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Circumventricular organs (CVOs), neural structures located around the third and fourth

ventricles, harbor, similarly to the choroid plexus, vessels devoid of a blood-brain

barrier (BBB). This enables them to sense immune-stimulatory molecules in the blood

circulation, but may also increase chances of exposure to microbes. In spite of this,

attacks to CVOs by microbes are rarely described. It is here highlighted that CVOs and

choroid plexus can be infected by pathogens circulating in the bloodstream, providing

a route for brain penetration, as shown by infections with the parasites Trypanosoma

brucei. Immune responses elicited by pathogens or systemic infections in the choroid

plexus and CVOs are briefly outlined. From the choroid plexus trypanosomes can

seed into the ventricles and initiate accelerated infiltration of T cells and parasites

in periventricular areas. The highly motile trypanosomes may also enter the brain

parenchyma from the median eminence, a CVO located at the base of the third ventricle,

by crossing the border into the BBB-protected hypothalamic arcuate nuclei. A gate may,

thus, be provided for trypanosomes to move into brain areas connected to networks

of regulation of circadian rhythms and sleep-wakefulness, to which other CVOs are

also connected. Functional imbalances in these networks characterize human African

trypanosomiasis, also called sleeping sickness. They are distinct from the sickness

response to bacterial infections, but can occur in common neuropsychiatric diseases.

Altogether the findings lead to the question: does the neglect in reporting microbe attacks

to CVOs reflect lack of awareness in investigations or of gate-opening capability by

microbes?

Keywords: choroid plexus, Trypanosoma brucei, immune responses, brain infections, sleep disorders, lymphocytic

choriomeningitis virus, circadian rhythms, blood-brain barrier

INTRODUCTION

Parasites can attack the central nervous system (CNS) through the blood, with the olfactory route
used by certain amoebas such as Naegleria fowleri as remarkable exceptions (1). Invasion from the
bloodstream through CNS vessels is hampered by the blood-brain barrier (BBB) that restricts non-
selective transcytosis of molecules across the endothelial cells, which are linked by tight junctions.
Certain parasites, such as Toxoplasma, have developed mechanisms to cross the BBB (2, 3), while
others (Taenia, Schistosoma, Plasmodium) do not traverse the BBB but induce inflammation in the
surrounding parenchyma if trapped in vessels (4–7).
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Another hematogenous route for parasite entry into the brain
is via the choroid plexus (CP) and circumventricular organs
(CVOs) though this route is largely neglected. These structures
are devoid of a BBB, but a blood- cerebrospinal fluid (CSF)
barrier is formed by tight junctions between the CP epithelial cells
and between specialized tanycytes which outline the CVOs (8).

The present overview highlights that parasites can target the
CP and CVOs. The role of CP as initiator of brain infections and
inflammation is briefly outlined. Focus is then on the “minute”
CVOs as sites of direct parasite attacks. This is exemplified by the
extracellular parasites Trypanosoma brucei (T. b.), the etiological
agents of African trypanosomiasis, that could cause distinct brain
homeostatic imbalances by their localization in the CVOs.

WHICH ARE THE CVOs?

The term CVOwas coined to designate structures located around
the third and fourth brain ventricles including, in mammals,
the pineal gland, subcommissural organ, median eminence
(ME), neurohypophysis, and organum vasculosum of the lamina
terminalis (OVLT), as well as area postrema (AP) and subfornical
organ (SFO) (Figure 1A) (13). The phylogenetic origins of CVOs
do not suggest any unifying ancestral program, and cross-species
comparisons suggest a high degree of evolutionary flexibility
(14). In spite of this, the CVOs, visualized by molecular tracers
excluded by the BBB, have a number of common features (8):
they are located at the midline in the ventricular walls and
are sealed off from the CSF by elongated tanycytes (15). With
the exception of the rodent subcommissural organ, in which
vessels are sparse, they are highly vascularized and capillaries
are endowed with small fenestrations (about 60 nm), which are
bridged by a thin diaphragm formed by radial fibrils surrounding
a slit-shaped pore (about 5 nm) (16–18). In OVLT, AP and
SFO the capillaries are surrounded by large perivascular spaces
delineated by an outer laminin-containing basement membrane
(BM), which impede diffusion of dextrans larger than about 10
kD into the parenchyma (19, 20).

The location of CVOs at the interface between brain tissues,
bloodstream and CSF indicates a role in interactions between
these compartments and in homeostatic regulations. The OVLT,
AP, and SFO have sensory functions, responding to blood-borne
signals, while the neurohypophysis/ME and pineal gland are
secretory, releasing neurohormones into blood vessels (8, 21). Of
note, the ME also serves a sensory function, playing a major role
in the regulation of metabolic signals that control energy balance.
For instance, blood levels of the adipose tissue-derived hormone
leptin, which inhibits feeding, are sensed by leptin receptors at
either dendritic-like neuronal processes (22) or tanycytes (23).
The former are derived from the hypothalamic arcuate nucleus
(Arc), which is sealed by the BBB, and pass the border between
Arc and ME (21).

IMMUNE RESPONSES IN THE CP AND
CVOs

The CP, where the CSF is formed, does not contain neurons
and, although originally considered as a CVO (13), is often

not included in this group of structures (8). The CP also has
fenestrated capillaries and is lined by specialized epithelial cells
that isolate it from the ventricles. It can be target of microbial
attacks, and may contribute to spread of infections to the CNS.

A role for the CP in initiating T cell invasion of the
brain parenchyma was suggested by experimental autoimmune
encephalomyelitis (EAE), a most studied paradigm of brain
inflammation. In EAE, Th1 and Th17 cells can enter the brain
parenchyma crossing the BBB at postcapillary venules by first
traversing endothelial cells and BM to enter perivascular spaces,
where antigen-presenting cells may be located (24, 25). T cells
activated by antigen recognition may then enter the parenchyma
after passing the next hindrance, the astrocytic BM (26). This
two-step passage may be triggered by CP-derived Th17 cells,
which could reach perivascular spaces via the CSF flow from the
ventricles and subarachnoid space (27).

Lymphocytic choriomeningitis virus (LCMV) is the prototype
of a non-cytolytic virus that causes immune-mediated brain
diseases (28). In adult mice, LCMV infects meningeal cells, CP
epithelial cells and ependymal cells, and causes T cell infiltration
in the meninges and CP (29). This is followed by infection of
resident cells and T cell invasion in periventricular regions and
white matter (30). The brain invasion of T cells is triggered
by activation of viral pattern-recognition receptors on resident
cells [probably microglia (28)] that secrete interferon (IFN)-
α/β, which initiates production of the chemokine CXCL10 by
astrocytes (31). This production is markedly increased by IFN-
γ once virus-sensitized T cell are recruited, accelerating the
inflammatory response (31). A similar two-phase brain invasion
of T cells is seen during infection with the parasite T. b. brucei
(32), as described below.

Knowledge on the activation of CVOs during systemic
infections, which is raising increasing interest, has been based on
the effects of the bacterial cell wall product lipopolysaccharide
(LPS) (33). This molecule binds Toll-like receptor (TLR)4,
which is expressed in the CVOs (34). LPS activation of non-
hematopoietic, resident CVO cells can elicit sustained CNS-
specific inflammation independent of cytokine effects (35). LPS
can also cause robust proliferation of resident microglia in the
CVOs and neighboring hypothalamus (36).

Signs of microglia activation in OVLT, SFO, ME, and AP
are observed even in normal, unchallenged, adult mice, and
this may reflect a continuous exposure to molecules from the
bloodstream (37). Interestingly, microglial signaling in the CVOs
of the mediobasal hypothalamus can regulate the control of
energy homeostasis (38).

CP AND PARASITE INFECTIONS

Information on the CP as target of parasite infections is
sparse. Toxoplasma gondii tachyzoites and pseudocysts were
seen in the CP epithelium and stroma in the majority of AIDS
patients deceased during acute necrotizing stages of cerebral
toxoplasmosis, and in 20% of the patients with healed lesions
(39). A blood-borne spread from reactivated systemic infections
with a potential for further CSF dissemination was suggested
(39). In Toxoplasma-infected mice, however, no significant
inflammation was seen in the CP, arguing for a preferential
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FIGURE 1 | (A) Localization of circumventricular organs (CVOs) and choroid plexus (CP) in a schematic view of the medial brain surface. The depicted CVOs play

homeostatic roles by their secretory and sensory functions. The neurohypophysis, the distal part (the neural lobe), receives the hypothalamic neurohormones

vasopressin and oxcytocin secreted into the superficial vascular plexus in the proximal part. The deep vascular plexus of the median eminence (ME) serves a sensory

function mediating metabolic signals to the arcuate nucleus (Arc) of the hypothalamus (see also C). The organum vasculosum of the lamina terminalis (OVLT)

participates in osmoregulation by controlling vasopressin release and in the control of the cyclic production of the hypophysial gonadotropic hormones. The subfornical

organ (SFO) participates in the regulation of vasopressin release and induction of the sensation of thirst caused by dehydration. The subcommissural organ (SCO) may

facilitate the flow of the cerebrospinal fluid in the cerebral aqueduct between the third and fourth ventricles. The pineal gland (PG) secretes melatonin and stabilizes the

photoperiod timekeeping. The area postrema (AP) is involved in cardiovascular and respiratory regulation, as well as in the control of the vomiting center in the medulla

(8). (B) CVOs and key nodes in the regulation of sleep, wakefulness and their circadian alternation: the biological clock which resides in the suprachiasmatic nucleus

(SCN); wake-promoting cell groups in the posterior hypothalamus (PH) which include the histamine-containing tuberomammillary nucleus (TMN), and the lateral

hypothalamus (LH) where orexin neurons are located; sleep-promoting cell groups in the anterior hypothalamus (MPO, medial preoptic area; VPLO, ventrolateral

preoptic nucleus). Other sleep-wake-regulatory cell groups are depicted in the brain stem: serotonergic raphe nuclei (RN), cholinergic cells of the pedunculopontine

tegmentum (PPT) and noradrenergic neurons of the locus coeruleus (LC). In the hypothalamus, the CVOs network involves the paraventricular nucleus (PVH),

ventromedial nucleus (VM), and pars tuberalis (PT); the Arc forms an anatomical and functional complex with the ME. (C,D) Schematic representation of the integration

of the ME/Arc complex in the circadian rhythm-generating system. ME and Arc neurons are exposed to metabolic cues. This influences the semi-autonomous clock in

the Arc, which has reciprocal connections with the master clock in the SCN entrained mainly by photic cues (9, 10). The SCN is connected via the PVH, spinal cord

(Continued)
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FIGURE 1 | (sympathetic intermediolateral column, IML) and superior cervical ganglia (SCG) to the PG, in a circuit which regulates melatonin secretion. The SCG is

also a site for early trypanosome invasion (11). Melatonin secreted from the PG exerts a feedback regulation through melatonin receptor binding sites in the SCN and

PT in the mediobasal hypothalamus which is connected to the Arc (12). cc, corpus callosum; fx, fornix; Thal, thalamus; Hypoth, hypothalamus; V4, fourth ventricle.

recruitment of leukocytes across the cerebral blood vessels to
control the spread of infection (40).

Sporadic reports indicating that parasites, in addition to some
bacteria, can infect the CP include Schistosoma mansoni, which
may move to the CP and shed eggs for further spread into the
CNS, and Toxocara canis, which may reach the CP following
systemic infections (41).

The involvement of the CP in parasitic infections has been
most studied in T. b. infections. Neuropathological investigations
of victims of human African trypanosomiasis (HAT) have
shown infiltration of white blood cells in the brain parenchyma,
preferentially around the third ventricle and in the white matter,
i.e., “leukoencephalitis” (42), indicating that this event follows an
attack of trypanosomes to the CP.

Early experimental studies employing T. b. sub-species have
revealed indeed trypanosomes in the CP of infected monkeys
(43, 44) and dogs (45, 46). The localization of trypanosomes to
the CP was verified using immunohistochemistry in rodents (11)
and by electron microscopy, which showed parasites penetrating
the CP vessels and epithelial cell layer to reach the CSF in the
ventricles (47).

From the ventricular CSF a few trypanosomes may invade
the ependymal cell layer (48) and spread into the surrounding
brain parenchyma (hypothalamus, white matter). An immune
response is later initiated at pericapillary spaces that trigger
passage of T cells across the BBB by mechanisms similar to those
occurring in EAE and in LCMV infections described above. The
T cells open the way for a new and stronger wave of trypanosome
invasion into the brain, which may occur weeks following the
CP infection (49–51). As in LCMV infections, the process is
amplified by T cell-derived release of IFN-γ and by astrocytic
expression of CXCL10 (49, 51, 52).

Infections with T. b. brucei, thus, show striking similarities
with LCMV infections, not only in spatial localization to
periventricular and deeper brain structures, but also in immune
responses, which during infections with the extracellular
trypanosomes play a paradoxical role of enhancing pathogen
neuroinvasion. Trypanosome infections do not spread into
superficial neocortical layers from the meninges (47, 49) and, by
affecting the CP, pathogen and immune cell attacks to the brain
parenchyma can instead be launched from within the brain.

TRYPANOSOME ATTACK TO THE CVOs

Knowledge on the attack of neurotropic parasites to the CVOs
rely on data obtained with experimental T. b. brucei rodent
infections. Of note, trypanosomes target the CVOs already early
during the infection when parasites have not yet crossed the
vessels endowed with tight junctions located in the brain and
retina (11), and a local immune response is elicited (53, 54). This

response includes expression of TNF-α, interleukin (IL)-1β, IL-
1β converting enzyme and inhibitory factor IκBα mRNAs in the
ME/Arc complex, OVLT and AP (53), as well as T cell invasion
(54).

The early infection of CVOs by trypanosomes is of interest in
view of pathogenetic mechanisms of neural dysfunction. In HAT,
which is also called sleeping sickness, functional disturbances
include a fragmented sleep pattern and alterations of sleep
architecture, documented also in experimental infections in rats
(55), and a disruption of the sleep-wake cycle, which is a major
circadian rhythm, leading to diurnal somnolence and nocturnal
insomnia (56). Other circadian rhythms are also disrupted in
HAT patients (56). Functional disturbances worsen progressively
during the disease.

Experimental findings have indicated that typical alterations
of sleep architecture due to dysfunction of hypothalamic
neurons can initiate when parasites have not yet invaded the
brain parenchyma, as discussed below. The early trypanosome
infection of the CVOs could therefore contribute to triggering
initial and distinct CNS imbalances.

CVOs and the Networks of Sleep-Wake
and Circadian Regulation
Major alterations of sleep architecture (the so-called “sleep-onset
rapid eye movement episodes”) can represent early signs of HAT
(56) and they can precede parasite traversal of the BBB as seen in
experimental rat infections (57).

These distinct sleep changes are due to altered function of
the population of neurons which release the orexin/hypocretin
peptide pair and reside in the lateral hypothalamus (LH) [review,
see (58)]. Orexin neurons, which are important for energy
homeostasis, wakefulness stability and transitions between
vigilance states, are especially sensitive to inflammatory signaling
due to their molecular structure (58). Damage and dysfunction
of orexin neurons during the progression of T. b. infection have
been documented in experimental models (57, 59).

However, in the early stage of trypanosome infection,
proinflammatory molecules from the CVOs could potentially
affect the function of orexin neurons through both humoral and
neural pathways. The OVLT, AP, SFO are directly connected
with the LH (60), and orexin axons densely innervate the
Arc (61), receiving reciprocal connections. Several neural
pathways connect the CVOs with other sleep-wake-regulatory
hypothalamic structures, such as the preoptic area (60, 62)
(Figure 1B).

It is also important to note that the distributed system of
regulation of sleep architecture and sleep-wake cycle has key
centers in the hypothalamus and brainstem in proximity to
the third and fourth ventricles [review, see (58)], and that the
master circadian pacemaker, the suprachiasmatic nucleus (SCN)
(63) resides in the anterior hypothalamus, ventral to the third
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FIGURE 2 | Trypanosomes (T. b. brucei; red) invasion of the median eminence (ME), which lacks Glut-1, a glucose transporter expressed in the cerebral vessels

(green). The image shows that the parasites locate at the vascular layer at the bottom of the ME and at the floor of the third ventricle (3V) where the tanycytes are

linked by tight junctions. They are also found in the arcuate nucleus (Arc), sealed by the blood-brain barrier (BBB) of the cerebral vessels (green), probably bypassing

the border zone in which tanycytes are linked by adherens junctions. Although the vascular layer contains fenestrated capillaries, trypanosomes (and leukocytes) are

much too large to pass through the fenestrae (60 nm) or their slit-sized pores (5 nm), and they probably, like in other tissues, pass across the postcapillary venules that

in ME lack a BBB. Extension of the fenestrated capillaries in the ME is flexible, and can be stimulated by metabolic cues (73), but whether this is affected by

inflammatory responses is not known.

ventricle (Figure 1B). Projections of the SFO to the SCN and
polysynaptic pathways linking OVLT and AP with the SCN have
been reported (64–66). Importantly, Arc neurons project to the
SCN, transmitting feeding-related signals to the master biological
clock (67) (Figures 1B,C).

Trypanosomes and the ME-Arc Complex
Early trypanosome invasion of the Arc from the ME has been
observed in infected rats (57). Dividing slender trypanosomes are
highly motile (68) and themotility is driven by rotational flagellar
movements, like drills, critical for virulence (69). Trypanosomes
can also change directions not to get trapped, which favors
movements in tissues (70). These parasites can therefore move
in the ME from the vessels into the layer of tanycytes, and
such progression may be facilitated by parasite-derived proteases
(71, 72). A gate to pass toward Arc neurons may be provided
to trypanosomes by the border between ME and Arc (21)
(Figure 2).

By infiltrating the ME/Arc complex trypanosomes may affect
not only neural mechanisms of sleep regulation and circadian
rhythm generation, but also other physiological functions. For

instance, HAT is associated with reproductive disorders (74).
In T. congolense-infected goats a failure in luteinizing hormone
release is due to a disruption in secretion of the gonadotropin-
releasing hormone into ME vessels (75). Whether secretion of
other hormones into ME vessels (76) or energy metabolism
regulated by theME are also disturbed in trypanosome infections
remains to be studied.

Trypanosomes and the Pineal Gland
Melatonin, the hormone produced by the pineal gland, is secreted
with a circadian rhythm and can act as an endogenous circadian
rhythm synchronizer to stabilize or reinforce circadian rhythms
(77). Clinical studies on HAT patients have shown that the
circadian rhythm of melatonin plasma level is maintained, but
with a significant phase-advance in its peak, which is nocturnal
(78). In T. b. brucei-infected rats the binding of melatonin to
its receptor in the SCN, which entrains the circadian rhythm of
melatonin secretion to photic stimuli (Figures 1C,D), is phase-
advanced (79) and a melatonin agonist can restore synchronized
sleep fragmentation during the infection (80).
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Taken together, these observations indicate that disturbances
in the melatonin-generating system play a pathogenetic role for
sleep fragmentation in African trypanosomiasis.

Which Mechanisms May Induce Functional
Imbalances Upon Trypanosome Attack to
the CVOs?
Stimulation with LPS and its effector molecules IL-1β and TNF is
associated with “sickness behavior” dominated by hypersomnia
and fever. From the functional point of view it is important
to recall that somnolence during sickness behavior does not
have any of the distinct changes of sleep architecture, sleep-
wake cycle and circadian rhythms that characterize African
trypanosomiasis [review, see (58)] and are also akin to
those in certain neuropsychiatric illnesses (81). Mechanisms of
functional imbalance caused by trypanosome attack to the CVOs
should therefore be different from those elicited by bacterial
LPS.

Trypanosomes release a number of molecules that can act
as immune stimulants (82), most notably the variable surface
glycoprotein (VSG) and CpG-DNA, which is released by dead
trypanosomes and activates TLR9 signaling (83). No information
is available on the effects of VSG on the brain. Systemic
administration of bacterial CpG-oligonucleotides activates cells
in CVOs as well as in the hypothalamic paraventricular nucleus
(as revealed by the neuronal activity markers p-STAT3 and
Fos). Activation of TLR4 and TLR9 converge on the MyD88
intracellular signaling pathways, but with some differences
in their effects (84). Interestingly, TLR9 is expressed on
neuronal subsets in the brain, but its role is still unclear
(85).

CVOs harboring trypanosomes may also be exposed to
prostaglandins (PG) synthesized by the parasites (86). Of these,
PGE2 could be involved in dysfunction characteristic of African
trypanosomiasis. PGE2 has limited effects on LPS-induced
hypersomnia (87), but can cause phase shifts in peripheral
circadian clocks and does not affect locomotor activity rhythm,
which is SCN-dependent (88). This is similar to observations
in T. b. brucei-infected rats in which locomotor rhythm is
maintained, while the circadian rhythm in clock gene expression
in CVOs is disturbed (89). Interestingly, it has been recently
reported in mice that trypanosomes release also a soluble factor,
still unidentified, that causes shortening of the circadian peak
periods (90).

These data sets indicate that trypanosome attack to the CVOs
elicits immune signaling mechanisms that in intensity, timing or
quality differ from those of systemic bacterial infections.

CVOs IN VIRAL AND PRION INFECTIONS

To our knowledge, infections of CVOs with microbes have
not been reported in humans. Experimental observations on
viruses are rare, but include LCMV (91), bat rabies strains
(92), and Venezuelan Western equine virus (93) infections.

Remarkable exceptions are, however, prion infections. This
pathogen can spread to the brain via peripheral and autonomic
nerve fibers innervating the oral-gastro-intestinal tract (60). At
preclinical stages of the disease in sheep, prion immunolabeling
is found in CVOs (AP, ME, SFO, OVLT, pineal gland and
neurohypophysis) at the same time as in the dorsal motor
nucleus of the vagus nerve, and before prion spread into the
surrounding tissues (94). The functional significance of prion
localization to CVOs is not clear, but prions can directly
affect synaptic functions and elicit anti-inflammatory immune
responses (95).

CONCLUDING REMARKS

The ring formed by CVOs around the third and fourth
ventricles can be seen as a hub where systemic immune
responses and homeostatic brain networks interact (96). These
networks regulate metabolism, energy balance, neurohormonal
secretion, as well as sleep, wakefulness, their alternation and
other endogenous circadian rhythms. The response of CVOs
to systemic bacterial innate receptor agonists and their role in
sickness behavior have received attention, but direct infections
of the CVOs have been neglected. This raises key questions:

- Do trypanosomes have peculiar properties to promote their
spread to the CVOs, or is the lack of information on direct
infection of the CVOs by other microbes a consequence of
lack of proper studies? Systematic neuropathological studies
and application of new imaging techniques (97) are needed to
answer this question.

- Does the targeting of trypanosomes to the CVOs elicit a
spectrum of immune signals distinct in intensity or quality
from those elicited by bacterial LPS in systemic infections?

- Could the CVOs, defined as “windows of the brain” (98)
implying open windows of the BBB, actually represent “gates
to the brain” that only motile microbes have learned how to
open and other microbes may access by different mechanisms?
This would require a targeted fight against microbes sitting in
the CVOs, and solicits attention on the infection of the minute
organs surrounding the ventricles.
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