4 production (64). NFAT1
competitively binds to the CRTh2 promoter with GATA3 and
negatively regulates CRTh2 expression, which mediates the
production of Th2 cytokines such as IL-4, IL-5, and IL-13
(65). Nfat1 deficiency increased Th2 cytokine levels, enhanced
chromatin accessibility, and increased DNA demethylation in
the Il4 promoter region, inducing preferential recruitment of
JUNB/SATB1 to the Il4 promoter (51, 52). Similarly, Nfat1/4
DKO CD4T cells secrete large amounts of IL-4 upon TCR
stimulation, and show increased Th2 cytokine production, which
is not dependent on IL-4 production (40). Early growth response
protein-1 (EGR1) is expressed predominantly in Th2 and
cooperatively binds to the Il4 enhancer element with NFAT1/2
(66). IL-31 cytokine induction in Th2 cells require Ca2+ mediated
NFAT1/2 activation (67). NFAT2 and STAT6 synergistically
enhance Il31 promoter activity. These studies suggest that NFAT2
plays positive regulatory roles in Th2 inflammation with possible
reciprocal relationship with NFAT1 or NFAT4.

Th17: Th17 subsets are important players in protection
against extracellular pathogens and inflammatory response in
autoimmune diseases (68, 69). Signature cytokines including IL-
17A, IL-17F, IL-21, and IL-22 produced by Th17 cells induce
massive tissue reaction such as neutrophil recruitment (70).
NFAT is also important in the induction of these cytokines.
NFAT1 and 2 directly bind to the Il17 promoter region
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FIGURE 1 | The NFAT protein family and structure of NFATs. (A) General structure of nuclear factor of activated T-cells (NFAT) protein family. The NFAT family consists

of five protein members: NFAT1 (NFATc2 or NFATp), NFAT2 (NFATc1 or NFATc), NFAT3 (NFATc4), NFAT4 (NFATc3 or NFATx), and NFAT5 (TonEBP or OREBP). NFAT

proteins contain a REL homology region (RHR), NFAT homology region (NHR), and C-terminal domain. RHR, which binds to DNA, is the most conserved domain, and

NHR, the regulatory domain, is conserved from NFAT1 to NFAT4, but not in NFAT5. (B) Schematic alignment of NFAT proteins. NHR consists of several conserved

regulatory motifs. The NHR contains casein kinase 1(CK1), GSK3 docking site, calcineurin docking site, and PxIxIT and LxVP motifs. NFAT5 lacks the NHR regulatory

domain. NHR also contains a nuclear localization signal (NLS), which is required for nucleus translocation, serine-rich regions (SRRs), serine- proline-repeat motifs

(SPs), and a phosphorylation site that is dephosphorylated by regulatory phosphatases such as calcineurin, CK1, and GSK3. RHR, the DNA binding domain, contains

binding sites for FOS and JUN. NFAT5 lacks binding motifs for FOS and JUN.

(71–74). CD4-specific Nfat2-deficient mice showed reduced IL-
17 expression, andNfat1 andNfat2-deficientmice (DKO) showed
reduction in IL-17 expression (75). In a model of experimental
colitis, Nfat1 deficiency showed protective effects with reduced
production of IL-6 and IL-17 by mucosal T lymphocytes (76).
Hyperactivation of NFAT1, increased affinity for calcineurin,
and decreased affinity for CK1, resulted in higher IL-17 and
IL-10 production because of direct binding of NFAT1 to distal
regulatory regions of Il17 and Il10 loci (73). Although NFAT1
hyperactivation induced production of IL-17 in vitro, mice
were more resistant to induction of experimental autoimmune
encephalomyelitis (EAE), with increased production of IL-10
and accumulation of Treg cells in the central nervous system.
Conversely, CD4-specific Nfat2-deficient mice showed reduced
levels of RORγt, a master transcription regulator of Th17, as
well as reduction in IL-17A, IL-17F, and IL-21 production and
protected from EAE (77). Although Nfat1-deficient mice also
showed decreased inflammatory response in the EAE model,
the underlying mechanism is different from that in Nfat2-
deficient mice. CD4-specific Nfat1-deficient T cells secrete IL-
17 along with IL-4 and IL-10, and these non-pathogenic Th17
cells contribute to protection from diseases (78). The above
observations suggest that both NFAT1 and NFAT2 contribute to
Th17 response.

Treg: FOXP3+ Treg cells are a distinct population suppressing
other effector Th cells (79) and is divided into thymus-derived
natural FOXP3+ (nTreg) T cells and peripheral inducible Treg
(iTreg) (80). Studies on Treg cells were facilitated by the
identification of mutations in Foxp3 in mice and patients

of immunodysregulation polyendocrinopathy enteropathy X-
linked (IPEX) syndrome (81–83). Treg-mediated immune
suppression is caused by multiple mechanisms such as CTLA-
4-, IL-10-, TGFβ-, and antigen presenting cell (APC)-mediated
indirect inhibition (84–86). Most of these Treg-related molecules
are regulated by NFAT proteins (17, 73, 87). Ablation of
Nfat1, Nfat2, and Nfat4 alone or in combination such as
Nfat1/2 and Nfat1/4 double KO diminished iTreg but not
nTreg differentiation, suggesting specific roles of the NFAT
family in peripheral activation and differentiation of regulatory
T cells from naïve T cells (75). Studies show that NFAT
facilitates the interaction between conserved noncoding sequence
2 (CNS2) at the Foxp3 locus and Foxp3 promoter, and that
NFAT2 directly regulates SMAD3 and FOXP3 binding to
CNS1, enhancing production of effector molecules in Treg
(88–91). Specific inhibition of NFAT1/FOXP3 interaction using
a FOXP3-derived peptide, FOXP3 393–403, impaired Treg-
mediated suppressor function in a dose-dependent manner
(92). This peptide also inhibited Treg differentiation in
mice and human T cells and showed enhanced antitumor
responses. However, several recent studies have reported that
Nfat KO mice show increased GITR+ Treg cells in the
lung after allergen challenge and protection in graft-vs.-host
diseases (GvHD) (93, 94). The functions of NFAT in Treg
responses are still controversial and more accurate studies are
required.

Tfh: Tfh cells were recently identified as helper T cells
expressing transcription factor B-cell lymphoma 6 (BCL6)
(95). Tfh cells are distinguished from other Th cells by their
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FIGURE 2 | Various combinations of NFAT and interacting partner proteins in T helper cells. Differentiation of each Th cell is initiated by activation of T cell receptor

(TCR), costimulatory receptor signals (e.g., CD28 or ICOS), and specific lineage determining cytokine signals. These signals orchestrate to induce the NFAT/AP-1

complex to express lineage-related transcription factors such as T-bet for Th1, GATA3 for Th2, RORγt for Th17, and BATF for follicular helper T (Tfh) cells. In

combination with these transcription factors, NFAT/partner protein complexes determine their lineage differentiation and functional characteristics (surface receptors

and cytokine production).
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selective role in inducing germinal center (GC) responses, with
promotion of antibody class switching, somatic hypermutation,
high affinity antibody production, and plasma cell differentiation
(96). Tfh cells express the C-X-C motif chemokine receptor 5
(CXCR5) and localize into the GC of draining lymph nodes
(97). In addition to BCL6, other transcription factors including
STATs, MAF, BATF, IRF4, ASCL2, LEF-1, and TCF-1 are also
essential for Tfh differentiation and function (98–103). Both
Tfh and GC B cells express high levels of NFAT1 and NFAT2,
which is indicative of the functional importance of NFAT
family in humoral immunity (104, 105). Increased humoral
responses were observed in Nfat1- and Nfat4-deficient mice
with increased serum levels of IgG1 and IgM (39). In contrast,
Nfat2-deficient T cells show reduced IgG1 and IgE levels (106).
Thereafter, some studies reported that NFAT regulates the
expression of molecules important for Tfh cell function and
differentiation, such as interferon regulatory factor 4 (IRF4),
programmed death-1 (PD-1), and CXCR5 (10, 104, 107). It
is also known that NFAT is required for IL-21 production,
which is important for Tfh differentiation and function, and its
production was ablated by CsA treatment (108–110). However,
IL-21 inhibits Tfr expansion via a BCL6-mediated mechanism
(109). NFAT2 has especially high expression in human and
mouse Tfh cells, and NFAT1 level increased slightly in mouse Tfh
cells (CD4+ICOS+CXCR5+) (104, 111), although NFAT3 and
NFAT4 expression was not induced. Nuclear level of NFAT2a,
an isoform of autoregulated NFAT2, and Nfat2 P1 promoter
activity increased in Tfh cells, which is suggestive of specific
roles of NFAT2 in Tfh cells. T cell-specific Nfat2-deficient mice
(Nfat2fl/fl x Cd4cre) showed increase in Tfh cell population and
GC responses in mesenteric lymph nodes and elevation in 4-
hydroxy-3-nitrophenylacetyl (NP)-specific IgM, IgG1, and IgG3
levels after NP-conjugated keyhole limpet hemocyanin (KLH)
immunization. We reasoned that the increase in Tfh population
and GC responses in Nfat2-deficient mice was due to impaired
expression of CXCR5 in follicular regulatory T cells (Tfr). In
fact, Nfat2 deletion in Treg cells (Foxp3-IRES-Cre x Nfat2fl/fl)
reduced the Tfr population, and similar responses were observed
with CD4-specific Nfat2-deficient mice upon immunization.
However, in a model of lymphocytic choriomeningitis virus
(LCMV) infection, Nfat1/2-deficient mice showed impaired
Tfh differentiation with reduced production of LCMV-specific
antibody and functional molecules such as PD-1, ICOS, Ly108,
CXCR5, and SLAM (112). In this model system, adoptively
transferred LCMV-specific CD4T cells (SMARTA CD4T cells)
also showed decreased Tfh differentiation and GC responses.
Abolished store-operated Ca2+ entry (SOCE), which is a driving
mechanism of NFAT activation in T cells, exhibits spontaneous
increase in GC B cells and humoral autoimmunity due to
low Tfr induction, whereas LCMV infection reduced Tfh cell
differentiation and LCMV-specific IgG titers, suggesting different
roles of NFAT depending on specific antigenic stimulation
and environment, including presence of other immune cell
types (19). Thus, NFAT1 and NFAT2 appear to exert positive
regulatory effects on Tfh differentiation or function, whereas
NFAT3 and NFAT4 are not required for Tfh or humoral
immunity.

NFAT5 IN T CELLS

NFAT5, also known as tonicity-responsive enhancer binding
protein (TonEBP) or osmotic response element binding protein
(OREBP), is the most recently identified member of the NFAT
family (113–116). NFAT5 does not possess calcineurin binding
domain, and is hence the only NFAT family protein that
is not regulated by calcium signaling (117). In response to
osmotic stress, NFAT5 is activated by p38/MAPK signaling and
regulates the expression of osmoprotective genes required for
normal function (118). Therefore, studies on NFAT5 initially
focused primarily on kidney medulla, skin, and eyes exposed to
hypertonicity (119). However, NFAT5 is expressed not only in
these tissues but also in the thymus and activated T lymphocytes
(16). NFAT5 binds to TNF-α and lymphotoxin β promoter,
suggesting that NFAT5 plays another role in the immune system,
especially in T cells (120). Dominant negative (DN) Nfat5
transgenic mice presented impaired thymic development and
reduced peripheral T cell numbers. In addition, transgenic T
cells and Jurkat cell lines expressing DN Nfat5 also exhibited
impaired proliferation and viability (121). Furthermore, Nfat5-
null mice had hypernatremia and T cell lymphopenia, whereas
T cell-specific Nfat5 knockout mice had isotonic plasma and
normal T cell numbers, but decreased survival and proliferation
in hypertonic condition. These altered T cell homeostasis are
associated with NFAT5-dependent CD24 induction in T cells
(122). Other studies have shown that NFAT5 also has osmostress-
independent functions. In the thymus, NFAT5 regulates the
progression from double-negative stage and therefore controls
survival during thymocyte development. Nfat5-deficient mice
had smaller thymus and less mature CD4 and CD8 cells in
the spleen and lymph nodes (123). Recent studies showed
that high salt conditions promote the differentiation of naïve
T cells into Th17 cells via NFAT5-dependent mechanisms
with more pathogenic characteristics and GM-CSF production.
Short hairpin RNA (shRNA)-mediated silencing of Nfat5 in
CD4T cells decreased IL-17A and CCR6 expression in Th17
polarizing conditions, suggesting a new role in the pathogenesis
of autoimmune diseases involving NFAT5 activation (124, 125).
High-salt diet increases the number of Th17 cells in vivo and
aggravates EAE via the NFAT5/SGK1 pathway (125). Under
hypertonic conditions, NFAT5 enhances the expression of the
pathogenic Th17–related cytokine IL-17A and Th17-assosiated
genes, Rorc and Il23r, in T cells. In contrast, in vivo-activated
Nfat-deficient CD4T cells were skewed toward increased IFNγ

and IL-17A expression, and T cell-restricted Nfat5-deficient
mice exhibited more severe pathology and enhanced IFNγ

mRNA expression in lymph nodes and colon of an animal
model of experimental colitis (126). Recent studies identified
that several miRNAs can target Nfat5. miR-20b was studied
in thymoma-associated myasthenia gravis, where it inhibited
NFAT5 expression with reduced T cell proliferation (127).
miR-568 expression decreased during Treg activation and
correlated inversely with NFAT5 expression. Overexpression of
miR-568 inhibited Treg differentiation and TGFβ and IL-10
production (128). Another study showed that the expression
of the microRNA cluster 106a∼363 decreased during Th17 cell
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differentiation and that over-expression of miR-18b, miR-106a,
andmiR-363-3p reduced Th17 differentiation (129). These effects
of the miRNA 106a∼363 cluster are mediated by inhibition of
their targets such as Nfat5 and Rorc. Patients with inflammatory
bowel disease (IBD), including those with Crohn’s disease (CD),
ulcerative colitis (UC), and autoimmune enteropathy (AIE), have
significantly reduced NFAT5 expression (130). NFAT5 inhibition
in healthy human and murine T cells exhibited disruption in
cytokine production and survival (130).

We have briefly summarized the role of each NFAT family
proteins in T cell immunity (Table 1). These observations suggest
that NFAT5 plays an important role in T cells under both
hypertonic and isotonic conditions and in Treg function. NFAT5
may be a new attractive target for the treatment of autoimmune
diseases irrespective of calcium-mediated adverse effects.

NFAT TARGETING DRUGS FOR
AUTOIMMUNITY: BEYOND
CYCLOSPORINE A AND TACROLIMUS

Considering the important role of NFAT signaling in T cell
function, NFAT has long been considered as an attractive target
for therapeutic approaches to control autoimmune responses
and graft rejection (Table 2) (30, 31, 163, 164). The most well-
known drugs targeting NFAT are the calcineurin inhibitors CsA
and FK506. CsA was first identified in 1971 from the fungus
Tolypocladium inflatum (165, 166). Later, tacrolimus, also known
as FK506, was isolated from a fungus named Streptomyces
tsukubaensis (167). CsA and FK506 function similarly in
that they bind to immunophilins called cyclophilin and FK-
binding protein 12 (FKBP12), respectively (168–170). This
inhibitor-immunophilin complex directly binds to calcineurin
and inhibits its phosphatase activity, thereby inhibiting NFAT
dephosphorylation (171). Both drugs have been well-used to treat
graft rejection and autoimmune diseases. CsA and tacrolimus
are used in atopic dermatitis and in other autoimmune diseases,
including lupus nephritis, and many clinical trials have been
conducted to determine the efficacy of calcineurin inhibitors

(30–32). In fact, calcineurin inhibitors positively affect the
treatment of autoimmune membranous nephropathy (172, 173).
Similarly, recent studies revealed that CsA inhibits Th17 cells
in patients with Sjögren’s syndrome and rheumatoid arthritis
(174, 175). Treatment of rheumatoid arthritis with tacrolimus
and other drugs such as methotrexate showed promising synergy
in clinical results (27, 176). Although calcineurin inhibitors
are effective in autoimmune disease therapy with inhibition
of T cell activation, inhibition of calcineurin has serious
drawbacks; for example, blocking of calcineurin phosphatase
activity affects numerous targets of calcineurin as well as
NFATs. Neurotoxicity and nephrotoxicity are the most common
side effects of calcineurin inhibitors (177, 178). Calcineurin
is also highly expressed in neural tissues (179). It regulates
IP3 and the ryanodine receptor and thereby controls calcium
flux in the cerebellum (180). It is also associated with gamma
aminobutyric acid (GABAA) andN-methyl D-aspartate (NMDA)
receptors (181, 182). Calcineurin also plays an important
role in exocytosis and vesicle recycling of neurotransmitters
and nitric oxide synthase (NOS) (183–185). Nephrotoxicity of
calcineurin inhibitors is associated with TGFβ and endothelin
production. TGFβ increases the extracellular matrix (ECM)
by inducing collagen and fibronectin, resulting in tubular
fibrosis and anti–TGFβ antibody-neutralized nephrotoxic effects
(186, 187). Endothelin level is also increased by calcineurin
inhibitors. Endothelin is related to endothelial dysfunction,
impaired glomerular filtration, and systemic hypertension (188,
189). Recent studies have indicated that calcineurin inhibitors
have a negative effect on regulatory T cell proliferation and
function, which are necessary for immune tolerance (190, 191).
Hence, investigations for identifying more selective and less toxic
inhibitors without affecting calcineurin activity are underway.

To identify alternative NFAT inhibitors, a VIVIT peptide
derived from the calcineurin-NFAT binding motif, PxIxIT,
was developed to block NFAT binding to calcineurin and
NFAT-dependent gene expression without affecting calcineurin
phosphatase activity (143, 144). To resolve the delivery limitation
of the VIVIT peptide, several studies modified VIVIT peptides
using cell penetrating peptides (CPPs). 11R-conjugated VIVIT

TABLE 1 | NFAT family in T cell immunity.

Regulation NFAT family member Expression in the immune system Functions in T cell immunity

Ca2+/

Calcineurin

NFAT1 Expressed in all types of Th cells Positive regulator of Th1 inflammation.

Positively regulate Th17-cytokines, IL-17, and IL-6.

Interacts with FOXP3 and enhances effector molecules in Treg.

NFAT2 Expressed in all types of Th cells Positive regulatory role in Th2 responses

Stimulates RORγT and Th17-realted cytokines

Positively regulates Treg differentiation with NFAT1/4

Enhances Tfh differentiation and function

NFAT3 Rarely expressed in T cells Unknown

NFAT4 Expressed in thymocytes and weakly

expressed in peripheral T cells

Thymocyte development and survival

TCR hyper-reactivity

Positive synergy with NFAT1 in Th1 and Treg response

Osmotic stress NFAT5 Expressed in thymocytes and iTreg Thymocyte development and survival

Hypersensitivity in hypertonic condition

Th17-mediated disease pathogenicity
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TABLE 2 | Calcineurin-NFAT inhibitors and their mechanisms.

Inhibitors Mechanism Inhibitory effect References

INHIBITORS THAT INHIBIT CALCINEURIN ACTIVITY

Cyclosporine A Binds with cyclophilin and inhibits calcineurin activity. Inhibits T cell proliferation and cytokine

expression.

(131–133)

Tacrolimus Binds with FKBP12 and inhibits calcineurin activity. Inhibits T cell proliferation and cytokine

expression.

(134–136)

Voclsporin (ISA247) Binds with cyclophilin and inhibits calcineurin activity. Better efficacy than cyclosporine A. (137)

Pimecrolimus Binds with FKBP12 and inhibits calcineurin activity. Inhibits T cell proliferation and cytokine

expression.

(138)

Thiopental Binds to calcineurin and inhibits calcineurin activity. Inhibits T cell proliferation and IL-2, and IFNγ

expression

(139)

Kaempferol Binds to the catalytic domain of calcineurin A and inhibits

calcineurin activity.

Inhibits IL-2 expression in Jurkat cells. (140, 141)

Tropisetron Inhibits calcineurin activity. Inhibits IL-2 production in primary T cells. (142)

INHIBITORS THAT INHIBIT CALCINEURIN-NFAT INTERACTION

PxIxIT peptide Calcineurin docking site of NFAT; Inhibits

calcineurin-NFAT binding.

Inhibits NFAT-dependent expression in Jurkat

cells.

(143)

VIVIT peptide Inhibits calcineurin-NFAT binding. Inhibits IL-2 production and proliferation of

Jurkat cells; Increases graft survival in islet

transplantation mice.

(144, 145)

LxVP peptide Inhibits calcineurin-NFAT binding and inhibits calcineurin

activity.

Inhibits IL-2 production in Jurkat cells. (146)

AKAP79 Inhibits calcineurin-NFAT binding. Inhibits IL-2 production in T cells. (147)

Cabin-1/Cain Inhibits calcineurin-NFAT binding. Inhibits IL-2 promoter activation in T cells. (148)

INCA-1,2, and 6 Inhibits calcineurin-NFAT binding. Inhibits cytokine expression in T cells. (34)

Dipyridamole Inhibits calcineurin-NFAT binding. Inhibits cytokine production. (149)

NCI3 Causes allosteric changes in calcineurin and inhibits

calcineurin-NFAT binding.

Inhibits T cell proliferation and IL-2 expression

in Jurkat and primary human T cells.

(150)

INHIBITORS THAT AFFECT NFAT MIGRATION

ST1959 Induces NFAT1 nuclear export. Inhibits T cell activation, proliferation, and

cytokine production.

(35)

Helenalin Inhibits NFAT1 nuclear translocation. Inhibits T cell proliferation and IL-2 production. (151)

Roc-1,2, and 3 Inhibits NFAT2 nuclear translocation. Inhibits IL-2, IL-4, and IFNγ expression. (152)

INHIBITORS THAT DIRECTLY AFFECT NFAT STABILITY

Zoledronic acid Induces NFAT degradation by inhibition of GSK3β Inhibits cell growth by inducing G1 cell cycle

arrest.

(153)

Genistein Reduces mRNA and protein expression of NFAT. Induces apoptosis; decreases number of T cell. (154)

INHIBITORS THAT INHIBIT NFAT-DNA INTERACTION

UR-1505 Inhibits NFAT binding to DNA. Inhibits T cell proliferation and IFNγ expression. (155)

Caffeic acid phenethyl ester (CAPE) Inhibits NFAT nuclear translocation and DNA binding. Inhibits proliferation and IL-2 production o f T

cells.

(156)

Punicalagin Inhibits NFAT nuclear translocation and DNA binding. Inhibits IL-2 production of CD4+ T cells. (157)

Imperatorin Inhibits NFAT nuclear translocation and DNA binding. Inhibits T cell proliferation. (158)

WIN 53071 Alters NFATc-DNA complex formation. Inhibits IL- 2 expression in primary human T

cells.

(159)

YM-53792 Inhibits NFAT1-DNA binding. Inhibits IL- 2, IL-4 expression in primary human

T cells.

(160)

AM-404 Inhibits NFAT1-DNA binding. Inhibits T cell proliferation and IL-2 and TNFα

transcription.

(161)

Digitoxin Inhibits NFAT1 binding to c-Myc promoter. Inhibits proliferation and induces apoptosis. (162)

INHIBITORS THAT INHIBIT NFAT-TRANSCRIPTION PARTNER INTERACTION

FOXP3 393-403 Inhibits FOXP3-NFAT binding Inhibits conversion into regulatory cells and

enhances T cell proliferation.

(92)

successfully increased transplant survival in islet transplanted
mice (145). Other studies showed that Sim-2-conjugated VIVIT
was efficiently delivered into cells and inhibited IL-2 and
alleviated ovalbumin (OVA)-induced asthma in a murine model
(192). In addition, the C-terminus of the regulatory domain

possesses a conserved calcineurin binding motif, LxVP, which
facilitates calcineurin docking and NFAT dephosphorylation
(193, 194). However, LxVP presented weak binding strength
for NFAT1 and affected calcineurin phosphatase activity (146,
195). Endogenous calcineurin inhibitors such as AKAP79,
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Cabin-1/Cain, MCIP1, and A238L have sequences similar to that
of the PxIxIT motif (147, 148, 196–198).

Small molecules are similar in structure and function to
classical inhibitors but have lesser side effects. Voclosporin
(ISA247), an analog of CsA, possesses higher affinity to
cyclophilin than CsA and was effective at lower concentrations
(137). Therefore, it is considered a promising treatment option
for arthritis and psoriasis (199, 200). Other drugs such as
ST-1959, and Roc-1, 2, and 3 inhibit T cell responses by
enhancing nuclear export of NFAT1 and NFAT2 (35, 152).
Drugs such as zoledronic acid induce NFAT1 degradation via
GSK3β inhibition (153). Certain inhibitors such as UR-1505
and digitoxin block the binding of NFAT to DNA (155).
Remarkably, digitoxin specifically inhibits interaction between
NFAT1 and the c-Myc promoter and thereby inhibits c-Myc-
dependent transcription (162). The FOXP3-derived peptide,
FOXP3 393–403, specifically inhibits FOXP3/NFAT interaction.
This inhibitory peptide suppresses T cell conversion into iTregs
and enhances T cell proliferation, thereby exhibiting antitumor
effects (92). These strategies indicated that blockage of NFAT
binding to a specific promoter or inhibition of its interaction to
a particular transcriptional partner might selectively suppress its
function.

To develop these NFAT inhibitory molecules as a new drug
for human diseases, both T cells and other cells also should be
considered for therapeutic purposes. Recent studies in myeloid
cells have revealed the importance of NFAT in both innate
and adaptive immunity. In an early response to pathogens,
pattern recognition receptors (PRRs) such as TLR4 and dectin-
1 induce the production of IL-2 from dendritic cells (201, 202).
These signals activate PLCγ2 and promote NFAT-dependent IL-
2 expression. In macrophages that express various NFAT family
members except NFAT3, calcineurin/NFAT inhibitor treatment
results in macrophages that are tolerant to lethal dose of
lipopolysaccharide (LPS) (203–205). Other myeloid cells such
as mast cells and neutrophils are influenced by Ca2+/NFAT
signaling and produce cytokines andmultiple immunemediators
(206, 207). Therefore, NFAT targeting strategies should consider
non-T cell mediated adverse effects as well as its potent effect of
disease control and immune suppression.

Considering the multiple roles of calcineurin-NFAT signaling
in both immune and non-immune cells, new methods for
targeting NFAT are required. For peptide inhibitors such as
VIVIT and LxVP, improved CPPs such as dNP2 can be used to
enhance efficiency of in vivo delivery (208). Alternatively, more
specific inhibition strategies other than calcineurin targeting can
be used. Recent results regarding the role of each NFAT family
member in T cells and the molecular mechanisms via which
they regulate T cell responses indicate that new inhibitors that

can block specific molecular interactions should be developed
to reduce side effects and reinforce the efficacy of autoimmune
disease therapy.

CONCLUDING REMARKS AND
PERSPECTIVES

In the current review, we have summarized recent advances in
our understanding of the role of NFAT family members in T
cell responses and presented an overview of therapeutic agents
targeting NFAT proteins for treating autoimmune diseases.
Classically, NFAT has been studied as an important transcription
factor for T cell activation under calcium signaling. However,
recent studies revealed that NFAT function is not just limited to
T cell activation but it also actively functions in differentiation of
effector T cell subsets such as Th1, Th2, Th17, Treg, and Tfh cells.
Based on better understanding of molecular mechanism of NFAT
by direct interaction with T-bet, GATA3, RORγt, FOXP3, and
BCL6, or by promoter binding to control T cell differentiation-
related genes, we now are able to suggest a strategy to develop
specific NFAT inhibitor to control a particular function of NFATs.
Unlike other calcineurin-dependent NFAT proteins, NFAT5 in
T cells is just recently recognized that it seems to be involved
in thymocyte development and T cell survival and proliferation.
Interestingly, it could be activated under high salt condition
in T cells to commit more pathogenic Th17 differentiation in
multiple sclerosis model. While it is still questionable whether
specific NFAT5 inhibition in T cells would be beneficial for
autoimmunity, it could be worth to investigate as a new target of
NFAT inhibition for treating autoimmune diseases. As previously
developed NFAT targeting drugs show significant adverse effects
owing to the diverse calcium signaling-related target genes of
NFAT proteins, a novel strategy either targeting specific NFAT
family members or molecular interference of NFAT binding
proteins will be more beneficial for controlling T cell function
and autoimmune diseases.
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