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Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult

stem cells that have been isolated from a variety of tissues, and possess

multipotent differentiation capacity, immunomodulatory properties, and are relatively

non-immunogenic. Due to this unique set of characteristics, these cells have attracted

great interest in the field of regenerative medicine and have been shown to possess

pronounced therapeutic potential in many different pathologies. MSCs’ mode of action

involves a strong paracrine component resulting from the high levels of bioactive

molecules they secrete in response to the local microenvironment. For this reason,

MSCs’ secretome is currently being explored in several clinical contexts, either using

MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to

modulate tissue response to a wide array of injuries. Rather than being a constant mixture

of molecular factors, MSCs’ secretome is known to be dependent on the diverse stimuli

present in the microenvironment that MSCs encounter. As such, the composition of the

MSCs’ secretome can be modulated by preconditioning the MSCs during in vitro culture.

This manuscript reviews the existent literature on how preconditioning of MSCs affects

the therapeutic potential of their secretome, focusing on MSCs’ immunomodulatory and

regenerative features, thereby providing new insights for the therapeutic use of MSCs’

secretome.

Keywords: MSCs (Mesenchymal Stromal Cells), pre-conditioning, regeneration, immunomodulation, therapeutic

potential, secretome

INTRODUCTION

Mesenchymal stromal cells (MSCs), defined by the International Society for Stem Cell Research
(ISSCR) as fibroblast-like non-hematopoietic cells, have been explored in recent years due to the
clinical promise they hold for tissue repair in regenerative medicine (1, 2). They present a capacity
to differentiate into multiple lineages, which was on the basis of the high number of clinical trials
using MSCs. By 2015, 493 MSC-based clinical trials were reported (2), a number that greatly
increased in the next 2 years, reaching a total of 861 trials in 2018 according to the official database
of the US National Institutes of Health. In an effort to address this fast-increasing knowledge base,

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02837
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02837&domain=pdf&date_stamp=2018-12-04
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:raquelg@ineb.up.pt
https://doi.org/10.3389/fimmu.2018.02837
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02837/full
http://loop.frontiersin.org/people/599587/overview
http://loop.frontiersin.org/people/624325/overview
http://loop.frontiersin.org/people/138372/overview


Ferreira et al. Pre-conditioning Mesenchymal Stromal Cells Secretome

several reviews have been published to provide a thorough
analysis of the evolution of MSC-based clinical trials (3, 4).
Perhaps one of the best documented properties of these cells
is their ability to promote regeneration in a variety of tissues
and to be a major contributor to the positive results achieved
in many published papers (5, 6). Indeed, up to 2015 most of the
studies with MSCs had focused on their use to treat disorders of
the musculoskeletal system, namely in their application to repair
bone or cartilage (2). Looking beyond their potential in tissue
repair and regeneration, MSCs have also been used extensively
for their immunomodulatory properties, for example to treat
graft-vs.-host disease (GVHD) (7) and auto-immune diseases
such as lupus (8, 9), or Crohn’s disease (10). Furthermore,
MSCs’ clinical potential has been extended to treat myocardial
infarction (11, 12), stroke (13), multiple sclerosis (14, 15), liver
cirrhosis (16, 17), diabetes (18, 19), lung injuries (20), among
others. MSCs are known as relatively immune-inert cells (21), but
depending on the context can have immunosuppressive (22–24),
or immune-stimulating capacity (25, 26) (see Figure 1).

Despite this great promise, however, their therapeutic benefits
are not limited solely to their regenerative abilities. MSCs
have also been referred to as trophic “factories” due to the
large number of bioactive molecules they secrete in response
to the local environment, which then exert paracrine effects
upon neighboring cells and tissues (27). Indeed, an increasing
number of authors have come to consider these paracrine
or trophic properties to be the primary means by which
MSCs conduct many of their therapeutic effects (28–30). This
conclusion has been furthered by the observation that, in
many cases, the number of differentiated cells is far too
small to explain the observed response (27). Nevertheless,
this paracrine action is known to be influenced by the
microenvironment surrounding the cells (31). Therefore, there’s
a need to understand how in vitro culture conditions affect
the regenerative and immunomodulatory potential of MSCs’
secretome, with the ultimate goal of defining an optimal
“cocktail” to precondition MSCs for a given therapeutic
application. While the fast pace of research in this field
is providing a large amount of data related to MSCs’
therapeutic potential, an integrated investigation into how
preconditioning can specifically influence the MSC secretome
is lacking. To address this deficiency, we performed a
comprehensive literature search on the following databases:
clinicaltrials.gov, Google Scholar, Scopus, and PubMed, using
either direct word-correspondence search or MESH integrated
search, with several combinations of the following words:
mesenchymal stem cells, hypoxia, inflammatory, pretreatment,
preconditioning, stimulation, stimulus, priming, regeneration,
immunomodulation, secretome, conditioned medium (CM),
paracrine, therapeutic, brain, nervous system, bone, cartilage,
kidney, liver, lung, pancreas, cancer, tumor, diabetes, skin,
heart, cardiovascular, and intervertebral disc. The compilation
of database outputs (∼20,000 papers) was analyzed according
to the focus of the study and relevance of the results obtained.
From these results, articles found within reference lists were also
screened and included when relevant to this article, considering
the focus on MSCs preconditioning.

MSCS SECRETOME: PRECLINICAL AND
CLINICAL EVIDENCES OF ITS
THERAPEUTIC POTENTIAL

The MSCs-derived cell-free secretome appears to be able
to recapitulate many of the properties/effects that have
been described for the MSCs themselves. MSCs secretome
is enriched in several soluble factors including cytokines,
chemokines, immunomodulatory molecules, and growth factors
(32). Additionally, paracrine factors produced by cells can be
found encapsulated in cell-secreted vesicles. These Extracellular
Vesicles (EV) are usually divided according to their size and
origin in the cell into exosomes, microvesicles and apoptotic
bodies. The smaller nanosized vesicle populations have deserved
the most attention. Microvesicles (100–1,000 nm) originate on
the plasma membrane, and exosomes (30–120 nm) that are
formed in the multivesicular endosomes, have overlapping
size ranges and when their separation cannot be completely
ascertained are collectively designated EV (33, 34). EV content is
thought to mimic that of the cells (35). The exact composition
of MSCs’ secretome has been investigated to identify the key
molecules responsible for MSCs therapeutic potential, with the
final goal being the substitution of a cell-free product to achieve
the desired therapeutic effect (see Table 1) (32, 36–38, 40–43).
Pro-regenerative effects of MSCs secretome have been observed
in many different systems, acting by modulating the immune
system (44), inhibiting cell death and fibrosis (45, 46), stimulating
vascularization (44), promoting tissue remodeling, and recruiting
other cells (47).

Preclinical Evidence
Preclinical evidence of the regenerative potential of MSCs
secretome will be briefly described. ASC (adipose tissue-derived
MSCs)-CM was able to regenerate/repair mandible lesions in
rabbits. In the ASC-CM obtained from 24 h culture in serum-
free medium under hypoxic conditions, the authors detected 43
angiogenic factors, 11 of which also appeared to be involved
in bone regeneration: IGF-1, TGF-β1, VEGF, Angiogenin, IL-
6, PDGF-BB, basic FGF (bFGF), EGF, RANTES, MCP-1, and
MCP3 (38). This repertoire of secreted factors seemed to be
in accordance with the BM-derived MSCs-CM composition
reported by other authors (36, 41, 43, 48), with the remarkable
exception that the BM-derived MSCs-CM also contained HGF
(41) and BMP-1 (36). HGF in particular seems to be a key
factor in MSCs-mediated reversal of hepatic fibrosis (49). Other
studies exploring the effect of locally administered MSCs to
degenerated tissues found evidence to support the notion that
the soluble factors produced in response to the injury played a
decisive role in the observed benefits of MSCs administration
(50–52).

In the context of intervertebral disc (IVD) injury, MSCs
also seem to act via a paracrine role through crosstalk with
IVD cells (53–55). In an ex-vivo bovine model of pro-
inflammatory/degenerated IVDs, MSCs in co-culture were able
to immunomodulate the inflammatory reaction mediated by the
nucleus pulposus (NP), even though few cells were found to
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FIGURE 1 | MSCs phenotype, differentiation potential, and immunological properties. Schematic representation of MSCs phenotype and immunological profile. (A)

MSCs capacity of differentiation into osteogenic, chondrogenic and adipogenic lineages. (B) MSCs phenotype accordingly with the International Society for Stem Cell

Research (ISSCR). (C) MSCs immunological profile. (D) Soluble factors families produced by MSCs and profile of interaction with immune cells.

have actually migrated to the disc (56). Zheng et al. further
analyzed MSCs-CM effect on the gene expression of NP-like
cells, and found an upregulation of KRT19 and downregulation
of MMP12 and MGP (57). As MMP12, KRT19, and MGP have
been associated with IVD degeneration, the authors suggested
that a healthy NP-like phenotype could be restored by MSCs-
CM. In fact, it was further proposed that the MSCs’ secretome
was stimulating IVD progenitor cells activity (54) and the
communication mechanism between MSCs and NP cells was at
least partially via secretion of microvesicles (58).

Evidence for the pivotal role of MSCs paracrine activity in
injured tissues continues to arise in many different systems
and pathologic conditions. In 2007, Dai et al. observed that,
in myocardial infarction, using MSCs-CM had a similar,
albeit less intense, effect to what had been reported earlier
for MSCs per se, indicating that at least part of the effect
that had been observed following MSCs injection could be
attributed to soluble factors (59). In the context of neuronal
damage, a local injection of MSCs to the lesion site in
a stroke model improved coordinated function, inhibited
scar tissue formation and cell apoptosis, and stimulated
angiogenesis (60). Despite these marked improvements, no
neural differentiation of the transplanted MSCs was observed,

reinforcing the key role of their paracrine mode of action.
Moreover, it has been established that the presence of BDNF,
Glial Cell Line-derived Neurotrophic Factor (GDNF), Nerve
Growth Factor (NGF), and IGF in the MSCs secretome is
necessary to observe the MSCs-induced neuronal survival
and differentiation both in vivo and in vitro (61). Other
models in which MSCs-CM has demonstrated therapeutic
efficacy include chronic kidney disease, in which administration
of MSCs-CM partially rescued kidney function, mainly by
attracting endothelial cells, which led to neo-angiogenesis and
stimulated wound closure (62). In this study, the authors
concluded that the renal-protective paracrine factors present
within the MSCs-CM were likely to be VEGF, HGF, and
IGF.

MSCs-derived EV, particularly exosomes, have been
increasingly shown to contribute to or even completely
replicate the therapeutic effects observed with the use of the
entire secretome (63). They were shown to improve cardiac
function after a porcine myocardial infarction, reducing infarct
size and maintaining the systolic and diastolic performance,
as a result of inducing neo-revascularization and modulating
the inflammatory response (64). Similarly, hBM-MSCs-
derived exosomes injected locally 24 h after an induced focal
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TABLE 1 | Main factors detected in the MSCs secretome.

Factors References

BMP (36)

CCL5/RANTES (37, 38)

EGF (38)

FGF (38)

G-CSF (39)

GM-CSF (39)

HGF (40, 41)

ICAM (37)

IDO (37)

IGF (38, 40–43)

IL-10 (37)

IL-6 (38, 39, 42)

IL-8 (39, 42)

LIF (42)

MCP-1 (38, 39, 42)

MMP-1 (36)

MMP-2 (36)

MMP-3 (36)

MMP-7 (36)

PDGF (38)

PGE2 (37)

TGF-β (37–39, 41)

TIMP-1 (36, 42)

TIMP-2 (36, 42)

VEGF (38, 40–43)

cerebral ischemia were able to reduce the resulting functional
impairments through an increase of angioneurogenesis and
the modulation of the peripheral immune response (65).
Additionally, the treatment seemed to also induce long-term
neuroprotection. Other studies reported that MSCs-derived
exosomes could mediate the transfer of the micro RNA
(miRNA)-133b to neuronal cells, which induced neurite
outgrowth and functional recovery after stroke (66), hinting to
the importance of this mechanism in the neuronal protective
capacity exhibited by MSCs. These effects were also observed
by others in different models of ischemic injury (67, 68),
even though their ability to modulate the local inflammatory
reaction has not been observed by all (67). In another study, a
single administration of MSCs-derived microvesicles inhibited
apoptosis and stimulated tubular epithelial cell proliferation,
thus protecting animals from acute kidney injury (69). Bruno
et al. has demonstrated as well that the treatment of acute
kidney injury with MSC-EVs leads to functional improvements
and reduced mortality through an inhibition of the apoptotic
cascade (70). Moreover, treatment with multiple administrations
was shown to be significantly more effective than a single
administration of the EVs. In a similar fashion, MSCs-derived
exosomes were shown to protect hepatocytes and reduce both
hepatic inflammation and collagen deposition (45). Indeed,
MSCs-derived vesicles have consistently been reported to play a
key role in the paracrine activity of these cells.

Clinical Trials
While the preclinical evidence showing the regenerative and
immunomodulatory potential of the MSCs secretome continues
to expand rapidly, the clinical studies revolving around this
hypothesis are still scarce. Even so, the few clinical trials
performed using the product of the MSCs paracrine activity
seem to have already established the safety and feasibility of this
method, as none of them reported related adverse effects (71–
75). Furthermore, the use of the secretome seemed to be effective
in improving the clinical outcomes of the involved patients. In
the case of alveolar bone regeneration, conditioned media from
commercially available BM-MSCs was administered to 8 patients
suffering from severe alveolar bone atrophy and needing bone
augmentation (75). These patients received either porous pure
beta-tricalcium phosphate (β-TCP) or shell-shaped atelocollagen
sponge (ACS) scaffold grafts soaked in the CM. After the surgery,
minor inflammation of the local tissues was observed with less
infiltration of inflammatory cells recorded. The scaffold was
gradually replaced by newly formed bone, with no records of
bone resorption in any of the cases and early mineralization
observed in the augmented bone. IGF-1, VEGF, TGF-β, and
HGF were present in the CM, even though molecules typically
involved in bone homeostasis, like BMP-2, were not detected by
the methodology used.

Clinical trials addressing alopecia (73) and Female Pattern
Hair Loss (74) were able to increase hair density after
injecting patients not with the MSCs secretome but with
a commercially available product containing its protein
components. Furthermore, the treatment of one treatment-
refractory GVHD patient with MSCs-derived exossomes
yielded a pronounced clinical improvement shortly after the
administration with a decrease in more than 50% of the IL-
1β/INF-γ/TNF-α-producing peripheral blood mononuclear cells
(PBMCs) (72). After 4 months, the clinical condition of the
patient was still stable, indicating a long-lasting therapeutic effect
of the exossomes. Currently, allogeneic MSC-derived exosomes,
enriched for miR-124, are reported in a registered clinical trial,
directed to stroke patients (http://clinicaltrials.gov).

THE EFFECT OF PRE-CONDITIONING ON
MSCs SECRETOME

Although MSCs have an innate potential to induce and/or
contribute to regeneration, this potential is now known to be
greatly influenced by diverse extrinsic factors such as the tissue
source of the MSCs, the health status and age of the MSCs donor,
the batch/lot of serum used for the in vitro culture of the MSCs,
passage number, oxygen concentration, and the presence/absence
of a pro-inflammatory environment when the MSCs are infused
(76–82). Thus, in vitro preconditioning of MSCs with a variety
of different factors has been explored to enhance the therapeutic
capacity/potential of MSCs, which included: 3D culture (83–85),
pharmacological compounds (86–88), inflammatory cytokines
(89, 90), and hypoxia (91, 92) (Table 2). Considering MSCs main
mechanism of action upon transplantationmight be via paracrine
signaling, it is somewhat surprising that only a few groups have
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studied how preconditioning of MSCs affects their secretory
profile. This is particularly relevant when the MSCs’ secretome
may ultimately prove to be an extremely valuable therapeutic
tool. The influence of these factors on MSCs’ secretome will be
reviewed in the following section.

Hypoxia
Normoxic oxygen tension, as used for standard cell culture, is
the atmospheric pressure (21% O2). The term hypoxia, when
employed in the context of cell culture is routinely used to refer to
oxygen tensions ranging from 0 to 10% (108). The physiological
oxygen tension in tissues can vary from 1% in cartilage and bone
marrow to 12% in peripheral blood (109). Thus, the 21% O2

routinely used for MSCs culture is far higher than the oxygen
found physiologically.

In general, hypoxic preconditioning enhances MSCs’
regenerative and cytoprotective effects (82, 91–98). Moreover,
culturing MSCs in hypoxic conditions has been shown to
maintainMSCs’ multipotency (110), enhanceMSCs proliferation
(111), and increase their levels of cytoprotective molecules (98)
(Table 3), thereby improving the ability of MSCs to survive
in the harsh environment found within injury sites upon
transplantation. The beneficial effects of hypoxic culture
preconditioning can likely be explained by the fact that MSCs
exist in vivo in hypoxic environments (131) and hence have
the ability to respond to a hypoxic microenvironment through
the upregulation of the transcription factor HIF-1α (132).
When stabilized due to the lack of oxygen, and dependent
upon the increase of phosphorylated Akt and p38 mitogen-
activated protein kinase (p38MAPK), this factor binds to the
promoter regions of genes responsive to hypoxia, leading to
an increase in available glucose (109). As MSCs are capable
of switching from aerobic to anaerobic metabolic pathways,
they are then able to endure very low oxygen tension values in
their microenvironment (133). Therefore, using these culture
conditions to precondition MSCs enhances their capacity to
survival for longer periods, increases their proliferation rate,
and maintains them in an undifferentiated state (109, 131).
Small differences, however, in the oxygen tension used to culture
MSCs, and in the culture protocol itself, can influence both their
ability to differentiate into each of the different mesenchymal
lineages (134) and their paracrine production (109). This
extreme sensitivity to oxygen tension is an important factor to
bear in mind when analyzing results from studies using different
preconditioning protocols. The various studies to-date that
have used hypoxia as a means of preconditioning MSCs used a
concentration up to 2% O2, for a time period of 4–72 h (Table 4).
Unfortunately, a high degree of variability exists between the
protocols that have been employed, and this must be considered
when assessing the MSCs’ therapeutic function.

HIF-1α activation due to preconditioning MSCs with hypoxia
leads to the induction of factors such as VEGF and Angiotensin,
promoters of vascularization (136, 137). As neovascularization
is a key factor in the regenerative process of damaged tissues,
this may account, in itself, for the better therapeutic capacity
that has been seen with MSCs pretreated with hypoxia. This
hypothesis is supported by a growing number of publications

identifying VEGF as a crucial molecule for the observed pro-
regenerative effects of MSCs (47, 121, 138, 139). Liu et al.
described a direct impact of the hypoxia-preconditioned MSCs
treatment on endothelial cell proliferation with a simultaneous
reduction in apoptosis (139). In addition, infusion of hypoxia-
preconditioned BM-MSCs into the portal vein of rats subject to
hepatectomy promoted hepatocyte proliferation and survival and
improved serum albumin levels after surgery through a TGF-
β dependent mechanism (95). Again, increased production of
VEGF was observed. Hypoxia-preconditioning induced MSCs
to express higher levels of HIF-1α, and the growth factors
GDNF, BDNF, VEGF, Ang-1, and SDF-1, as well as its receptor
CXCR4, all of which have been linked to neovascularization,
as well as EPO and its receptor EPOR, a neuroprotective and
pro-angiogenic molecule (120). Also, when using specifically
hypoxia-preconditioned MSCs-derived EVs to treat acute
myocardial infarction, authors reported the importance of the
increased vascularization in the therapeutic effects. Bian et al.
observed that EVs derived from BM-MSCs preconditioned with
hypoxia for 72 h were able to significantly improve cardiac
function after acute myocardial infarction, mainly through the
promotion of angiogenesis (140). Indeed, a comprehensive
proteomic analysis of exosomes derived from hypoxia-exposed
MSCs showed that these exosomes induce angiogenesis in
endothelial cells via the activation of the NFκB pathway (141).
However, in another study exosomes derived from hypoxia-
preconditioned MSCs contributed to the attenuation of the
injury resulting from an ischemia/reperfusion episode via the
Wnt signaling pathway (142). Beyond that, hypoxia seems to
increase exosome secretion in general (141). Also, in a fat
graft model, co-transplantation of exosomes from hypoxia pre-
conditioned adipose-derived MSC improved vascularization and
graft survival (143) (see Table 5).

Nevertheless, other growth factors are also upregulated in
response to this stimulus (43, 46, 147) (Table 3), and these factors
likely contribute to the specificity of tissue regeneration in a
variety of scenarios. An analysis of the hypoxia-preconditioned
MSCs’ CM used to treat wounds in diabetic rats, revealed
higher levels of VEGF, IGF-1, and bFGF (94), while another
study reported increased production of VEGF-1α and Bcl-2,
with upregulation of HIF-1α, HGF, bFGF, MMP9, and PDGF in
MSCs pretreated with hypoxia (101). In agreement with these
aforementioned studies, Zhang and colleagues observed that pre-
treatment with hypoxia led to increased levels of VEGF, bFGF,
and Akt that were implicated in the enhancement of MSCs’
anti-oxidative, anti-apoptotic, and pro-angiogenic effects in a rat
model of acute kidney injury (96). Additionally, other studies
showed that both hypoxia and, to an even greater degree, forced
overexpression of Akt, upregulated expression of VEGF, bFGF,
HGF, IGF, and TB4, molecules associated with tissue repair and
regeneration (113). The Akt signaling pathway was also reported
to play a role in the enhanced wound healing observed in mice
treated with the secretome from hypoxia-preconditioned MSCs
(121). The effect of this secretome was related to increased
levels of fibronectin, AKT, PI3K, and SMAD2 in the injured
tissue; molecules that are all involved in cell proliferation and
migration. The hypoxia-preconditioned MSCs secretome was
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TABLE 2 | MSCs preconditioning parameters diversity.

Pre-conditioning treatment Treatment conditions MSCs Sources References

Hypoxia Anoxia to 2% O2, 4−72 h Placenta, Gingiva, Bone marrow, Adipose

tissue, Umbilical Cord Blood

(82, 91–98)

Cytokines, growth factors and

hormones

SDF-1, TGF-α, Angiotensin II, INF-γ,

TNF-α, Melatonin, Oxytocin 30 min−7

days

Bone marrow, Umbilical blood cord (89, 90, 99–101)

3D Aggregates/spheroids, 24 h−4 days Bone marrow, Adipose tissue, Synovium (76, 83–85, 102–104)

Pharmacological agents Atorvastatin, Diazoxide, LPS, Paclitaxel,

Curcumin, S1P, Valproate, Lithium, 30

min−48 h

Bone marrow, Adipose tissue, Cell line (86–88, 101, 105–107)

also shown to contain higher levels of VEGF and TGF-β, which
led to increased cell proliferation and migration of dermal
fibroblasts, via the TGF-β/SMAD2 and PI3K/AKT signaling
pathways (121). These results were further validated by Chen
et al. who demonstrated that the hypoxia-preconditioned MSCs
secretome significantly increased proliferation and migration of
keratinocytes, fibroblasts, endothelial cells, and monocytes in
vitro, and that skin wound contraction was accelerated in an in
vivo mouse model (47). The secretome produced by hypoxia-
preconditioned placenta-derivedMSCs was also shown to reduce
scar formation and inhibit proliferation and migration of skin
fibroblasts in vitro (126). In this case, IL-10 was identified
as the key player in the process. In agreement with all these
results, Lan and colleagues reported increased expression of anti-
apoptotic (HGF, Bcl-2), anti-oxidative (catalase, HO-1), and pro-
angiogenic (VEGF) factors in hypoxia-treated BM-MSCs infused
with the goal of improving the respiratory function of mice
suffering from pulmonary fibrosis (98). Chen et al. observed
an increase in the MSCs production levels of not only VEGF-
A and bFGF, but also IL-6 and IL-8 (molecules involved in the
inflammatory response) under hypoxic conditions (47).

The cytoprotective effect of the hypoxia-pretreatment of
MSCs, along with changes in metabolism and maintenance
of their differentiation potential, have now been repeatedly
demonstrated by a variety of authors, despite differences in
the hypoxic conditions used (138, 148). From these studies,
it has been concluded that hypoxia-preconditioning increases
MSCs’ survival in harsh environments (148) and enhances their
angiogenic capacity, which together boost MSCs’ regenerative
and immunomodulatory abilities, contributing to the regulation
of excessive fibrosis and cell death due to uncontrolled
inflammation (96, 98, 101).

Cytokines, Growth Factors, and Hormones
When considering a significant amount of experimental
data regarding MSCs preconditioning with inflammatory
cytokines, it is readily apparent that such a stimulus seems
to predominantly promote an increase in the production of
factors involved in the regulation of the immune response
(see Table 3). This includes chemoattraction of most immune
cells, modulation of inflammation, and even enhancing
migration and homing of transplanted MSCs to sites with
higher concentrations of such inflammatory molecules. Their

immunoregulatory abilities encompass the inhibition of the
complement system activation, the inhibition of NK cells, the
guidance of monocyte differentiation toward anti-inflammatory
macrophages (M2 phenotype), the suppression of cytotoxic T
cell proliferation, and the increase in the numbers of regulatory
T cells (149). Many of these outcomes are explained by the large
number of chemokines produced by the MSCs that effectively
attract numerous immune cells to resolve an inflammatory
response (150). Specifically, IL-6, PGE2, and IDO all seem to
be major effector molecules in the immunoregulatory effects
MSCs mediate (123, 151, 152). The production of this potent
triad of immunomodulatory molecules is stimulated by the
presence of pro-inflammatory factors such as IL-1β, TNF-α,
IFN-γ, and LPS (22, 42, 123, 153, 154), that induce MSCs
to adopt an immunomodulatory phenotype and to trigger
the production of a cocktail of growth factors. These studies
thus collectively indicate the close relationship that exists
between inflammation and regeneration. In agreement with this
supposition, the therapeutic effects that were observed with TNF-
α treated MSCs in a wound closure model, mainly mediated
by increased angiogenesis and immune cells infiltration,
were observed to be dependent on increased levels of IL-6
and IL-8 (116). Indeed, a recent publication featuring an
extensive proteomic analysis of the secretome from BM-MSCs
preconditioned with pro-inflammatory factors (IL-1β, IL-6,
and TNF-α) clearly demonstrates how a pro-inflammatory
stimulus mainly increases MSCs production of proteins
involved in inflammation and angiogenesis (155). Moreover, the
authors also explore the idea that MSCs role in regulating the
proteolytic activity in tissues is key for the regulation of these
processes.

Still, the mechanism by which these factors seem to
influence MSCs is still largely undefined. There is evidence that
MSCs immunomodulatory abilities are mediated by both cell-
to-cell contact-derived mechanisms (156–158) and paracrine
communication (159–161). Also, some authors believe that
MSCs are not naturally immunosuppressive and thus, need
licensing at the site of inflammation to become so (162–165).
This theory is supported by results demonstrating that molecules
such as IFN-γ, TNF-α, or IL-1β are necessary to activate
the MSCs immunomodulatory activity (166, 167). One study
exploring the effect of the preconditioning with TNF-α onMSCs-
derived exosomes demonstrated that the effect the stimulatory
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TABLE 3 | Dynamics of MSCs secretome composition with cells pre-conditioning.

Molecule Preconditioning factors References

Hypoxia Inflammatory

stimuli

3D culture

Adhesion Gal-9 + (32)

VCAM-1 + (112)

ICAM-1 + (112)

ICAM-4 + (112)

Antioxidation Catalase + (98)

HO-1 + (98)

Apoptosis IL-24 + (32)

TRAIL + (32)

CD82 + (32)

Cell proliferation

and differentiation

IGF + + + (32, 38, 40–43, 46, 85, 101,

113)

EGF + + (38)

G-CSF + (114)

TB4 + (113)

Chemoattraction CCL2 (MCP-1 ) + + + (37, 38, 48, 114)

CCL5 (RANTES) + + (37, 38, 48, 112)

CCL7 (MCP-3) + + (38, 48, 114)

CCL20 + (112)

CXCL1 + (112)

CXCL2 + (115)

CXCL3 + (112)

CXCL5 + (112, 115)

CXCL6 + (112, 115)

CXCL8 (IL-8) + + (42, 47, 112, 115, 116)

CXCL9 + (117)

CXCL10 + (112, 115, 117)

CXCL11 + (112, 115, 117)

CXCL12 (SDF-1) + + (41, 43, 114)

CXCR4 + + + (32, 93, 118–120)

CXCR7 + (118)

Immunoregulation TGF-β + + + (32, 37, 38, 41, 42, 114, 121)

IDO + + (32, 37, 117, 122–124)

Factor H + (32, 125)

IL-10 –/+ (37, 126, 127)

PD-L1 + (117)

HLA-G + (117)

IL-1Ra + (114)

PD-L2 + (117)

TSG-6 + (32, 85)

Inflammation IL-6 + + + (37, 38, 42, 47, 48, 112,

114–116, 119, 128)

PGE2 + + (32, 37, 122–124)

PTX3 + (115)

Complement factor B + (115)

Complement factor D + (115)

COX-2 + (119)

TNF-α + (112)

IL-23 + (112)

IL-16 + (114)

(Continued)
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TABLE 3 | Continued

Molecule Preconditioning factors References

Hypoxia Inflammatory

stimuli

3D culture

IL-7 + (114)

IL-11 + (129)

IL-2Rα + (114, 129)

Metabolism STC-1 + (32)

Cathepsin L1 + (115)

Procathepsin B + (129)

Migration MMP-1 + (36, 115)

MMP12 + (130)

Migration Inhibition PAI-1 + (115)

PAI-2 + (115)

Neuroprotection BDNF + (46, 120)

GDNF + (46)

Osteogenesis BMP + + (32, 36, 41, 43, 129)

Pluripotency Oct4 + (32)

Rex1 + (32)

LIF + (42, 114)

Survival HGF + + + (32, 40, 41, 85, 98, 113, 130)

Bcl-2 + + (85, 98, 101)

Akt + + (89, 91, 98, 120)

HIF-1α + (93, 101, 120)

Vascularization Angiogenin + + (38, 93, 120, 129)

FGF + + (32, 38, 41–43, 47, 85, 101,

113, 120, 129, 130)

PDGF + (38, 41, 43)

VEGF + + + (32, 37, 38, 40–

43, 47, 85, 90, 93–

95, 101, 113, 114, 120,

121, 129, 130)

EPO + (93, 120)

EPOR + (93)

effects these vesicles had on human osteoblasts was potentiated
through increase of Wnt-3a content in ASC-exosomes (168).
Conversely, IFN-γ priming of MSC before EV isolation was
reported not to influence the immunomodulatory capacity of
exosomes or microparticles, which displayed dose-dependent
immunomodulatory effects in inflammatory animal models
(169). Additionally, TLRs (Toll-Like Receptor) have also been
implicated as important mediators of this activation. Optiz et al.
reported that activation of TLR3 and TLR4 lead to the induction
of IDO which, in turn, mediated the immunosuppressive actions
of the MSCs (170). Activation of TLR-2 was shown to cause
an increase in the production of galectin-3 by MSCs and, thus,
potentiate their capacity to suppress T-cell activation (171).
Nonetheless, contradictory reports have also been published.
Liotta et al. demonstrated that TLR3 and TLR4 activation not
only increased the production of pro-inflammatory molecules
but also reduced their inhibitory effect on the proliferation of
T-cells (172). Furthermore, they observed that the activation
of these TLRs didn’t have any effect on levels of IDO. More

recently, along with the demonstration that priming with IFN-
γ enhanced MSCs immunosuppressive abilities, mainly through
the induction of IDO, it was also shown that TLR3 activation
did not affect IDO levels and did not influence the cells
immunosuppressive activity (165).

Preconditioning with a myriad of other soluble factors, such
as growth factors or hormones, seems to also potentiate MSCs
regenerative capacity, mainly by stimulating angiogenesis and
inhibiting fibrosis. For example, intracardiac transplantation
of SDF-1-preconditioned MSCs increased angiogenesis and
reduced fibrosis in the ischemic area of a post-infarct heart (89).
The effects observed were attributed to the activation of the Akt
signaling pathway, similarly to what was described for hypoxia-
preconditioned MSCs. TGF-α-preconditioned MSCs enhanced
cardiac function mainly through increased VEGF production
via a p38 MAPK-dependent mechanism (90). TNF-α or hypoxia
were then combined with the TGF-α during prestimulation,
and this led to a further improvement in cardiac function.
Once more, VEGF seemed to play a key role in MSCs’ mode
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TABLE 4 | Effect of preconditioning on therapeutic potential of MSCs secretome.

Pre-conditioning

treatment

Animal Study model MSCs

source

Treatment

conditions

Main identified mediators Major conclusions References

Hypoxia Rat In vitro ischemic

heart

BM 0.5% O2 for 12 h CM Cytoprotection of ARVCs to hypoxia (135)

Mouse Acute kidney injuryAT 0.5% O2 for 48 h CM Enhancement of tissue regeneration

and renal function. Decrease in levels

of IL-1β and IL-6

(130)

Mouse Scald skin wound Placenta 1–5% O2 for 72 h CM (IL-10) Reduction in scar formation. Inhibition

of proliferation and migration of skin

fibroblasts

(126)

Mouse Excisional skin

wound

AT 1/5% O2 for 72 h CM (VEGF, TGF-β1, via

TGF-β/SMAD and PI3K/Akt)

Increase in MSCs and skin fibroblasts

proliferation. Acceleration of wound

closure

(121)

Mouse Excisional skin

wound

BM 2% O2 for 48 h CM (bFGF, VEGF, IL-6, IL-8) Enhancemente of proliferation/

migration of fibroblasts, keratinocytes

and enthelial cells. Neovascularization

and recruitment of macrophages.

Acceleration of wound contraction

(47)

Cytokines, growth

factors and

hormones

Rat Cutaneous wound AT TNF-α (10 ng/mL) for

48 h

CM (IL-6, IL-8) Acceleration of wound closure.

Increase in angiogenesis and

infiltration of immune cells into the

wound

(116)

TABLE 5 | Effect of preconditioning on therapeutic potential of MSCs-derived exosomes.

Pre-conditioning

treatment

Animal Study model MSCs

source

Treatment

conditions

Main identified

mediators

Major conclusions References

Hypoxia Rat Acute myocardial

infarction

BM 1%O2 for 72 h EVs Increased angiogenesis and improved

cardiac function

(140)

Rat I/R cardiac injury ? ? EVs

(miRNA26a)

Attenuation of the injured area and

arrythmias

(142)

Mouse Acute myocardial

infarction

BM Anoxia +

reoxygenation

EVs

(miRNA-22)

Reduction of post-infarction fibrosus (144)

Cytokines, Growth

Factors and Hormones

Rat Kidney

ischemia/reperfusion

injury

UCB IFN-γ (100 ng/mL)

for 24–48 h

Evs Loss of cytoprotective effect. Loss of

complement factors and lipid binding

proteins and gain of tetraspanins, a more

complete proteasome complex and MHCI

(145)

Pharmacological

agents

Rat Local cerebral ischemia Cell line BYHWD (2,4

g’mL) for 48 h

Evs

(VEGF)

Attenuation of ischemic injury by an

increase in vascularization

(146)

of action. Preconditioning MSCs with a cocktail of growth-
factors (FGF-2, IGF-1, and BMP-2) was also attempted, and this
was found to yield protective effects on cardiomyocytes and to
improve left ventricular systolic function in a rat myocardial
infarction model (173). Another soluble molecule that has
been used to precondition MSCs is melatonin, which activates
the ERK 1/2 signaling pathway, and consequently enhances
cell survival under oxidative stress (100). Thus, melatonin-
preconditioned MSCs increased angiogenesis and neurogenesis,
reduced infarct size, and improved neurobehavioral outcome in
a rat cerebral ischemia model, and once more this seems to
have been related to increased VEGF levels (100). Melatonin-
preconditioned MSCs also exhibited significantly higher survival
rates after intraparenchymal injection in a rat kidney ischemia
model (99). This effect was attributed to an upregulation of the
enzymes catalase and superoxide dismutase-1 that imbued MSCs
with greater antioxidant capacity. Lastly, H2O2 has been used

to precondition MSCs whose exosomes were used to treat and
ischemia/reperfusion injury in a rat model (174). The treatment
lead to increased vascularization, which led to higher survival
rates, and a reduced inflammatory reaction.

3-Dimensional (3D) Culture
MSCs culture in a 3-dimensional (3D) environment is another
type of preconditioning that aims to more closely mimic the
physiological conditions which the cells would see in vivo. 3D
culture of MSCs, namely as spheroids, induces an increase
in the production of factors associated with cell survival and
proliferation and vascularization (129, 175) (Table 3). This, in
turn, has been shown to increase these cells’ immunomodulatory,
angiogenic, anti-fibrotic, and anti-apoptotic activities (83, 85,
104, 176). MSCs spheroids decreased neutrophil activity,
the levels of the pro-inflammatory molecules TNF-α, IL-1β,
CXCL2/MIP-2, PGE2, and plasmin activity in a mouse peritonitis
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model (83). Other studies demonstrated that 3D culture of MSCs
in spheroids seems to stimulate the cells’ pro-angiogenic ability,
as demonstrated by the implantation of AT-MSCs aggregates
leading to an improvement in renal function in a rat model of
acute renal ischemia/reperfusion (85). As previously mentioned,
the 3D culture of MSCs has also been demonstrated to increase
their anti-fibrotic potential. MSCs spheroids were shown to
decrease tissue fibrosis in amousemodel of hepatic fibrosis (104).
However, in another model system, MSCs’ anti-fibrotic activity
was shown to be dependent on the dose of MSCs aggregates,
with higher density aggregates being unable to regenerate the

cartilage in rabbits suffering from full-thickness osteochondral
defects (84). Administration of 3D cultures of MSCs aggregates
(with more than 125,000 cells) during 24 h increased wound
healing rate in mice with full-thickness diabetic wounds. Lower
cell doses yielded results similar to those observed in the vehicle-
treated mice (76), supporting the notion that the dose used is
key.

The spheroid 3D culture creates a microenvironment
where inner layers are exposed to much lower levels of
oxygen and nutrients, originating an hypoxic environment
(177). Although, as a consequence, MSCs express higher

FIGURE 2 | The effect of different preconditioning stimuli in the MSCs response. Schematic representation of known effects of highly studied preconditioning

factors—hypoxia (in blue), 3D culture (in blue), specific soluble factors (green), and inflammatory cytokines (red)—in the MSCs response. Blue pathway presents the

effect of a hypoxic environment on the cells, which is mediated by specific signaling pathaways (Akt, ERK, p38MAPK) and culminates in the stimulation of the above

signaled effects. Tridimensional culture is also represented in blue. MSCs preconditioning with specific soluble factors (SDF-1, TGF-α, and melatonin) seems to

stimulate the same signaling pathways as a hypoxic environment and, thus, elicit the same general response from these cells. The use of inflammatory cytokines to

influence the MSC response, as represented in red, besides promoting the specific above shown effects, also stimulates the production of factors that seem to be

common to all the other preconditioning factors. The pathways that mediate this activity are still to be determined.
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levels of molecules associated with apoptosis (32), their
immunomodulatory capacity seems secured by the diverse
and abundant production of factors involved in inflammation
and immune response (83, 114, 177) (Table 3). Accordingly,
3D MSCs-preconditioning was shown to upregulate TSG-6
expression, as well as SCT-1 (anti-inflammatory/anti-apoptotic
protein), LIF, IL-24, TRAIL, and CXCR4, a chemokine involved
in spheroid-derived-MSCs adhesion to endothelial cells. Wnt
signaling cascade seemed to be involved in this effect as the
expression of its inhibitor DKK1 was decreased (175). In fact,
3D pre-conditioning of MSCs demonstrated an influence in
the production of, not only inflammatory cytokines, but also
matrix constituents and degrading enzymes (76, 84, 85), which
contributes to their anti-fibrotic capacity. Culturing MSCs as
spheroids seems to further enhance their innate pro-angiogenic
ability, presumably by increasing their production of angiogenic
factors such as Angiogenin, bFGF, VEGF, and HGFa (85, 129).
In addition, culturing MSCs in this more physiologically relevant
3D architecture was found to increase their expression of E-
cadherin which, by activating the ERK/AKT signaling pathway,
was responsible for the higher levels of VEGF production
observed (178).

Pharmacological Agents
Pre-conditioning of MSCs with pharmacological agents may
be considered as an alternative option in specific cases. For
example, MSCs were pre-conditioned with atorvastatin (a statin
associated with the prevention of cardiovascular disease events)
(107), oxytocin (hormone) (179), Curcumin (strong anti-oxidant
with anti-inflammatory properties) (180), lipopolysaccharide
(LPS—endotoxin) (105), and diazoxide (used as a vasodilator in
acute hypertension) (86), and their ability to treat myocardial
infarction tested. All of the preconditioning protocols enhanced
the survival of the transplanted MSCs in vivo and led to
improved functional recovery and reduced infarct size (86,
105, 107, 179, 180). In general, these effects were due to
increased neovascularization and reduced tissue fibrosis. All
the studies, except for those using atorvastatin and oxytocin
(86, 105, 180) reported a link between the observed effect and
increased levels of VEGF, FGF-2, or HGF and activation of
the Akt signaling pathway. In concordance, MSCs-derived EVs
obtained after preconditioning with Buyang Huanwu Decoction
(BYHWD), a drug that has been used for centuries for the
treatment of paralysis and stroke, was shown to attenuate brain
injury in a rat local cerebral ischemia model by increasing
local VEGF levels (146). Atorvastatin seemed to potentiate
MSCs’ immunomodulatory capacity, decreasing the infiltration
of inflammatory cells and the levels of TNF-α and IL-6, via
a CXCR4-dependent mechanism, which the authors concluded
was the primary mediator of the improvement of functional
recovery and reduction of infarct size in a rat stroke model
upon MSCs injection (106). Thus, it is becoming clear that
MSCs’ paracrine response is as dynamic as themicroenvironment
that surrounds them. Even minor changes in culture conditions
or in the microenvironment of the injured tissue can induce
dramatically different results (32).

CONCLUSION

Extensive evidence now exists to support the benefits of
preconditioning of MSCs with respect to improving their
capacity to induce regeneration/repair across the wide array
of tissues and pathologic conditions in which these cells
have been explored. Depending on the preconditioning factors
used in the MSCs’ culture, different signaling pathways are
activated. Understanding how each different stimulus affects
MSCs behavior is crucial to validate MSCs preconditioning
as a tool to enhance both the safety and the disease-specific
therapeutic potential of MSCs for clinical use.

Although a great deal of work to comprehend the full
mechanisms of MSCs paracrine signaling upon pre-conditioning
is needed, some patterns can be recognized (see Figure 2).
In summary, pre-conditioning of MSCs with hypoxia, 3D
structural organization or soluble factors as SDF-1, or
TGF-β seem to activate Akt, ERK, and p38MAPK signaling
pathways, that seem to increase the production of cytoprotective
molecules (Catalase, HO-1, etc.), pro-regenerative (bFGF,
HGF, IGF, etc.) and pro-angiogenic (VEGF) soluble factors
and immunomodulatory cytokines (IDO, PGE2, IL6, etc.).
On the other hand, priming of MSCs with inflammatory
cytokines such as IFN-γ, IL-1β activate TLRs (namely, TLR-
2/3/4) on MSCs surface which then increases the production
of similar cytoprotective, pro-regenerative, pro-angiogenic
and immunomodulatory molecules and further promotes
chemokines secretion. Nevertheless, to-date, it has not been
possible to identify one single mechanism responsible for this
effect.

Moreover, data on the effects that preconditioning of MSCs
exerts on the composition and therapeutic potential of their
secretome is still lacking. Most studies have focused solely on
the effects of hypoxia on the MSCs’ secretome content and
its therapeutic potential or, in alternative, on the effect that
other preconditioning factors could exert on its composition.
In most of the studies, there is a lack of evidence on the
influence of preconditioning on both the therapeutic effect of
the secretome and its composition. Perhaps most importantly,
the great majority of studies exploring the clinical utility of
the MSCs’ secretome have tended to utilize a fairly myopic
approach to study its composition, focusing on specific factors
of interest in the unique pathological setting being explored,
which has contributed to the difficulty in gathering a widely
applicable understanding of how the secretome can be fine-tuned
for maximal effect in each specific pathology.

Furthermore, due to the wide heterogeneity in MSCs
employed in the research community, with respect to their
tissue of origin, the health and age of the donor, protocols
of cell isolation, culture and preconditioning, as well as the
animal model used for testing, it becomes rather difficult
to dissect the mechanistic action behind the observed effects
on preconditioning of MSCs. Advances in high-throughput
techniques and bioinformatic tools, in combination with a
database in the area, would help to create a more comprehensive
and complete understanding of the way preconditioning can be
fine-tuned to increaseMSCs’ therapeutic utility in the future. This
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aspect of big data is particularly relevant when the number of
studies using MSCs secretome is increasing, accomplished by an
expansion of the EVs/exossomes field, in which their secretion by
MSCs is being largely explored (181, 182).

Cell therapies as established so far, notwithstanding its great
promise, present several obstacles concerning safety, process
standardization, and practicality of the procedures needed to
deliver viable cells to the hostile microenvironment often present
within injured tissues (49, 183, 184). A consensus in the shifting
of MSCs’ therapeutic potential to their paracrine mechanism
of action is being formed within the scientific community,
which points to the development of guidelines to refine the
experimental settings of the production of MSCs secretome,
to establish more standardized protocols among the scientific
community and to promote future collaborative work to close the
wide gap that has existed for decades betweenMSCs experimental
research and their clinical use.
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