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The number of individuals aged 65 or older is projected to increase globally from 524

million in 2010 to nearly 1. 5 billion in 2050. Aged individuals are particularly at risk for

developing chronic illness, while being less able to regenerate healthy tissue and tolerate

whole organ transplantation procedures. In the liver, these age-related diseases include

non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis.

Hepatic macrophages, a population comprised of both Kupffer cells and infiltrating

monocyte derived macrophages, are implicated in several chronic liver diseases and

also play important roles in the homeostatic functions of the liver. The effects of aging

on hepatic macrophage population dynamics, polarization, and function are not well

understood. Studies performed on macrophages derived from other aged sources,

such as the bone marrow, peritoneal cavity, lungs, and brain, demonstrate general

reductions in autophagy and phagocytosis, dysfunction in cytokine signaling, and altered

morphology and distribution, likely mediated by epigenetic changes and mitochondrial

defects, that may be applicable to hepatic macrophages. This review highlights recent

findings in macrophage developmental biology and function, particularly in the liver,

and discusses the role of macrophages in various age-related liver diseases. A better

understanding of the biology of aging that influences hepatic macrophages and thus the

progression of chronic liver disease will be crucial in order to develop new interventions

and treatments for liver disease in aging populations.

Keywords: Kupffer cell, monocyte-derivedmacrophage, chronic liver disease, inflammation, fibrosis, senescence,

mitochondria

INTRODUCTION TO MACROPHAGES IN THE LIVER

The liver is an important immunological organ, serving as a surveillance system for gut-derived
pathogens and producing several key immune components—complement, acute phase, and
coagulation proteins (1, 2). While hepatocytes and certain non-parenchymal cells possess some
inherent immunological properties [see reviews (3) and (4)], multiple populations of CD45+

immune cells are transiently or permanently located in the liver.
The healthy liver is home to several populations of lymphocytes, including natural killer (NK)

cells, NK T-cells, B-cells, mucosal associated T-cells and γδ-T-cells (5–8). In humans, 40% of the
resident lymphocyte population are composed of NK cells, while in mice 40% of the resident
lymphocytes are NK T-cells.

Innate immune cells also have a large presence in the liver. The majority of immune cells in
the liver are myeloid derived cells (9). Dendritic cell (DC) populations, including both myeloid
and plasmacytoid DCs, are present in the liver and can activate T-cells under appropriate
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conditions (10). Myeloid-derived suppressor cells (MDSC) are
also present and suppress T-cell activation (11). Macrophages
derived from circulating monocytes have been identified as a
motile population of myeloid cells infiltrating the liver during
inflammation and at varying levels during homeostasis (12–14).
The resident macrophage, known as the Kupffer cell (KC), is
the most highly represented immune cell, comprising nearly
one-third of non-parenchymal cells in the liver (15).

Macrophages play a key role in the homeostatic functions
of the liver as well as in disease states and are among
the most widely studied immune cells in the liver (15).
The prevalence and severity of many chronic liver diseases
increases with age, including alcoholic hepatitis, non-alcoholic
steatohepatitis, cirrhosis, and hepatocellular carcinoma (16).
However, mechanisms underlying changes in the liver structure
and cellular function, including hepatocytes and resident
immune cell populations, are not well understood. This review
will cover the developmental origin and function of macrophages
in the liver, as well as their implications in several age-related
liver diseases, in order to better understand and expose gaps in
the knowledge of the biology of liver aging and disease. As most
of the experimental data has been collected from murine animal
models, this review focuses largely on preclinical studies in mice
and extends these findings to chronic liver disease in humans.

Development and Polarization of
Macrophages
Macrophage development begins in the extraembryonic yolk sac
from erythro-myeloid progenitors, a process known as primitive
hematopoiesis, prior to the appearance of hematopoietic stem
cells or monocytic precursors (17, 18). After this transient
wave of primitive hematopoiesis, hematopoietic stem cells
appear in the aorto-gonado-mesonephric region and migrate
to the fetal liver, marking the start of definitive hematopoiesis
and development of naïve macrophages through monocytic
precursors (17). Definitive hematopoiesis remains in the fetal
liver until approximately E18 in mice or 12 weeks post-
conception in humans, after which hematopoietic stem cells
migrate from the fetal liver to the bone marrow niche, where they
will remain throughout adulthood (19).

Macrophages can be subdivided into tissue resident or
monocyte derived populations. The number of resident
macrophages varies considerably based on the tissue, and
approximately 80% of total tissue resident macrophages
are located in the liver (20). Resident macrophages can
be colonized from a single developmental source, such as
microglia and Kupffer cells, which are derived from yolk sac
primitive macrophages. Alternatively, resident macrophages
may be repopulated several times during development, such as
Langerhans cells in the skin, which are originally derived from
yolk-sac macrophages and later replaced by fetal liver monocytes
(13, 21). Macrophage populations in the gut, spleen, and lungs
are continuously replenished by monocyte input throughout
adulthood (12, 13).

During inflammation, both resident and monocyte-derived
macrophages participate in migration, expansion, and signaling

depending on the tissue type and stimulus. Resident tissue
macrophages, including Kupffer cells, peritoneal macrophages,
and pleural macrophages, have been shown to undergo rapid
proliferation in response to Th2 cytokines, such as interleukin-
4 (22). Infiltrating macrophages can be derived from either
classical (CD14+CD16− human, Ly6Chi mouse) or non-classical
(CD14+CD16+ human, Ly6Clo mouse) monocytes, which
extravasate into tissue sites under chemokine concentration
gradient guidance (17, 23). Following extravasation, monocytes
differentiate into macrophages whose functionality are largely
based on the integration of the various signaling molecules
present in the local microenvironment (24, 25).

In addition to developmental heterogeneity, macrophages are
extraordinarily dynamic cells that exhibit various phenotypes
ranging from a pro-inflammatory, classically activated “M1”
polarization state to an anti-inflammatory, alternatively activated
“M2” polarization state, as shown in Figure 1 (26, 27). M1/M2
polarization refers to extreme phenotypes that can be simulated
in vitro with the addition of various stimuli (lipopolysaccharide
and/or interferon-gamma forM1 activation; interleukin-4 forM2
activation), but the scenario in vivo is often more complex and
thus polarization is a spectrum of phenotypes, including but not
limited to M2a, M2b, and M2c sub-groups (27, 28).

In general, M1 polarization leads to production of canonical
pro-inflammatory cytokines (IL-1, IL-6, IL-12, IL-18, TNF, IL-
23, IL-27), reactive oxygen species such as nitric oxide, and
chemokines (CCL2, CCL5, CXCL9, CXCL10, CXCL11, IL-8)
(27). Macrophage pro-inflammatory cytokine maturation can
occur through inflammasome-independent or inflammasome-
dependent mechanisms (29, 30). Inflammasome formation is
induced by damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs) binding to
nod-like receptors, including NLRP3 and NLRP1, or to Pyrin
receptor family members such as Pyrin and AIM2 on the surface
of macrophages (31). Docking proteins, including apoptosis-
associated speck-like protein, assemble and recruit pro-caspase
1, where proximity-based autoproteolytic cleavage catalyzes the
activation of caspase-1 (29, 32) Caspase-1 activation subsequently
catalyzes the cleavage of the pro-forms of IL-1β and IL-18
into activated forms. Caspase-1 may also induce pyroptosis, a
programmed cell death pathway characterized by cellular lysis
and endogenous DAMP release into the environment, to induce
additional inflammatory cell recruitment (33).

M2-polarized macrophages typically appear following
M1-polarized macrophages in an injury setting and serve
as a counterbalance to resolve inflammation and promote
tissue repair (34). The M2 polarization state leads to
secretion of cytokines commonly associated with anti-
inflammatory properties, such as IL-10, as well as various
matrix-modulatory factors including transforming growth
factor-β (TGF-β) and matrix metalloproteases (MMPs) (35).
The overproduction of remodeling growth factors can lead
to excessive deposition of matrix proteins (i.e., fibrosis), or
excessive angiogenesis and immunosuppression in the case of
tumor-associated macrophages (TAMs) (36). Therefore, the
temporal regulation of M1 and M2 macrophage responses
are extremely important for appropriate outcomes following
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FIGURE 1 | Macrophage polarization. The paradigm of macrophage polarization begins with a quiescent or patrolling M0 cell, that may be derived from either

circulating monocytes or tissue-resident populations. The transition from M0 to M1 can be stimulated by lipopolysaccharide (LPS) or interferon-gamma, resulting in a

cell that has pro-inflammatory and anti-tumorigenic properties. M1 macrophages also produce nitric oxide and other reactive oxygen species (ROS). The transition

from M0 to M2 can be stimulated by interleukin-4, resulting in a cell that has anti-inflammatory or immunotolerant properties. M2 macrophages also produce matrix

metalloproteinases (MMPs) and growth factors that aid in tissue regeneration. M1 and M2 phenotypes are dynamic and exist on a spectrum, where recruited

macrophages tend to be more “M1-like” in the case of bacterial infection, and tissue-resident macrophages tend to be more “M2-like” during homeostasis. In specific

instances, such as helminth infection, recruited macrophages take on an M2 phenotype, demonstrating the versatility and adaptability of the macrophage polarization

spectrum in response to the signals in a given context.

injury and infection and are often dysregulated in chronic
disease.

The Origin and Function of the Kupffer Cell
The Kupffer cell is a primitive cell, appearing early during
embryogenesis (E9.5-E12.5 in mice), derived primarily from
the yolk sac (14, 37, 38). Importantly, the KC population is
maintained through self-proliferation, with minimal input from
circulating monocytes during homeostasis (12–14, 22).

The tissue-resident Kupffer cell is the key detector of
commensal or pathogenic microbial signals, danger signals,
and tumor cells moving through the hepatic circulation (15,
39, 40). KCs are located along the hepatic sinusoids allowing
for the low-pressure blood supply come into contact with
both KCs and hepatocytes through the fenestrated endothelium
(2). KCs express the complement receptor CR1g, which binds
complement fragments C3b and iC3b, allowing phagocytosis of
complement C3-opsonized particles even under low-pressure
blood flow (41, 42). Bacterial clearance by KCs is crucial for host
defense as 80% of blood-borne bacteria accumulate in the liver
and are destroyed there (15, 39, 40).

PAMPs and DAMPs are present in relatively high
concentrations in blood entering the liver from the gut,
via the portal vein, and engage with pattern recognition
receptors (PRRs), including Toll-like receptors, on the surface
of macrophages and hepatocytes (43–45). With low levels

of bacterial endotoxins, KCs promote immune tolerance by
secreting anti-inflammatory factors including IL-10, TGF-β, and
prostaglandin-E2 (PGE2), thereby inducing regulatory T-cells
(46, 47). In the presence of higher concentrations of damage
or pathogen-associated signaling molecules, KCs can become
polarized toward an M1 phenotype and produce a variety of
inflammatory cytokines including IL-1, IL-6, IL-12, TNF-α
(15, 39, 40). Several liver diseases are influenced by KC activation
and expansion, but their individual role has been difficult to
dissect from more recently identified macrophage populations in
the liver.

The Origin and Function of Other Hepatic
Macrophage Populations
Within the past decade, the heterogeneity of hepatic
macrophages, i.e., Kupffer cells and monocyte-derived
macrophages (mMØs), has become an emerging topic
in hepatology. Fate tracing experiments in the brain first
determined that resident microglia are established prenatally
and maintained independently from monocyte input, which was
later translated to the liver (48). Holt et al. were among the first
to identify two populations of macrophages in the liver (49).
Through bone marrow chimera experiments, cells expressing
F4/80hiCD11blo were identified as KCs, while cells expressing
F4/80loCD11bhi were found to be derived from circulating
monocytic progenitors (49). Shortly after, Klein et al. classified
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two macrophage populations in the liver: KCs as immobile,
“sessile” macrophages and mMØs as motile cells (50).

In most cases, murine mMØs in the liver are derived from
an influx of bone marrow derived, Ly6Chi monocytes, primarily
driven by monocyte chemoattractant protein, which can be
produced by KCs, stellate cells, or hepatocytes (also known
as CCR2-CCL2 interactions) (51, 52). Secondary pathways of
monocyte recruitment to the liver are CXCR3-CXCL10, CCR1-
CCL5, and CCR8-CCL1 dependent (53–55). Murine mMØs may
also be derived from Ly6Clo monocytes trafficking from the
spleen, which express CD11b, but are thought to take on a more
patrolling or regulatory macrophage phenotype (56). Phagocytes
from the peritoneal cavity, which express F4/80, CD11b, and
GATA6, have been shown to cross into the liver after subcapsular
liver lesion (57), but it remains unclear if this infiltration occurs
in other liver injury settings.

Kinoshita et al. determined that murine mMØs and KCs could
be distinguished by CD11b and CD68 expression, respectively
(40). The CD11bhi mMØs were radiosensitive and particularly
efficient at producing IL-12, protecting the host against tumor
xenografts, while the CD68hi KCs were radioresistant and
highly efficient at phagocytosis, protecting the host against
bacterial challenge (40). The use of these differentiating markers
has been expanded to several disease models, identifying a
damaging role of TNF/FasL production by CD11b+ mMØs
in carbon-tetrachloride acute liver injury and hepatitis in
hypercholesterolemic mice (58, 59). The CD11b+ mMØs were
also found to accumulate in the liver following repeated
lipopolysaccharide injections, but suppressed TNF efflux into the
systemic circulation, thereby reducing lethal septicemia (60). In
addition, the CD11b+ mMØswere recruited during diet-induced
steatohepatitis in FGF5 deficient mice and following partial
hepatectomy, where they were crucial for liver regeneration (61,
62). Others have observed that monocyte derived cells protect
the liver from iron toxicity in hemolytic anemia by ingesting
senescent and dying erythrocytes (63).

More recently, the C-type lectin, Clec4f, has been identified
as a selective murine KC marker (64). Interesting, ablating
KCs via Clec4f-driven diphtheria toxin causes an influx of
mMØs, which can differentiate into nearly identical KCs
when this “niche” is made available. Only 12 genes remained
differentially expressed between monocyte derived KCs and
embryonically derived KCs, including CD209f, CD163, C2,
CCR3, Timd4, and Snrpn at the time points examined
(64).

Taken together, KCs and mMØs play heterogenous roles in
various liver disease states and cannot be considered wholly
harmful or beneficial without deciphering the given context.
Importantly, infiltrating monocytes may also differentiate into
dendritic cells, which play distinct immunostimulatory and
antigen presentation roles in the liver (65). The heterogeneity
of hepatic macrophages is less well defined in humans as
compared to murine animal models. The role of these diverse
hepatic macrophage populations in a given disease context is just
beginning to be understood and has not yet been examined in the
natural aging process, a major risk factor for several chronic liver
diseases.

CELLULAR MANIFESTATIONS OF AGING
ON HEPATOCYTES AND MACROPHAGES

The process of aging is closely associated with a number of
degenerative modifications in the liver, where hepatic structure
and cell function are observed to decline. Both hepatocytes and
macrophages exhibit deficits in mitochondrial function, linked
to a decline in autophagy and production of pro-inflammatory
molecules (66, 67). While the effects of aging on hepatic
macrophages have not been well characterized on a cellular
and molecular level, several studies have examined macrophages
from alternative tissue sources and may offer some insight about
hepatic macrophages.

Changes in Hepatic Structure and
Hepatocyte Function
Several studies have shown that the volume of blood in the liver
decreases in elderly individuals, leading to a total volume loss
of 20–40% (68). In addition, the thickness of liver sinusoidal
endothelial cells fenestrations increases, limiting the exchange of
molecules to and from the liver (69). At the serum level, aging is
associated with reductions in albumin and bilirubin, increases in
alkaline phosphatase, and minimal changes in aminotransferase
levels (70). The metabolism of cholesterol in the liver also
decreases, leading to increased blood cholesterol and neutral fat
levels over time (70). However, recent investigations suggest the
most essential change in liver aging is loss of the functional liver
cell mass (71).

Changes in the morphology of hepatocytes may be related
to increased polyploidy, accumulation of lipofuscin in the
cytoplasm, and declining surface area of endoplasmic reticulum
and number of mitochondria, ultimately negatively affecting
the function of hepatocytes (66, 72, 73). The decline in
hepatocyte mitochondrial function has been suggested to
enhance the vulnerability of aged livers to acute injury and
to cause delays in liver regeneration (74). The oxidative
capacity of the liver also declines with aging, and therefore
medications that require oxidation, such as benzodiazepines,
may accumulate in toxic levels and are not prescribed to
elderly individuals (75). In addition, aging livers are known to
accumulate a multiprotein C/EBPalpha-Brm-HDAC1 complex
that silences elongation factor 2 (E2F)-dependent promoters,
thereby reducing proliferation and regenerative capacity of
hepatocytes (76).

Senescent cells accumulate in the liver during aging
and in chronic liver disease; and may include hepatocytes,
cholangiocytes, stellate cells, and immune cells [reviewed here:
(77)]. Cells become senescent as a result of replicative exhaustion
(telomere shortening), DNA damage, or oxidative stress, among
other mechanisms (78). Senescent cells are characterized by
the expression of cell cycle inhibitors p21, p16, and p53,
which prevent replication and apoptosis, as well as secretion
of pro-inflammatory cytokines that signal for their removal
but can lead to tissue damage when chronically expressed (79,
80). Senescent hepatocytes accumulate with age and appear as
an almost “universal phenomenon” in chronic liver diseases
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including hepatitis B and C infection, alcoholic and non-
alcoholic liver disease, and genetic haemochromatosis (77).
Senescent hepatocytes undergo metabolic changes, such as
increased transport of conjugated bilirubin into the hepatic
sinusoids and insulin resistance through dysregulated glucose
transporter expression and Akt signaling among others, which
dysregulates normal function (81). Interestingly, the length of
telomeres was found to be conserved in aged hepatocytes and
bile duct cholangiocytes but decreased in aged Kupffer cells and
stellate cells, suggesting cell-specific mechanisms of senescent
phenotype acquisition in the liver (82).

Overall, the effects of aging on non-parenchymal cell subsets,
particularly hepatic macrophages, is an understudied area.
Hilmer et al. determined that the number and basal activity
of Kupffer cells was increased with old age in a rat model
(83), however this work was performed before the heterogeneity
of liver macrophages was fully contemplated. Similarly, Singh
et al. identified a change in liver macrophage distribution with
aging, where old mice had more F4/80+ macrophages located in
large lymphoid structures (also containing T-cells and B-cells),
and a reduction in the number of spindle shaped macrophages
throughout the parenchyma (84).

Recent work by Maeso-Diaz et al. characterized molecular
changes in LSECs, stellate cells, and hepatic macrophages in
the livers of aged rats (85). The authors found a significant
deregulation of LSEC phenotype with aging as demonstrated
by downregulation of vasodilatory pathways (nitric oxide,
heme oxygenase), increase in oxidative stress, and decrease
in angiocrine markers (stabilin-2, CD32b, and VEGFR2), in
addition to increased portal pressure and vascular resistance (85).
Aged stellate cells had increased markers of activation (alpha
smooth muscle actin and collagen I), increased intracellular lipid
stores, and alterations in retinoid metabolism (85). Finally, the
authors noted an increase in recruitment of proinflammatory
cells in aged livers, including increased IL-6 expression in
isolated hepatic macrophages, but no change in the traditional
macrophage polarization markers (85). Human livers showed
similar trends in downregulation of endothelial markers, but
substantial work remains to extend and decode these findings in
both aged murine and human systems.

Declines in Cell Intrinsic Macrophage
Function With Aging
The process of aging has been shown to affect macrophage
polarization and function in multiple tissues and disease models,
with compelling underlying mechanisms that may be broadly
applicable to hepatic macrophages, as summarized in Figure 2.

Autophagy, or the intracellular degradation of damaged
proteins and organelles in autophagosomes, is one such process
which has been shown to become dysregulated with increasing
age in macrophage populations (86). Deletion of autophagy
genes Atg5 and Atg7 in bone marrow-derived macrophages
results in decreased antigen presentation capacity, impaired
maturation, altered mitochondrial metabolism, downregulation
of surface receptors such as toll-like receptor 4 (TLR4), and
increased secretion of pro-inflammatory cytokines (86, 87). The

FIGURE 2 | Mechanisms of age-associated decline in macrophage function.

Macrophages from various tissue sources, including the bone marrow,

peritoneal cavity, lungs, and brain, show an array of dysfunction including a

general reduction in autophagy and phagocytosis, dysregulation of

pro-inflammatory cytokine production associated with changes in toll-like

receptor expression, and alterations in cell morphology and distribution that

may be related to repopulation of tissues by infiltrating monocyte populations,

largely mediated by changes in epigenetic signature and mitochondrial

dysfunction.

phenotype of autophagy deficient bone marrow macrophages
closely mimics the phenotype of macrophages isolated from aged
individuals (86), which may be driven by the hypermethylation
of autophagy associated genes (88). It remains to be seen if
restoring autophagic flux to aged macrophages can improve their
function and polarization status, however caloric restriction has
been shown to improve both longevity and autophagic capacity
in animal models (89).

Phagocytic clearance of extracellular pathogens and antigen
presentation tends to be attenuated in aged macrophage
populations as well (90). While no difference in phagocytic
capacity was found between young and aged bone marrow
derived macrophages, peritoneal macrophages exhibit an
age-associated decline in phagocytic capacity and antigen
presentation (90). This reduction in phagocytic ability was
driven by age-related alterations in the local microenvironment,
as young peritoneal macrophages transplanted into aged
peritoneal space exhibited reduced phagocytic and antigen
presentation capabilities (90). Alveolar macrophages isolated
from aged individuals have been shown to exhibit reduced
phagocytic capacity as well as attenuated expression of genes
associated with macrophage proliferation (91). This reduction
both in cell number and phagocytic ability contributes to the
age-related mortality risk following pathogen infection, such as
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in the case of an influenza lung infection model (91). In the liver,
there have been mixed reports on the maintenance of Kupffer
cell phagocytosis, where one study reported a deficit (92) and
another reported an increase in phagocytosis with aging (83).

Furthermore, the reduction in expression levels of
autophagosome components prevents the endocytosis of both
inflammasome components and damaged mitochondria and can
thereby promote chronic activation of pro-inflammatory signals
in aged cells (87). This phenomenon has been termed “inflamm-
aging,” one of the hallmarks of aging, and has been strongly
correlated tomorbidity (93). In addition to dysregulated cytokine
production, aging can promote alterations in the secretion of
oxidative species (94–96). Bone marrow-derived macrophages
isolated from aged murine and human donors have been shown
to produce greater concentrations of nitric oxide and reactive
oxidative species than macrophages isolated from young donors
(96). However, this upregulation in the secretion of reactive
oxidative species was not observed following pro-inflammatory
stimulation of peritoneal macrophages (94, 95). Further studies
will be necessary to fully understand tissue-specific changes in
respiratory burst characteristics.

The morphology of macrophages can also be influenced by
the aging process. Microglia have been shown to increase cell
soma volume while reducing the length of cellular processes
in aged brains (97). These morphological changes reduce the
capability of the microglia to interact with neural cells and
perform routine surveillance of the local microenvironment (97).
While microglial population sizes increase to account for this
reduction in cell process size (17), the population expansion
tends to occur in a non-homogenous manner, disrupting the
uniform microglial distributions commonly observed in young
animals (97). In addition, aged microglia exhibit enhanced
secretion of reactive oxidative species following central nervous
system injury through upregulation of NADPH oxidase 2
(NOX2) (98), and secrete elevated concentrations of IL-1β
mediated by hypomethylation of CpG sires in the IL-1β proximal
promoter (99).

Infiltration of monocyte-derived macrophages to multiple
tissue sites has been observed in age-related diseases, including
Alzheimer’s disease (100), which leads to increased inflammation
and phagocytosis. In the cardiovascular system, the tissue
resident macrophage population (yolk-sac derived, M2-like)
is replaced by bone marrow-derived macrophages over time
(101, 102). This shift in macrophage populations contributes
to deleterious outcomes following cardiac injury, such as
chronic inflammation, fibrotic scar deposition, and reduced re-
vascularization of ischemic tissue following injury (101, 103).
It remains unclear whether age-related changes in macrophage
responses are a primary result of shifting cell origins and
polarization states driven by the microenvironment or by cell
intrinsic functions, although both are likely in play.

The Role of the Aged Microenvironment on
Macrophage Function
While cell intrinsic properties, such as mitochondrial capacity
and autophagy, may drive changes in age-associated macrophage

polarization, this only represents a partial view of the complex
innate and adaptive immune dysfunction which occurs with age.
For example, age-related alterations in the T cell compartment,
which are numerous [reviewed here (104, 105)], can shift the
relative Th1 and Th2 cytokine concentrations and directly impact
macrophage polarization (106, 107).

Non-immune cell types can also contribute to the age-
associated immune dysfunction. With age, increasingly large
numbers of pre-adipocytes differentiate into mature adipocytes,
with enhanced secretion of leptin, TNF-α, and IL-6, and reduced
secretion of adiponectin—a factor commonly associated with
M2macrophage polarization, thereby promotingM1 phenotypes
(108–110). Numerous DAMPs, which have been shown to
promote inflammasome formation and activation, also have
age-related increases in concentration, including cholesterol
(111), amyloid-β (112, 113), hydroxyapatite crystals (114),
purine catabolic end products such as uric acid (115), and
ATP (116). Radical oxidative species, which tend to exhibit an
increase in production and secretion with increasing age, have
also been shown to play an important role in inflammasome
activation through oxidation of proteins, lipids, and DNA,
leading to inflammatory cytokine secretion into the aged
microenvironment (29, 117, 118). More recently, the effect of
the aging gut microbiome on macrophage function has been
considered (119). Raising mice under germ-free conditions
preserves the bactericidal capacity of alveolar macrophages and
reduces secretion of IL-6 in old age, mediated by reduced
dysbiosis and improved gut permeability (119).

While this is only a brief consideration of additional
factors that have been observed to influence macrophage
function, it serves to highlight the complexity and tissue
specificity that defines age-related immunomodulation. The
mechanisms governing the acquisition of age-related dysfunction
in infiltrating and tissue resident macrophage populations
continues to be an active area of research, and it will be essential
for investigators to utilize an array of cell markers and descriptive
methods to appropriately place cells along the spectrum of
polarization states.

THE ROLE OF MACROPHAGES IN
AGE-RELATED LIVER DISEASE

Aging is a major risk factor for the development and prognosis
of several chronic liver diseases and conditions, including
nonalcoholic fatty liver disease, alcoholic liver disease, hepatitis
C, and an increased susceptibility to develop fibrosis and cirrhosis
(16). The reduced capacity of aged livers to regenerate and to
tolerate transplantation leads to increased risk of mortality from
chronic liver diseases, as demonstrated in Figure 3.

Both Kupffer cells and infiltrating monocytes are implicated
to various levels in the etiology of chronic liver disease,
however the distinction between these two cell populations
is less clear in human clinical liver samples compared to
animal studies. Importantly, most animal models of chronic liver
disease are induced in young, healthy animals through genetic
manipulation or by administering specific diets or chemical
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FIGURE 3 | Aging and liver disease. With increasing age, the liver becomes more susceptible to damage from alcohol, drugs, and toxins, while the prevalence of

metabolic disease, obesity, and cellular senescence are known to increase. These insults lead to the activation of signaling pathways driving liver pathology, such as

inflammation, steatosis, and fibrosis, which are often involved in positive feedback loops, further exacerbating the symptoms of liver disease. In a subset of patients,

liver disease will progress to chronic hepatitis, cirrhosis, and hepatocellular carcinoma, also known as end stage liver disease, for which transplant is the only viable

therapy. Studies suggest that elderly patients have decreased survival post-transplantation, demonstrating the need for additional therapies to intervene and prevent

the onset of age-related liver disease symptoms.

toxins. Findings from these animal studies are important to
identify novel mechanisms regulating liver disease but may not
prove relevant or all-encompassing when translating the findings
to older, human populations, as evidenced by the moderate
success of several anti-fibrotic therapies in clinical trials (120).
Distinguishing between the biology of aging and age-associated
pathologies can be a difficult task but is an important effort in the
field of hepatology. Additional studies are needed to assess the
effect of aging on the liver prior to the onset of age-associated
pathologies in order to dissect mechanisms of aging from the
manifestation of the pathology itself.

Liver Fibrosis
Aging is a major risk factor for the progression of liver
fibrosis, particularly in hepatitis, which can advance to portal
hypertension and cirrhosis (121). Fibrosis occurs when excessive
connective tissue is deposited following acute or chronic liver
damage, and is often the starting point of architectural distortion
and dysfunction that prevents normal functioning of the liver
(122). Age-related dysfunction in hepatic macrophages and
stellate cells are heavily implicated in development of fibrosis and
may be related to oxidative stress and macrophage polarization,
but these mechanisms are not well understood (123).

In general, an increase in M1-polarized macrophages appears
at the early stages of liver disease and promotes or exacerbates
fibrosis, cirrhosis, and eventual liver failure. In clinical studies,
the progression from hepatitis to fibrosis and eventually cirrhosis
was associated with enrichment of CD14+CD16+ non-classical
monocytes in the liver, which have been shown to activate
stellate cells in vitro based on TGF-beta release (124). These
cells may be derived from classical CD14+CD16− monocytes
or infiltrate directly (125). Activation of the CCL2-CCR2 axis
is associated with monocyte infiltration in both rodent models
and patients with fibrosis and liver disease (126). A recent study
found that the acquisition of M1 phenotypes in liver fibrosis may
be regulated by interferon regulatory factor 5 (IRF5), which is
significantly induced in liver macrophages in both mouse and
human subjects developing fibrosis, and may represent a novel
target for therapeutic intervention (127).

Alcoholic Liver Disease
Elderly individuals are more likely to feel socially isolated and
depressed, resulting in a rising alcohol consumption rate and
prevalence of alcoholic liver disease in this population (128).
Alcohol and its breakdown products are toxic to the liver,
which can cause a disorder in lipid metabolism by increasing

Frontiers in Immunology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 2795

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Stahl et al. Macrophages in the Aging Liver

the synthesis of fatty acids and suppressing mitochondrial β-
oxidation (129). The risk of alcohol toxicity is further increased
in elderly populations due to alterations in metabolism or by the
intake of certain medications (130).

Alcoholic liver disease can be classified into three stages:
accumulation of extra fat in the liver (steatosis), alcoholic
hepatitis, and cirrhosis. Macrophages were found to increase in
both the early and late stages of alcoholic liver disease. Increased
gut permeability and high levels of endotoxin in the portal blood
results in activation of Kupffer cells (131). In addition, Ly6C+

macrophages were found to accumulate in murine models of
alcoholic liver injury, regulated by CCL2 chemokine signaling
(132). Clinical symptoms of alcoholic liver disease among the
elderly are similar to younger counterparts, yet the prevalence of
advancing to irreversible stages of the disease is greater in older
individuals (133). Oxidative stress and production of TNF by
hepatic macrophages, as a result of steatosis or leaky gut, causes
progression to later stages (130). Furthermore, the expression of
M1 pro-inflammatory genes was found to be higher in peritoneal
macrophages from patients with alcohol-related cirrhosis and
ascites compared to hepatitis-C related cirrhosis, suggesting
systemic differences in macrophage polarization (134). Reducing
leaky gut and inflammation have been identified as potential
therapeutic targets for treating alcoholic liver disease (135).

Non-alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic
steatohepatitis (NASH) are leading causes of chronic liver disease
globally and are projected to become the leading indication for
liver transplantation in the United States (136–138). NAFLD
often presents with metabolic syndrome, such as obesity and
excessive visceral fat, hyperlipidemia, hypertension, insulin
resistance and an increased secretion of pro-inflammatory
cytokines (139). All of these components of metabolic syndrome
are generally observed in elderly populations and many studies
find increased rates of NAFLD among elderly people compared
with their younger counterparts (140–142).

The mechanism for developing age-related steatosis is
not fully understood but has been attributed to hepatocyte
senescence driving a reduction in mitochondrial metabolism
(143), decreased transport of insulin across the sinusoidal
endothelium (144), reduction in autophagic flux (145), or chronic
low-level inflammation (146, 147), leading to the build-up of
toxic free fatty acids in the liver. Lifestyle choices, such as high
fat diet (HFD), may also lead to the development of NAFLD in
aged individuals. Work by Fontana et al. found that mice were
equally susceptible to steatosis following HFD regardless of age.
However, the older mice exhibited more severe hepatocellular
injury and inflammation following administration of HFD that
was attributed to increased M1 macrophage polarization in both
the liver and white adipose tissues (148).

As in other chronic liver diseases, macrophages accumulate
in the livers of NAFLD patients (149). Experimental mouse
models have shown an accumulation of Ly6C+ monocytes
is a critical step in the development of progressive fibrosis
from steatohepatitis in a CCL2-dependent mechanism (131).

In addition, lipids and free fatty acids contribute to DAMP-
induced Kupffer cell activation (150). Patients with low-grade
steatosis were found to have higher mRNA expression of
M2 markers, CD206 and CD163, compared to patients with
advanced steatosis. The M2 macrophages were hypothesized
to promote apoptosis of M1 polarized hepatic macrophages
and protect against disease progression of NAFLD or alcoholic
hepatitis (149). Interestingly, soluble CD163 (sCD163), a marker
of M1 macrophage polarization, increases systemically with
severity of NAFLD in human patients (151), again suggesting that
M1 polarization is associated with more advanced stages of the
disease.

Traditional treatments for NAFLD are more challenging for
elderly populations as they require lifestyle changes in exercise,
diet, and medication or liver transplantation (152, 153). Findings
from a recent clinical trial using a CCR2/CCR5 antagonist to
block inflammation resulted in twice as many subjects achieving
improvement in fibrosis and no worsening of steatohepatitis
compared with placebo (154, 155). Subgroup analysis showed
the therapy to be similarly effective in patients below and above
56 years of age, demonstrating promise in the context of age-
associated disease.

CONCLUSION

The decline in mitochondrial capacity with aging has emerged
as a key mechanism underlying several of the observed changes
in the function of both hepatocytes and macrophages, likely
contributing to the increased prevalence and severity of chronic
liver diseases in elderly populations. In general, the accumulation
of infiltrating or M1-polarized monocytes/macrophages tends
to exacerbate liver disease and contribute to fibrosis, cirrhosis,
and liver failure. However, very few, if any, studies have
systematically identified changes in the hepatic macrophage
populations of aging livers in either animal models or human
patients, representing a hugely understudied area of research.

Liver transplantation is the standard treatment for patients
with end stage liver disease. The number of elderly people with
liver cirrhosis requiring transplantation has grown over the past
20 years and is expected to increase further (66). Overall survival
rates after 1 year are approximately 90% and 10-year survival
rates may be more than 70% for recipients (156). However,
some studies have found a reduced survival rate in transplant
recipients over 60 years of age (from 90 to 64% 1 year survival
rate), primarily due to kidney dysfunction and cardiopulmonary
disease complications (157). Survival rates improve for elderly
patients with few comorbidities (158), thus age alone is not an
exclusion criterion from liver transplantation, but all disease risk
factors must be considered to devise effective treatment strategies
for these age-related chronic liver diseases.

Therapies that suppress M1-polarization or infiltration of
macrophages might reduce the progression of liver disease
from manageable early stages to chronic end-stages requiring
liver transplantation. In the context of aging specifically,
promoting M2-gene expression might delay the advancement
of liver disease to later stages. However, M2 macrophages have
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been associated with tumor progression, including clinical
hepatocellular carcinoma (HCC) specimens (159). Thus,
modulating macrophage polarization has been considered
a double-edged sword, and the appearance of liver fibrosis
or HCC would need to be closely monitored. Treating the
primary drivers of age-associated liver diseases such as alcohol
consumption, visceral and ectopic fat accumulation, or deficits in
mitochondrial capacity and other age-related mechanisms, will
be just as important as targeting the inflammatory symptoms to
combat these age-related liver diseases.

Elderly populations continue to increase globally and are
particularly at risk for succumbing to liver failure due to the
declines in regenerative capacity, reduced survival post-liver
transplantation, and tendencies to develop inflammation and
fibrosis. Between 1999 and 2016, deaths in the United States
from cirrhosis increased by 65% and deaths from HCC doubled
(160). A better understanding of the biology of liver aging that

influences the onset and progression of chronic liver disease will
be crucial in order to develop new interventions and treatments
for our aging populations.
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