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In the biology of multiple myeloma (MM), immune dysregulation has emerged as a

critical component for novel therapeutic strategies. This dysfunction is due to a reduced

antigen presentation, a reduced effector cell ability and a loss of reactive T cells against

myeloma, together with a bone marrow microenvironment that favors immune escape.

The Programmed Death-1 (PD-1) pathway is associated with the regulation of T cell

activation and with the apoptotic pathways of effector memory T cells. Specifically, the

binding with PD-1 ligand (PD-L1) on the surface of tumor plasma cells down-regulates

T cell-proliferation, thus contributing to the immune escape of tumor cells. In relapsed

and/or refractory MM (RRMM) patients, PD-1/PD-L1 blockade was analyzed by using

nivolumab, pembrolizumab, and durvalumab. Outcomes with single agents were

unsatisfactory, whereas combination strategies with backbone immunomodulatory drugs

(IMiDs) suggested a synergistic action in such a complex immunological landscape, even

in patients previously refractory to these drugs. Nevertheless, these combinations were

also associated with an increased incidence of adverse events. This review aims to

analyze the available preclinical and clinical data on the role of PD-1/PD-L1 inhibitors

in MM therapy, focusing on available preliminary efficacy and safety data and offering

insights for future investigation.
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INTRODUCTION

In the pathogenesis of multiple myeloma (MM), the immortalization of a MM propagating
cell is induced by an initiating “hit.” The subsequent accumulation of genetic “hits” in a
multistep process leads to the typical MM characteristics: the proliferation of monoclonal
plasma cells and the consequent overproduction of immunoglobulin or light chains that can
cause end-organ damage and specific symptoms (i.e., bone disease, anemia, renal failure, and
hypercalcemia) (1, 2). Moreover, an important role is also played by the interactions between the
microenvironment—which includes the immune system where the tumor grows—and the MM
cells (3). In general, the immune system can potentially recognize a tumor and reject it. Natural
killer (NK) cells may detect tumor cells by their typical, although aspecific, tumor characteristics
(such as upregulated cell stress ligands and/or downregulated major histocompatibility complex
[MHC]) and kill them. Then, dendritic cells (DCs) and macrophages can internalize and process
cell products and present derived molecules to B and T cells (4–6). T- and B-cell activation
causes the proliferation of cell clones and the production of tumor-specific antibodies, with
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the final goals of eliminating the remaining tumor cells and
generating immune memory to prevent tumor recurrence (7).
Through this process, a strongly immunogenic tumor in a
highly immunocompetent subject could potentially eradicate the
tumor. In the cases of less immunogenic tumors and/or less
immunocompetent individuals, some cancer cells can survive
despite remaining under immunosurveillance. Nevertheless, at
a certain point, changes in the tumor expression of antigens
can allow the tumor to avoid immunosurveillance. Similarly, a
weakened immune system can be less efficient in maintaining
the tumor under control and, as a consequence, it favors
the tumor escape (8). A progressive immune dysregulation
strongly characterizes MM, whose plasma cells can easily escape
immunosurveillance through many possible mechanisms, such
as the deficient B-cell immunity, the expansion of regulatory T
cells (Tregs), the DC dysfunction, and the reduction of T-cell
cytotoxicity.

The potential role of immunosurveillance on tumor
control is the rationale for the use of the immuno-oncology
approach in cancer treatment, including MM. Immune
checkpoint interactions have emerged as a major mechanism
for immunosurveillance and evasion. Immune checkpoint
blockade enhances antitumor immunity by blocking cytotoxic
T-lymphocyte antigen 4 (CTLA-4) and programmed cell death 1
(PD-1) or PD-1 ligand (PD-L1). Monoclonal antibodies (mAbs)
targeting checkpoint pathway on immune and tumor cells
(known as checkpoint inhibitors) proved to be effective in several
tumors. Ipilimumab, pembrolizumab, nivolumab, atezolizumab,
durvalumab, and avelumab are currently approved by the Food
& Drug Administration (FDA) (9). Check-point inhibitors also
showed specific side effects, defined as immune-related AEs
(irAEs): in fact, they can cause inflammation due to an increased
activity of the immune system (9) (see section Immune-Related
AEs). Results on solid tumors and on other hematologic cancers
provided the basis to evaluate their effectiveness and safety in
MM.

RATIONALE FOR CHECKPOINT
INHIBITION IN MULTIPLE MYELOMA

PD-1/PD-L1 Pathway in Normal Cells and
Myeloma Cells
The immune dysfunction is critical for the genesis of MM
and various cells are involved. NK cells show quantitative and
functional changes, with a decrease during the advanced disease
phase. In this sense, NK cell-mediated cytotoxicity (particularly
when enhanced) is a promising target for immunotherapies,
mainly for immunomodulatory drugs (IMiDs) and novel mAbs.
Also T-cell immunity and the antigen-presenting ability of DCs
present some issues: there is a selective loss of myeloma-specific
lymphocytes (NKT-cells, γδ T cells) and a coexistent rise in
suppressor cells, including regulatory T cells and MDSCs, within

Abbreviations: MM, multiple myeloma; NK, natural killer; DC, dendritic cells;

MDSC, myeloid-derived suppressor cells, TCR, T cell receptor; MHC-Ag, major

histocompatibility complex-antigen; PD-1, programmed cell death 1; PDL-1,

programmed cell death ligand 1.

the bone marrow microenvironment and in the peripheral blood
(10, 11).

In the presence of malignant plasma cells, immune tolerance
is fostered by immune checkpoint pathways, which usually help
maintain the immune equilibrium. The PD-1 is part of the CD28
receptor family, and is expressed on activated B cells, monocytes,
T cells, and NK T cells (12). PD-L1 and PD-L2 are expressed on
antigen-presenting cells, including macrophages and DCs (13)
(Figure 1). PD-L1 is also expressed on non-hematopoietic cells
(solid-tumor, endothelial, and epithelial cells) and consequently
helps in protecting tissues against immune-mediated injury
(14, 15).

PD-1-PD-L1/PD-L2 ligation inhibits Th1 cytokine secretion,
T cell proliferation (thus promoting T-cell apoptosis), and
cytotoxic T lymphocytes (CTL)-mediated killing. This pathway
is fundamental in the physiologic setting, preserving the
immunologic balance after the initial T-cell response, which
prevents collateral tissue damage, overactivation, and the
irregular increase in autoreactive T cells (16). In presence
of malignancy, the upregulation of the PD-1/PD-L1 pathway
prevents tumor-reactive T cells to be activated and functioning,
thus fostering immune escape and tumor growth (17, 18).

For these reasons, the potential benefit of antibody blockade of
the PD-1/PD-L1 pathway has been evaluated in patients affected
by solid tumors such as renal cancer, melanoma, non-small
cell lung cancer, and hematologic malignancies (e.g., Hodgkin
Lymphoma and MM).

Preclinical studies showed a higher expression of PD-L1 on
MM patients’ plasma cells rather than on plasma cells isolated
from patients with monoclonal gammopathy of undetermined
significance (MGUS) or on normal plasma cells (19). Rosenblatt
et al. detected the PD-1 expression on circulating T cells in
progressive MM patients, whereas the PD-1 expression on T-
cells was reduced in patients with response after high-dose
chemotherapy. They also examined PD-1 inhibition on ex vivo
T-cell response to DC/tumor fusions (“a cancer vaccine in which
autologous tumor was fused with dendritic cells, resulting in the
presentation of tumor antigens in the context of DC-mediated
costimulation”). By using an anti-PD-1 antibody, they promoted
the polarization of T cells toward an activated phenotype that
expressed Th1 compared with Th2 cytokines and the reduction
and the killing of regulatory T cells (16, 20). As a consequence,
the PD-1/T cells binding causes anergy (mainly through a
blockade of B7-H1 [B7 homolog 1 protein]-PD-1 interaction)
and apoptosis (through the inhibition of the anti-apoptotic
gene bcl-xL and the activation of the proapoptotic gene Bim)
(21, 22).

Moreover, PD-L1 is also expressed on the bone marrow
microenvironment accessory cells, such as plasmacytoid DCs and
MDSCs. In in vitro experiments, PD-1 inhibition restored the
ability of plasmacytoid DCs to generate CTL killing of myeloma
targets (23–25). PD-L1 on MDSCs may synergize with tumor
cells to induce tolerance; therefore, its blockade may contribute
to the inhibition of MM cell growth. Finally, PD-1 expression is
increased on MM patient-derived NK cells, with an associated
loss of effector cell function, which can be subsequently restored
by the PD-1 blockade (26).
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FIGURE 1 | Mechanism of action of PD-1/PD-L1 inhibitors in MM. In patients with MM, PD-L1 is expressed on MM and bone marrow microenvironment accessory

cells; PD-1 on NK cells and T cells. PD-1/PD-L1 signaling in patients with MM inhibits the function of these immune cells, allowing MM to escape death. Both

anti-PD-1 and anti-PD-L1 mAbs prevent this interaction.

PD-1/PD-L1 Inhibitors in Multiple
Myeloma: Preclinical Data and Synergism
With Other Compounds and Strategies
PD-1 blockade alone is clinically most effective in tumors (e.g.,
melanoma and lymphoproliferative diseases) that show high
levels of infiltrating effector cells in the tumor background and

a high mutational burden, which can result in the production of

neo-antigens and non-self epitopes hit by high-affinity T cells.
Conversely, MM presents a limited neo-antigen profile, with a

less intense infiltration of effector cells and a lower mutational
activity than in solid tumors (27). In fact, MM pre-clinical studies

showed that checkpoint blockade efficacy could be improved

if associated with treatments able to intensify the activity
of myeloma-reactive T cells, such as transplantation, cellular

therapies, anti-CD38 antibodies, chimeric antigen receptor
(CAR) T cells, and IMiDs.

IMiDs enhance T-cell responsiveness to antigen-presenting

cells (APC), polarize T cells toward a Th1 phenotype, inhibit
MDSC and Tregs, and downregulate PD-L1 expression on tumor

cells (28–30). In particular, lenalidomide promotes apoptosis in

cancer cells and stimulates NK and T cells, favoring NK-mediated
tumor detection and killing (31).

In a preclinical study, NK cells and T cells were sorted by

fluorescence-activated cell sorting (FACS) and then separately co-
cultured with CD138+ MM cells from relapsed and/or refractory

MM (RRMM) patients, plus anti-PD-1, anti-PD-L1, together or
alone, and in association with lenalidomide. As a consequence,
Görgün et al. demonstrated that the anti-myeloma toxicity
deriving from the effector cells is enhanced by the PD-1/PD-
L1 inhibition. Compared to T cells, NK cells showed a higher
cytotoxicity. Moreover, the cytotoxicity induced by lenalidomide
was further increased by checkpoint blockade (30). In another
study, isolated CD4+/CD8+ T cells and NK cells from patients
with MM were co-cultivated with autologous plasmacytoid DCs,
together with the anti-PD-L1. In this way, Ray et al. proved
that the use of anti-PD-L1 activated more deeply CD8+ T-
and NK-cell cytotoxicity rather than CD4+ T-cell mediated
killing (24).

Promising clinical results observed with IMiDs and anti-PD-1
combinations encouraged subsequent studies with agents that
induce immune activation in the tumor microenvironment while
stimulating myeloma cell killing. The anti-CD38 daratumumab
kills malignant PCs through traditional antibody-dependent
cellular cytotoxic mechanisms that are potentially able to
control myeloma disease. In responding patients, daratumumab
depletes subpopulations of Tregs and MDSCs in the myeloma
microenvironment, stimulates T-cell expansion and increases
T-cell clonality (32). These findings constituted the rationale
for daratumumab associated with PD-1/PD-L1 blockade
with or without IMiDs (NCT01592370, NCT03000452, and
NCT02431208).
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The anti-SLAMF7 monoclonal antibody elotuzumab has a
dual mechanism of action that directly activates NK cells and
causes the induction of NK cell-mediated antibody-dependent
cellular cytotoxicity. A study on a mouse tumor model showed
that the efficacy of elotuzumab was significantly higher when
coadministered with anti-PD-1 antibody, thus promoting tumor-
infiltrating NK and CD8+ T-cell activation, as well as augmented
intratumoral cytokine and chemokine release. These data
provided the rationale for the evaluation of elotuzumab/anti-PD-
1 combination in MM patients (33).

It has been shown that cytotoxic therapy depletes suppressor
populations and favors the reactivation of myeloma immunity.
In a murine model, PD-L1 inhibition was given after stem-cell
transplantation and cell vaccination administration, improving
the survival of myeloma-bearing mouse models from 0 to 40%
(34). One study showed that lymphopoietic reconstitution after
stem-cell transplantation resulted in the depletion of regulatory
T cells and the concomitant expansion of some MM clones. The
inhibition of PD-1 significantly enhanced the proliferation and
cytokine production of CD8+CD28negPD-1+ T cells. Nivolumab
treatment also increased the secretion of the cytokines IFNγ, IL2,
and TNFα. These results suggested that checkpoint blockade can
potentially improve or restore T-cell responses in this patient
population (35). This provides the rationale to study this drug
as maintenance in the post-transplant setting.

In the context of MM, the efficacy of PD-1/PD-L1 blockade
may also be favored by the use of tumor vaccines, which can be
administered for the expansion ofMM-reactive T-cell clones and,
as a consequence, for the activation with checkpoint blockade
(20, 36).

Very recently, DC vaccination associated with PD-1 blockade
and lenalidomide was investigated by Vo et al. in a myeloma-
bearing mouse model. This combination inhibited myeloma
tumor growth more effectively than other groups of agents,
reducing immune suppressor cells (such as MDSCs, M2
macrophages, and Tregs), increasing immune effector cells, and
enhancing the activity of NK cells and CTLs. This established a
strong two-way anti-myeloma immunity through the inhibition
of immunosuppressive cells and the activation of effector
cells (37).

Interestingly, the combination of a PD-1 antibody with a CAR
T cell showed an improved efficacy, even if the overexcitation of
immune effectors could result in potential toxicity. In the study
by Cherkassky et al. (38), the effector function of CD28 CAR
T cells in a pleural mesothelioma-bearing orthotopic murine
model was restored by the use of PD-1 antibody checkpoint
blockade. These results allowed an improved understanding of
the exhaustion of human CAR T-cell in solid tumors, suggesting
that the effectiveness of CAR T-cell therapies may be improved
by PD-1/PD-L1 blockade also in the context of hematological
malignancies (38). Further studies are needed for the evaluation
of the potential synergism of CAR-T therapies and anti-PD-
1/PD-L1 checkpoint inhibitors in MM.

PD-1 blockade may also be effective when combined with
radiotherapy, resulting in epitope spreading and increased
antigen presentation by local APC (39). Temporal PD-
L1 upregulation in the irradiated tumor suggested intrinsic

mechanisms that inhibit immune responses after radiotherapy,
and provided the rationale for blockade of PD-L1 combined with
radiotherapy to overcome these mechanisms (40).

PD-1/PD-L1 MONOCLONAL ANTIBODIES:
UPDATED CLINICAL RESULTS AND
SAFETY CONSIDERATIONS

MAbs targeting both PD-1 (pembrolizumab and nivolumab) and
PD-L1 (durvalumab) have been evaluated for MM treatment.

Nivolumab is a human IgG4 mAb that blocks the interaction
with PD-L1 and PD-L2 by binding to the PD-1 receptor on
activated immune cells (13). Nivolumab has a very high binding
affinity to PD-1 with about 80% of saturation reached in <1
day following a single nivolumab infusion at 3 mg/kg; PD-1
occupancy is higher than 70% for almost 60 days, with detectable
levels of PD-1 receptor occupancy for more than 3 months
(41). Nivolumab clearance is not affected by renal or hepatic
impairment (42).

Nivolumab as single agent did not show objective responses
in a phase Ib trial enrolling 27 RRMM patients (43). The
reasons for the lack of effectiveness in MM are unclear, but
they may be related to the immunosuppressive nature of the
microenvironment. To be effective, immune checkpoint therapy
requires T cells to be able of being activated and, consequently, to
have an exhausted phenotype instead of an anergic or senescent
one (the key for therapeutic response is considered the reversal
of exhausted T cells, rather than the genesis of new ones).
In clinical studies on MM, clonal cytotoxic CD8+ T cells are
the only T cells that showed to have an impact on survival;
however, they did not show the exhausted phenotype. Rather,
their phenotype (CD8+TCRVβ+CD57+CD28−) suggested the
presence of terminally differentiated, antigen-specific, senescent
cells that were no more able to proliferate after stimulation.
Besides, in contrast with solid tumors and tumor-infiltrating
lymphocytes, the low expression of PD-1 on clonal bone marrow
cytotoxic T cells suggested that, in MM, the local immuno-
suppressive mechanisms involving PD-1/PD-L1 interactions are
less active (44).

Combinations of nivolumab with pomalidomide-
dexamethasone (Pd) and other mAbs, such as daratumumab
(NCT01592370) and elotuzumab (NCT02726581), have been
designed in more recent trials, but data are still not available.

Durvalumab is a human IgG1k antibody targeting PD-L1.
Weight-based durvalumab dose (10 mg/kg every 2 weeks) and
fixed durvalumab dose (1,500mg every 4 weeks or 750mg every
2 weeks) demonstrated similar PK features, with patient and
disease characteristics that did not affect drug bioavailability
(45). In the MM setting, no clinical data on durvalumab are
available and phase I studies investigating durvalumab plus
IMiDs are currently on clinical hold on the basis of the results
of the KEYNOTE-183 and KEYNOTE-185 trials, which will be
described below.

Pembrolizumab is an IgG4k humanized anti-PD-1 mAb.
Neither pharmacokinetics nor renal/hepatic impairment are
affected by age, thus dose adjustments are not needed (46).
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In MM, no data are available on pembrolizumab as
single agent. In a phase I study including RRMM patients,
pembrolizumab (maximum tolerated dose: 200mg every 21
days) associated with lenalidomide-dexamethasone (Rd) showed
a partial response (PR) rate of 50%. Any-grade treatment-related
AEs occurred in 48 (94%) patients, albeit grade ≥3 AEs were
observed in 33 (65%) patients. Grade 3 irAEs included increase
in transaminases (2%), and renal failure (2%).

Pembrolizumab (200mg every 2 weeks) was also combined
with Pd, showing a PR rate of 60% (47, 48). Thirty-five
(73%) patients experienced any-grade treatment-related AEs,
albeit ≥3 AEs were observed in 20 (42%) patients. Grade 3–4
irAEs included hypothyroidism (4%), adrenal insufficiency (2%),
hepatitis (2%), and pneumonitis (2%).

Based on these studies, two randomized phase-III trials
were designed. In the KEYNOTE-185 trial (NCT02579863),
pembrolizumab-Rd vs. Rd alone was investigated in transplant-
ineligible NDMM patients. On the 3rd of July, 2017, after
that interim data had been presented to the Data Monitoring
Committee (DMC), the FDA put a hold on the trial because
of an increase in deaths in the pembrolizumab arm. Three
hundred and one of the planned 640 patients were enrolled
(median age 74 years). After a median follow-up of 6.4 vs. 6.9
months, there were 19 (13%) deaths in the pembrolizumab-
Rd arm (6 from PD, 13 from AEs) vs. 9 (6%) patients in the
Rd arm (1 from PD, 8 from AEs); 6 (4%) treatment-related
deaths were observed; 4 (3%) were related to pembrolizumab (1
cardiac arrest, 1 pneumonia; 1 myocarditis, 1 cardiac failure).
The other AEs that led to death were: cardiorespiratory arrest
and pulmonary embolism (2 patients each), intestinal ischemia,
large intestinal perforation, sudden death, suicide, and sepsis (1
patient each). In the Rd arm, the AEs that led to death were
myocardial infarction and sudden death (2 patients each), acute
cardiac failure, upper intestinal hemorrhage, respiratory failure
(1 patient each). This translated into an increased risk of death
with pembrolizumab (HR for OS: 2.06; 95% CI 0.93–4.55; P =

0.97). The rates of severe (grade 3–5) toxicities were 72% in
the experimental arm vs. 50% in the control arm. The rates of
serious AEs (SAEs) were 54 vs. 39%, respectively. The rates of
discontinuation for AEs were 21 vs. 8%, respectively. AEs (all
grades) with more than 5% of difference between arms included:
constipation, pyrexia, vomiting, rash, hypothyroidism, oral
candidiasis, hyperthyroidism, pruritus, pneumonia, and decrease
appetite. In the pembrolizumab-Rd arm, irAEs reported in ≥2%
of patients included: hypothyroidism (7%), hyperthyroidism
(6%), colitis (2%), and skin reactions (13%). Median progression-
free survival (PFS; HR 1.22; 95% CI 0.67–2.22, P = 0.75) was not
reached in neither arm (49).

The second trial, KEYNOTE-183 (NCT02576977), evaluated
pembrolizumab-Pd vs. Pd alone in RRMM patients who received
≥2 lines of treatment including an IMiD and a proteasome
inhibitor (PI). Similarly to what happened with KEYNOTE-185,
the FDA halted the trial on the 3rd of July, 2017 on the basis
of interim data provided to the DMC. The study enrolled 249
of the planned 300 patients (median age: 65 vs. 67 years in
pembrolizumab-PD vs. PD arms, respectively, median duration
of therapy 4.4 cycles). After a median follow-up of 7.8 vs. 8.6

months, 29 (23%) vs. 21 (17%) patients died (16 from PD, 13 from
AEs vs. 18 from PD, 3 from AEs). In the pembrolizumab-Pd arm,
4 (3%) treatment-related deaths occurred: 2 (1.5%) were related
to pembrolizumab (1 myocarditis, 1 Steven-Johnson syndrome
[SJS]); 1 patient died of neutropenic sepsis. The other AEs that
led to death were sepsis (3 patients), pericardial hemorrhage,
myocardial infarction, cardiac failure, and respiratory tract
infection (1 patient each). In the Pd arm, the AEs that led
to death were pneumonia and anemia (1 patient each). The
median OS was not reached vs. 15.2 months (HR, 1.61, 95%
CI, 0.91–2.85; P= 0.95) in the pembrolizumab-Pd vs. Pd arm.
The rate of grade 3–4 AEs was 75% in the experimental arm
vs. 63% in the control arm. The rates of SAEs were 63 vs. 46%,
respectively, 20 vs. 8% discontinued for AEs. AEs (all grades)
occurred in≥20% of patients were: neutropenia, anemia, fatigue,
constipation, pyrexia, pneumonia, and thrombocytopenia. No
SAEs had more than 5% of difference between arms. In the
pembrolizumab-Pd arm, irAEs included: skin reaction (5%),
pneumonitis (4%), hyperthyroidism (3%), infusion reaction and
myopathy (2% each), SJS, myocarditis, hepatitis, and iridocyclitis
(1% each). Median PFS was similar between the two arms (5.6 vs.
8.4 months; HR 1.53, 95% CI 1.05–2.22; P = 0.98) (50).

Both trials determined that the risk-benefit profile of adding
pembrolizumab to Rd or Pd was unfavorable.

Immune-Related AEs
The precise pathophysiology of irAEs is unknown, although
likely related to the ability of immune checkpoints of preserving
the normal immunologic homeostasis. These irAEs generally
develop within a few weeks or months from the start of
treatment, but they may occur at any time, including after
stopping therapy (9). Although every organ system may be
affected, irAEs usually involve skin, gastrointestinal tract, liver,
and endocrine glands (51). Causes of severe irAEs remain
unclear. One of the hypotheses was prompted by the association
with underline germline genetic factors, since genes may
influence the risk of specific autoimmune disorders. Another
hypothesis was the association with the patient microbiota
(9). It is important to promptly identify the occurrence of
irAEs. Most of the times, the diagnosis and the treatment
are based on patient-related symptoms, but sometimes blood
test and/or imaging can be helpful (e.g., for hepatitis, colitis,
or pneumonia). The optimal management is based on clinical
experience, mainly in the treatment of solid tumors, since
no prospective trials are available. The backbone of irAE
therapy is immunosuppression with corticosteroids, with the
addition of other immunosuppressive agents if there is no rapid
improvement. Most of AEs promptly resolve, and available data
do not show a negative impact of immunosuppression on the
effectiveness of checkpoint inhibitors (52).

AEs provided evidence of activation of the patient immune
system, but irAEs are not required for efficacy. Data from the
literature on the correlation between the occurrence of irAEs and
treatment efficacy are controversial (9). A post-hoc analysis of
KEYNOTE-183 and KEYNOTE-185 was performed to examine
the correlation between irAEs and efficacy. In the KEYNOTE-
185 study, 68 vs. 44% of patients in the pembrolizumab-Rd vs.
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Rd arms had an irAE (grade ≥3: 36 vs. 8%). Despite the overall
higher rate of irAEs in the pembrolizumab-Rd arm, the overall
response rate (ORR) was similar to the one in the Rd arm (64
vs. 62%). Nevertheless, in the pembrolizumab-Rd arm, ORR was
higher in patients who experienced an irAE, as compared to
patients who did not (73 vs. 45%). Similarly, in the Rd arm, the
ORR was 73% in patients with an irAE vs. 53% in those without
(53). These results might suggest that anti PD-1 aremore effective
in patients with activation of the immune system (evidence
of which can be considered the development of irAEs). The
KEYNOTE-183 study enrolled RRMM patients, who typically
have a less effective immune-system as compared to NDMM
patients. In this study, both the rate of irAEs and the differences
between arms (58 vs. 45% of patients in the pembrolizumab-
Pd vs. Pd arms; grade ≥3: 18 vs. 13%) were lower if compared
to the NDMM setting (KEYNOTE-185). In the pembrolizumab-
Pd arm, the ORR was 37% in patients who developed an irAE,
not significantly different than the rate in those without an irAE
(31%). In the Pd arm, a trend was noted for improved ORR (49%)
in patients who experienced an irAE, as compared to 33% in those
who did not. Altogether, these results suggest a higher risk of
irAEs in NDMM patients, who probably have a more effective
immune system as compared to heavily pretreated patients. A
higher effectiveness of PD-1 inhibitors in patients with irAEs still
needs to be demonstrated.

CONCLUSION

During the last decade, therapeutic strategies in MM patients
have vastly improved thanks to the introduction of mAbs in
association with backbone regimens. Based on pre-clinical data,
the PD-1/PD-L1 axis may be a good target for mAbs, allowing
immune cells to detect and kill neoplastic cells. However, the
outcomes of checkpoint blockade alone in MM are inferior to
the ones obtained in solid tumors, most likely due to the reduced

immune function typical of the immune system of patients
affected by MM. In phase II trials, potentially better results have
been observed in association with IMiDs, probably due to the
possible synergistic effect on the immune system. Nevertheless,
despite these promising preliminary data, the toxicity reported in
two randomized phase III trials with pembrolizumab associated
with lenalidomide and pomalidomide led the FDA to halt trials
exploring these combinations. The safety concerns are related to
the mechanism of action of both drug classes, as they modify
the behavior of immune cells. Moreover, patients treated with
mAbs receive continuous therapy with steroids, either as part of
treatment or to reduce irAEs. This leads to immunosuppression
and may increase the risk of infections, which can ultimately
cause drug discontinuation and reduce the efficacy of the
treatment itself.

The effective possibility to modulate the immune system
would be a great advancement. However, there are still many
open issues. We need to ponder how to select and monitor
patients for this typology of treatment, and to determine the best
and safest drug combination as well as the most suitable time
point of administration during the disease course. Moreover, the
detection of biomarkers that can potentially predict responses
and/or toxicities might help clinicians balance efficacy with
safety.

To conclude, more mature safety data and a deeper analysis
of the biologic mechanisms will be essential to understand if PD-
1/PD-L1 inhibitors may be included in the armamentarium for
the treatment of MM patients.
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