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Although modern biologics targeting different inflammatory mediators show promising

therapeutic success, comprehensive knowledge about the molecular events in psoriatic

keratinocytes that contribute to the pathogenesis and could serve as therapeutic targets

is still scarce. However, recent efforts to understand the deregulated signal transduction

pathways have led to the development of small molecule inhibitors e.g., tofacitinib

targeting the Jak/Stat cascade that opens additional therapeutic options. Recently, the

PI3-K/Akt/mTOR signaling pathway has emerged as an important player in the control

of epidermal homeostasis. This review summarizes the current knowledge on the role of

this pathway in the pathogenesis of psoriasis, especially the epidermal manifestation of

the disease and discusses current approaches to target the pathway therapeutically.
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INTRODUCTION

Psoriasis is a common, chronic inflammatory skin disease that affects 2–3% of the population
and is associated with a reduced quality of life and a shortened life expectancy due to the
association with the metabolic syndrome and cardiovascular pathologies (1). Clinically psoriasis
presents with red, scaly plaques, which mostly affect predilection sites such as extensor surfaces
of forearms and shins, umbilical, perianal, retro-auricular regions, and scalp (2). These plaques
are characterized by epidermal hyperproliferation with impaired keratinocyte differentiation,
extravasation of lymphocytes, and angio(neo)genesis. Currently it is assumed that sustained
activation of plasmacytoid dendritic cells by epidermal antigens due to skin trauma or infection
is the first step in the pathogenesis of psoriasis (3). This induces the maturation of myeloid
dendritic cells, which in turn promote via secretion of IL-6, IL-12, and IL-23 the differentiation
of T cells into Th1 and Th17 cells (4). Their effector cytokines such as IL-17, IL-22, and TNF-α
induce and maintain hallmarks of psoriasis such as keratinocyte proliferation, and disturbed
differentiation, leading to epidermal acanthosis, hyperkeratosis, and parakeratosis (5). Activated
keratinocytes in turn produce important proinflammatory cytokines and chemokines that are able
to recruit a broad spectrum of inflammatory cells from the vascular system. Thus, a “vicious
circle” of excessive immune response, epidermal hyperproliferation, and neovascularization is
initiated, which leads to the complex clinical appearance of psoriasis (6). The immunological
events leading to the described epidermal changes are well understood and various “biologics”
against different inflammatory cytokines such as TNF-α, IL-17A, or IL-12/IL-23 show promising
results in the therapy of psoriasis (7). However, comprehensive knowledge about the intracellular
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epidermal processes induced by the immunological network,
and which could serve as potential therapeutic targets, is still
missing. There is some evidence that signaling pathways such
as Stat1, Stat2, and Stat3 (8–10), MAPK family kinases (11–14),
Wnt5a (15), or NF-kB (16–20) are dysregulated in the psoriatic
epidermis and some of them have been targeted by molecular
inhibitors (21, 22).

THE PI3-K/Akt/mTOR SIGNALING
CASCADE

The serine/threonine kinase Akt, also known as protein kinase B
(PKB), represents a crucial signaling point in eukaryotic cells and
plays a central role in the regulation of cellular processes such
as growth, proliferation, and metabolism (23). One of the main
downstream mediators of Akt is the mTOR signaling pathway.
mTOR (mechanistic target of rapamycin) occurs in two different
multiprotein complexes, both of which possess the mTOR kinase
as a catalytic subunit and share some regulatory proteins (mLST8,
Deptor), while other proteins are complex-specific. Specific
to the mTOR complex 1 (mTORC1) is the scaffold protein
Raptor, which regulates the assembly and localization of the
complex. This complex can be inhibited by rapamycin (24).
The rapamycin-insensitive mTOR complex 2 (mTORC2), on the
other hand, additionally consists of the scaffold proteins Rictor
and Protor1/2 and phosphorylates Akt on Ser473 (25) and thus
regulates proliferation and cell growth.

After ligand binding to cognate receptors such as tyrosine
kinase receptors (RTK) or G-protein-coupled receptors (GPCR)
phosphatidylinositol 3-kinase (PI3-K) becomes activated either
directly or via adaptor proteins like the insulin receptor
substrate 1 (IRS-1) (Figure 1). PI3-K mediates the synthesis of
3
′

-phosphoinositides (PIP3) at the plasma membrane, which
act as lipid-second messengers and recruit Akt and the
phosphoinositol-dependent-kinase (PDK1) to the membrane.
PDK1 can then activate Akt by phosphorylation on Thr308.
For complete activation of Akt, phosphorylation of Ser473
by mTORC2 is required. Fully activated Akt is then able to
phosphorylate a large number of signal molecules with different
functions in the control of growth, proliferation, metabolism, or
apoptosis (26). Akt and other signal molecules regulate the TSC
complex, consisting of TSC1 and 2 (Figure 1). This complex is an
important regulator of mTOR by acting as a GTPase-activating
protein for Rheb (Ras homolog enriched in brain). The GTP-
bound form of Rheb interacts directly with mTOR and activates
the complex (27, 28). Furthermore, Akt phosphorylates the
proline-rich Akt substrate of 40 kDa (PRAS40), whose inhibitory
interaction with mTOR is then dissolved (29), so that the mTOR
kinase is fully activated.

By phosphorylation of downstream molecules, mTORC1
regulates the biosynthesis of macromolecules necessary for
cellular growth and proliferation. By phosphorylating two key
proteins of translation initiation S6 kinase-1 (S6K-1) and
eukaryotic initiation factor 4E (eIF-4E) binding protein-1 (4E-
BP1), mTORC1 controls the rate of protein biosynthesis (30).
In particular, mTORC1 regulates the translation of mRNAs with

a so-called 5
′

TOP (5’terminal oligopyrimidine) motifs. These
mRNAs mainly code for ribosomal proteins and components of
the translation machinery (31), so that mTORC1 activity also
contributes to the general synthesis of proteins in this way.
Furthermore, mTORC1 controls the synthesis of lipids through
regulation of the transcription factor SREBP (32), the production
of nucleotides (33), and inhibits catabolic processes such as
autophagy (34).

mTOR SIGNALING IN PSORIASIS

Recently attention has been drawn to the PI3-K/Akt/mTORC1
cascade as a regulator of epidermal homeostasis and its putative
role in inflammatory skin diseases. Akt is highly activated in
all epidermal layers of psoriatic lesions (35), except the basal
Ki-67 positive layer that represents dividing cells (36). This
may be explained either by psoriatic keratinocytes that keep
their proliferative pathways turned on, even after leaving the
basal layer. Alternatively, Akt could prevent cellular apoptosis,
which also contributes to the fast maturation process of
psoriatic keratinocytes (37). Inhibition of PI-3K/Akt could be
a promising therapeutic strategy as the Vitamin D analog 1α,
25-dihydroxyvitamin D3-3-bromoacetate (BE) reversed IL-22-
induced psoriasiform changes in vitro (38).

Our group showed for the first time that the central mediator
of Akt signaling, the kinase mTOR, is hyperactivated in lesional
and nonlesional skin of psoriasis patients, while downstream
signaling molecules such as S6K-1, the ribosomal protein S6, and
4E-BP1 are only activated in suprabasal layers in lesional skin
(39, 40). Furthermore, it was shown that additional components
of mTORC1 such as Rheb and Raptor are overexpressed in
psoriatic skin and others such as PRAS40 are hyperactivated (40).
That hyperactivated mTORC1 signaling is indeed an important
aspect in psoriasis, showed the work by Shirsath et al.: In a genetic
mouse model of psoriasis, PUVA treatment not only ameliorated
the histological psoriasis score, but also normalized mTORC1
signaling (41). The divergent localization of the activated signal
components in the epidermis points toward a pathophysiological
contribution of deregulated mTORC1 signaling in psoriasis.
For example, the hyperactivation of mTORC1 in the basal
layer may indicate a role during the enhanced proliferation
of psoriatic keratinocytes, while the suprabasal hyperactivation
points toward a role in aberrant differentiation. Using different
in vitro approaches our group showed that healthy keratinocytes
switch off Akt/mTORC1 signaling as soon as differentiation is
initiated. This appears to be associated with proliferation control,
as Ki-67 positive cells in the basal layer of healthy skin also
showedmTOR activity. Thus, inactivation ofmTOR seems to be a
prerequisite for keratinocytes to initiate terminal differentiation.
In contrast, in an inflammatory environment such as psoriasis,
the mTORC1 cascade is aberrantly activated in all epidermal
layers. We were able to show that IL-1β, IL-17A, TNF-α, and
in particular a mix of these cytokines leads to activation of the
mTORC1 signaling cascade. In addition, the pathway might be
activated by miRNAs that are deregulated in psoriatic skin (42,
43), or by mechanosensitive molecules such as polycysteins (44).
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FIGURE 1 | The PI3-K/Akt/mTOR signaling cascade. Stimulation of receptor tyrosine kinases (RTK) and G-protein-coupled receptors (GPCR) leads to activation of

PI3-K, which then synthesizes PIP3 in the membrane. Subsequently, Akt is recruited to the membrane and phosphorylated by PDK-1 and mTORC2. The activated

Akt kinase phosphorylates various substrates such as PRAS40, which is then inactivated and releases mTORC1. In addition, TSC2 is inhibited so that the

downstream GTPase Rheb remains GTP-bound and can activate mTORC1. The fully activated mTORC1 complex then activates proteins of the translation machinery

by phosphorylating S6K-1 or 4E-BP1 [adapted from Manning et al. (23)].

The latter could explain the predilection of psoriatic plaques to
sites of increasedmechanical stress such as elbows and knees. Our
group could prove that continuous mTORC1 activity contributes
to the proliferation of keratinocytes and simultaneously inhibits
proper keratinocyte maturation. Thus, we suggest a model
where mTORC1 signal transduction functions as a central switch
between keratinocyte proliferation and differentiation (Figure 2).
This model is supported by findings from Mitra et al. showing
that IL-22 regulates keratinocyte proliferation via the Akt/mTOR
cascade (45).

Apart from this model also other mechanisms, how epidermal
mTORC hyperactivation can contribute to the pathogenesis of
psoriasis are being discussed. Patel et al. could show that the
release of pro-inflammatory mediators such as IL-6, CXCL8,
or VEGF by keratinocytes is mediated via mTORC (46).
Another mechanism by which hyperactive PI3-K/Akt/mTORC1
signaling might contribute to the pathogenesis of psoriasis could
be through inhibiting autophagy (47). Autophagy and more
specifically nucleophagy is an important mechanism during
keratinocyte differentiation and maturation into corneocytes.
Thus, high mTORC1 activity inhibits nuclear degradation and
contributes to parakeratosis (retention of nuclei), one of the
hallmarks of psoriasis (48).

Although not the main focus of this review, it has to be
mentioned that mTORC1 signaling also has important functions
in the innate (49) and adaptive immune system (50–52).
Specifically a role for mTORC1 and 2 has been attributed to the
regulation of immune cell energy metabolism and thereby to the
control of their function and differentiation (53). Deregulated
mTORC1 signaling was found in peripheral blood mononuclear
cells (PBMCs) of psoriasis patients (54), which seems to
contribute to their pathological behavior (55). Regulatory T-cells
from psoriasis patients show increased mTOR phosphorylation
and treatment with methotrexate reduces mTOR activation (56).
In addition, a novel vitamin D analog reduced mTORC1 activity
in activated memory T cells form psoriasis patients and thus
contributed to the immunosuppressive effect of the drug (57).

mTOR SIGNALING AS A THERAPEUTIC
TARGET IN PSORIASIS

The mTOR complex is also interesting because of its inhibitor
rapamycin (sirolimus), which was isolated from Streptomyces
hygroscopicus in 1975 (58). This bacterial strain was first
found in the soil of Rapa Nui Island (Easter Island), after
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FIGURE 2 | Model, how mTORC1 signaling controls epidermal homeostasis and contributes to psoriasis. In healthy, basal keratinocytes, mTORC1 signaling pathway

is active and controls proliferation while blocking differentiation. When cells leave the proliferative, basal compartment, mTORC1 is switched off and differentiation is

enabled. Under inflammatory conditions, such as in psoriasis, mTORC1 is permanently activated, which leads to massive proliferation in the basal layer and disturbed

keratinocyte differentiation in suprabasal layers, resulting in the phenotypic changes typical of psoriasis.

which the substance was named. Even before the kinase
mTOR was identified as a target protein of rapamycin in
1994 (59), rapamycin was known for its anti-proliferative
properties on lymphoid cells and associated immunosuppressive
properties (60). Rapamycin is therefore still used to prevent
transplant rejection (61) and restenosis after implantation of
stents in coronary vessels (62). In addition, anti-tumor effects
of rapamycin and its analogs (rapalogs) have been under
investigation (63, 64).

It is particularly interesting that rapamycin has also
been tested for its antiproliferative and immunosuppressive
properties in a few small studies in psoriasis patients. Systemic
administration of everolimus (a derivative of sirolimus) was
successful in a single patient (65), whereas a larger study showed
good results for sirolimus in combination with cylosporin
therapy (66). In addition, in a renal transplant patient with
refractory psoriasis, everolimus ameliorated skin lesions (67).
Remarkably, only limited new substances for topical anti-
psoriatic therapy have been developed in recent years and
new product launches mostly consisted of derivatives or
further developments of established agents (68). Thus, the
establishment of new substances for topical application is
desirable. In one small trial topical treatment with rapamycin
led to a significant improvement of the clinical score, while the

thickness of the plaques was unchanged (69). To further explore
this therapeutic option, the effectiveness of topical rapamycin
was investigated in the imiquimod-induced psoriasis mouse
model, which showed activation mTORC1 signaling similar
to human psoriasis (70, 71). Mice treated with rapamycin
showed a significant improvement in clinical appearance
(redness, swelling, and flaking), reduced angioneogenesis and
normalization of epidermal thickness compared to the control
group. While the imiquimod-treated mice showed a clear
activation of mTORC1 and downstream molecules, rapamycin
reduced the activity to the level of untreated mice. Rapamycin
normalized the expression and distribution of differentiation
markers such as keratins, involucrin, and loricrin. In addition,
the influx of innate immune cells into the draining lymph
nodes was partially reduced by rapamycin treatment (71). In
the same mouse model rapamycin treatment also restored
the expression of tropomyosins, which are downregulated
in psoriatic lesion and could also contribute to the disease
(72).

Rapamycin is an allosteric inhibitor, that requires binding
to its intracellular receptor, FKBP12, to selectively inhibit
some, but not all functions of mTORC1 (73). mTORC2 is
considered rapamycin-insensitive, although it can be inhibited
by chronic rapamycin treatment in some cell types (74).
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To inhibit all functions of both complexes, selective ATP-
competitive inhibitors of mTOR were developed (75, 76). As
they are efficiently inhibiting both mTOR complexes and thus
inhibit Akt signaling, they could be interesting therapeutic
compounds in psoriasis. The same rationale was applied,
by Chamcheu et al., that showed efficient inhibition of PI3-
K, mTOR, and S6K-1 by Delphinidin, an antioxidant plant
pigment (77). Topical Delphinidin was able to ameliorate
symptoms in two different psoriasiform mouse models
(77, 78).

In summary, there is increasing evidence that specifically
topical application of mTORC inhibitors can be a successful
strategy for anti-psoriatic therapies and underline the need to
further explore the mTORC1 signaling pathway as a therapeutic
target in psoriasis.
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