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The secondary injury cascade that is activated following traumatic brain injury (TBI)

induces responses from multiple physiological systems, including the immune system.

These responses are not limited to the area of brain injury; they can also alter

peripheral organs such as the intestinal tract. Gut microbiota play a role in the regulation

of immune cell populations and microglia activation, and microbiome dysbiosis is

implicated in immune dysregulation and behavioral abnormalities. However, changes

to the gut microbiome induced after acute TBI remains largely unexplored. In this

study, we have investigated the impact of TBI on bacterial dysbiosis. To test the

hypothesis that TBI results in changes in microbiome composition, we performed

controlled cortical impact (CCI) or sham injury in male 9-weeks old C57BL/6J mice.

Fresh stool pellets were collected at baseline and at 24 h post-CCI. 16S rRNA based

microbiome analysis was performed to identify differential abundance in bacteria at

the genus and species level. In all baseline vs. 24 h post-CCI samples, we evaluated

species-level differential abundances via clustered and annotated operational taxonomic

units (OTU). At a high-level view, we observed significant changes in two genera after TBI,

Marvinbryantia, and Clostridiales. At the species-level, we found significant decreases

in three species (Lactobacillus gasseri, Ruminococcus flavefaciens, and Eubacterium

ventriosum), and significant increases in two additional species (Eubacterium sulci, and

Marvinbryantia formatexigens). These results pinpoint critical changes in the genus-level

and species-level microbiome composition in injured mice compared to baseline;

highlighting a previously unreported acute dysbiosis in the microbiome after TBI.

Keywords:microbiome, gut-brain axis, Lactobacillus, brain damage, gutmicrobes, traumatic brain injury, bacterial

dysbiosis, controlled cortical impact injury

INTRODUCTION

Traumatic brain injury (TBI) is a major cause of death and disability that represents one of the most
prevalent injury types sustained by the worldwide population (1). It is known to cause a massive
neuronal loss and oxidative stress in the cortical region around the site of the impact formed (2, 3).
Brain injuries also cause imbalances and gastrointestinal dysfunction (4). Specifically, gut barrier
dysfunction results from high plasma levels of endotoxins and increased intestinal permeability
following TBI (5), and evidence also points to an effect of commensal gut microbiota on the brain,
now often referred to as the microbiome-gut-brain axis.
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The bidirectional influence of the gut-brain axis that
modulates the neuroinflammatory process occurring at the
time of the TBI and over hours, days, or weeks that
follow. The gut microbiota can also influence brain function
and behavior through the peripheral and central immune
system, affecting to the circulating cytokines, which can
act on corresponding receptors in neurons, glial cells, and
endothelial cells to induce behavioral changes (6–8). As
an example, the gut microbiome has emerged as a potent
regulator of the immune system; inflammatory changes that
occur after brain trauma are immediate and illustrate how
cortical injury can lead to inflammatory consequences in
the lining of the gastrointestinal mucosa (9). Gut microbiota
likely plays a role in regulating intestinal barrier function
that prevents the penetration of pathogenic compounds,
and intestinal barrier dysfunction has been associated as a
consequence of TBI (10). Healthy gut microbiota is critical
for preventing bacterial translocation. Regulating diversity
and balance in the healthy gut is still an active area of
research, pioneered by the Human Microbiome Project (11)
and MetaHIT (12, 13) projects that surveyed an extensive
collection of healthy and unhealthy adults to get a better
understanding of what it means to have a “healthy” gut
microbiome (14).

Recently, the gastrointestinal system has been identified as
being impacted by brain injury. Evidence supporting a bi-
directional communication between the gut and brain includes
changes to the mouse microbiome in animal models of brain
ischemia (15) and spinal cord injury (14) and how intestinal
dysbiosis alters immune homeostasis and injury recovery (6, 16).
There is no data on the gut microbiome in TBI, however
moderate to severe brain trauma in humans reduces gastric
emptying (17) and intestinal contractility (18). Experimental TBI
in mice caused a breakdown in the gut barrier with increased
intestinal permeability, resulting in high levels of endotoxins
(5, 19).

Changes to the gutmicrobiome represent a therapeutic avenue
for the treatment of TBI due to the communication between
injured brain and disruptions of the gut microbiome and its
relation on the neuropathology of injury. In this study, we have
analyzed microbial changes that occur 24 h after TBI in mice.
Our results demonstrate that CCI causes a rapid shift in relative
abundance of five species, including changes in the diversity
of the psychoactive Lactobacillaceae family and protective
Lachnospiraceae family, both commonly found in the human gut
microbiome.

METHODS

Mice and Controlled Cortical Impact Injury
9-weeks-old male C57BL/6J mice were housed in a room
maintained at a condition with 12 h light dark cycle, two
mice per cage, eight mice per group. Daily fecal samples were
pooled and redistributed amongst all of the experimental cages.
Controlled Cortical Impact (CCI) injury was conducted as
previously described (20). Sham mice received all procedures
except contusion. Feces samples were obtained from each

mouse temporarily housed individually in a sterile cage
without bedding and collected in sterile tubes 1 day before
and 1 day after CCI injury. Mice were euthanized with
CO2 following the Institutional Animal Care and Use
Committee (IACUC) a standard procedure for euthanasia.
All animal experiments were performed in accordance
with approved protocol # 2017-0077 from Georgetown
University Institutional Animal Care and Use Committee
and comply with the approved institutional guidelines and
regulations.

Fecal DNA Extraction
Genomic bacterial DNA was isolated from frozen stool
samples using the QIAamp Fast DNA Stool Mini Kit
(Qiagen). Snap-frozen fecal samples stored at −80◦C
were added to sterile tubes and treated as described in
the manufacturer’s instructions. The tubes containing the
pretreated samples were placed into a homogenizer and
disrupted. The concentration of the extracted genomic DNA was
qualified with Nanodrop 2000 UV spectrophotometer (Thermo
Scientific).

Sequencing of 16S rRNA V3–V4 Regions
The gene-specific sequences used in this protocol target the
16S V3 and V4 region. Sequencing libraries of the V3–V4
region were prepared according to the Illumina MiSeq system
instructions. 16S bacterial rRNA gene were amplified using
polymerase chain reaction (PCR) amplification with V3 and
V4 region primers: (forward: 5’ TCGTCGGCAGCGTCAGAT
GTGTATAAGAGACAGCCTACGGGNGGCWGCAG; and
reverse:5’GTCTCGTGGGCTCGGAGATGTGTATAAGAG
ACAGGACTACHVGGGTATCTAATCC) for the first PCR
and Nextera XT. Amplicons were generated using primers
corresponding to the hypervariable regions, and the PCR
products were purified. A library was created by targeting
the 16S V3 and V4 regions. Sequencing was performed
via Illumina MiSeq platform using a 300 bp paired-end
libraries.

Operational Taxonomic Units (OTU) and
Statistical Analyses
The sequences generated from PCR-amplified 16S rRNA
genes were quality inspected and filtered using Trimmomatic.
We clustered the reads using DNAclust (21) into OTUs,
normalized using Cumulative Sum Scaling, and assessed
differential abundance with metagenomeSeq. QIIME2 was
used to perform alpha and beta diversity analyses (qiime
diversity core-metrics) and longitudinal (qiime longitudinal
pairwise-differences) and volatility analyses (qiime longitudinal
volatility). Log-fold change analysis and feature inspection
were performed with MetaViz platform (22) and, interactive
relative abundance plots were generated using Krona (23) and
QIIME2 (24). Statistically significant differences in species-
level relative abundance between paired samples were identified
both using the non-parametric Wilcoxon ranked sum test and
metagenomeSeq (25).
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RESULTS

Genus-Level Changes After Traumatic
Brain Injury
We have characterized the mouse gut microbiome using 16S
rRNA analysis of multiple stool samples following experimental
TBI. We found numerous bacterial species with significant
log fold decreases in abundance 24 h post-TBI compared

to either sham mice (baseline and 24 h) or their baseline
(Figure 1A). Specifically, the Lactobacillus genus relative
abundance noticeably decreased, by up to a 2 log fold change,
but this change was not statistically significant (p > 0.05).

However, Marvinbryantia (p < 0.05) and Clostridiales genera
(p < 0.05) both significantly increase after TBI (Figure 1A). The
Krona chart highlights the genus differential abundance in sham
mice, TBI-baseline and 24 h post-TBI mice. TBI-baseline and
sham exhibit similar compositions, while 24 h post-TBI Krona
plot highlights a subtle shift in the community composition
(Figure 1B).

Species-Level Changes After Traumatic
Brain Injury
The QIIME species barplot (Figure 2A) shows the overall
species-level relative abundance across both TBI and sham

FIGURE 1 | Family and Genus level changes before and after brain injury. (A) Box and whiskers plot shows the microbial community analysis using short-read

(Illumina) sequencing comparing TBI and Sham animals at baseline levels and 24 h after brain injury (n = 8/group). The genus Lactobacillus relative abundance is

noticeably decreased, by up to >2 log fold change (p > 0.05). The Marvinbryantia (p = 0.02) and Clostridiales genera (*p < 0.05) both significantly increase after TBI.

(B) Krona chart highlights the genus differential abundance in Sham mice, TBI-baseline and 24 h post-TBI mice. TBI-baseline and Sham exhibit similar compositions,

while 24 h post-TBI Krona plot highlights a shift in the community composition.
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FIGURE 2 | Species-level changes after acute brain injury. (A) The legend indicates each detected bacterial species, ordered from highest relative abundance to

lowest relative abundance (colors are repeated). Gray colored bars at the top of each column in the bar plot represents the highest relative abundance of any species:

Barnesiella intestinihominis. (B) TBI causes a significant decrease in Lactobacilus gasseri (****p < 0.0001), Ruminococcus flavefaciens (*p < 0.05), and Eubacterium

ventriosum (*p < 0.05) compared to baseline levels; and a significant increase in Eubacterium sulci (*p < 0.05), and Marvinbryantia formatexigens (*p < 0.05). TBI also

caused a decrease in L. gasseri (#p < 0.05) with the sham group (baseline and 24 h), (n = 8/group). (C) Krona chart highlights the relative differential abundance

within the Lactobacillus family after injury, showing a near complete loss of L. gasseri, johnsonii, and taiwainensis bacteria, leaving L. rogosae as the lone

representative in that genus after TBI.
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mice, at baseline and 24 h, with little to no noticeable patterns
in differential abundances across samples. However, when we
compared TBI group basal samples to TBI-24 h, we observed
a significant change in four bacterial species (Figure 2B).
Specifically, TBI caused a significant decrease in Lactobacillus
gasseri (∗∗∗∗p < 0.0001), Ruminococcus flavefaciens (∗p < 0.05),
and Eubacterium ventriosum (∗p < 0.05) compared to baseline
levels; and a significant increase in Eubacterium sulci (∗p < 0.05),
and Marvinbryantia formatexigens (∗p < 0.05). TBI also caused
a decrease in L. gasseri (#p < 0.05) with significant differences
observed in the sham group, indicating a possible shared stress
response. Lactobacillus gasseri after TBI decreased by more than
a 4-fold log change compared to basal animals (metagenomeSeq)
(Figure 2B). The Krona chart (Figure 2C) highlights the relative
differential abundance within the Lactobacillus family after
injury, showing a near complete loss of Lactobacillus gasseri,
johnsonii, and taiwainensis bacteria, leaving L. rogosae as the lone
representative in that genus after TBI. Specifically, L. gasseri is
the predominant member of the Lactobacillus genus in sham
and TBI-baseline mice, making up over 80% of the Lactobacillus
population (Figure 2C).

DISCUSSION

In this study, we describe acute changes in the gut microbiome
after brain damage in mice. Specifically, our findings suggest that
specific commensal microbiota might play a role in the recovery
from brain injury. Although, a link between TBI and intestinal
dysfunction was previously demonstrated (5, 19), the focus of
attention has shifted to gut microbiota as a critical factor in
the inflammatory, immunological, or anxiety-related response
and post-injury depression (26, 27).TBI causes a rapid shift in
microbiota diversity within 24 h of brain injury, including a
dramatic change in the diversity of the psychoactive Lactobacillus
family (Figure 2). We found significant increases and decreases
after TBI. Most of the identified differentially abundant species,
including L. gasseri, M. formatexigens, and E. ventriosum, are
known to inhabit the human gut microbiome (28), indicating
translational potential. If follow up studies prove fruitful; these
bacteria could potentially be translated to human TBI patients
for improved neuroinflammatory and neurological recovery.

We also observed significant changes in multiple bacterial
species. We found L. gasseri after TBI to decrease by a
more than 4-fold log change compared to basal animals.
Probiotic Lactobacillus strains have been associated with the
attenuation of anxiety deficits (29, 30). Also, previous studies
have demonstrated that Lactobacillus and Bifidobacterium species
may prevent chronic psychological stress, reduce apoptosis in
several brain regions, and improve learning and memory in
mice (29, 31). Curiously, L. gasseri was also decreased in sham
mice after 24 h. This decrease could be a consequence of stress
as it was previously described (32), due to the handling and
anesthesia of the sham mice that cause stress. Ruminococcus
flavieciens was also found to be decreased after brain injury.
This bacterium is most commonly found in the rumen of wild
and domesticated animals and has been previously associated
with stress response (33). A decrease of Ruminococcus spp
was previously documented in amyotrophic lateral sclerosis

patients with signs of intestinal inflammation (34). Also, patients
with Crohn’s disease have been found to have lower levels of
Ruminococcus albus than healthy individuals (35). We also found
an increase of E. ventriosum in the injured mice. This bacterium
was previously found to be increased in obese adults (36, 37)
suggesting that gut microbiota composition is related to obesity.
We did not find a correlation between the increased relative
abundance of E. ventriosum and weight. Finally, our results
also highlight an increase in the M. formatexigens species in
mice after TBI. M. formatexigens consumes oligosaccharides,
does not impact the redox state of the gut, and boosts the
yield of succinate (38). Interestingly, succinate receptors have
been found in the gut epithelium, representing a potential
therapeutic target for the succinate toxicity (39). These receptors
may mediate the local stress responses, including cerebral
ischemia, hypoxia or TBI. A recent study using a rat model of
TBI found phyla-level changes in alpha-diversity at 2 h post-
injury (40). The small number of sham animals (4 per group)
requiring follow-up studies to confirm these complementary
findings.

Probiotics may confer a health benefit to the brain function
and involved in the maintenance of the diversity of gut
microbiota (41, 42). Our findings raise the intriguing possibility
that probiotics may confer a health benefit to the brain following
TBI. Data from animal models of stroke and spinal cord
injury support the hypothesis that injury to the CNS causes a
downstream effect on the gut microbiome (15) and treatments
targeting biodiversity in the gut can impact CNS injury outcome
(6, 16). Though not yet explored for TBI, probiotic treatment
has been shown to affect the immune response by altering the
Th1/Th2 imbalance (43).

In summary, the role of microbes in gut-brain cross-talk
and the pathology of brain trauma represents a therapeutic
target for recovery from TBI. Based on these preliminary
findings, we hypothesize that repairing gut dysbiosis caused
by TBI using probiotic treatments might serve as a new tool
for reducing brain inflammation and improving anxiety and
depression phenotypes after TBI. Future follow-up studies will be
required to expand on research avenues indicated by our initial
findings.
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