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Dendritic cells (DCs) mediate tolerance to food antigens, limit reactivity to the gut

microbiota and are required for optimal response to intestinal pathogens. Intestinal DCs

are heterogeneous but collectively generate both regulatory and effector T cell responses.

The balance of outcomes is determined by the activity of functionally distinct DC subsets

and their modulation by environmental cues. DCs constantly sample luminal content to

monitor for pathogens; the significance of the various pathways by which this occurs is

incompletely understood. Intestinal DC have distinctive properties shaped by local host,

dietary and microbial signals. These properties include the ability to produce all-trans

retinoic acid (RA) and imprint gut tropism on T cells they activate. In the steady-state,

subsets of intestinal DC are potent generators of inducible Treg, aided by their ability to

activate TGFβ and produce RA. However, responses induced by steady-state intestinal

DCs are not exclusively regulatory in nature; effector T cells with specificity for commensal

bacterial can be found in the healthy mucosa and these can be locally controlled to

prevent inflammation. The ability of intestinal DCs to enhance effector responses in

infection or sustain inflammation in disease is likely to involve both modulation of the

local DC population and recruitment of additional populations. Immune pathways in the

pathogenesis of inflammatory bowel disease can be mapped to DCs and in inflamed

intestinal tissue, DCs show increased expression of microbial recognition machinery,

activation, and production of key immunological mediators. Intestinal DCs may be

targeted for disease therapy or to improve vaccine responses.

Keywords: Dendritic cells, intestinal inflammation, antigen sampling, lymphocyte homing, inflammatory bowel

disease

INTRODUCTION

Dendritic cells (DCs) are bone marrow-derived antigen presenting cells which comprise two
major subsets: conventional (or classical) DCs (cDCs) and plasmacytoid DC (pDC). They
are developmentally distinct from both tissue resident macrophages and monocyte-derived
populations (1) but share many phenotypic markers with these populations. Historically this has
led to confusion and apparently conflicting data in analyses of DCs in the intestine. However,
recent development of better strategies for DC identification, together with improved cell isolation
techniques that help maintain DCs in their native state (2, 3), and genetic tools that enable specific
deletion of DC populations in vivo, have enabled a clearer picture of the role of DCs in the intestine
to emerge.

cDCs play critical roles in immune regulation in the intestine and are the focus of this review.
The reader is referred to a recent review article (4) for more information on the role of pDC in the
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intestine. cDCs are required for induction of oral tolerance
(5) and the generation of regulatory T cells (Treg) recognizing
soluble antigens (5) and commensal microbes (6, 7). They
are also required for optimal protective immune responses
against diverse pathogens (8–12). The balance of regulatory
and effector responses is influenced by the contribution of
functionally distinct cDC subsets as well as their modulation by
environmental cues.

INTESTINAL DENDRITIC CELLS IN THE
STEADY-STATE

Heterogeneity of Intestinal DCs
Intestinal cDCs are found within organized lymphoid tissue,
including Peyer’s patches (PP) (13) and draining lymph nodes,
as well as in the lamina propria (LP) of small intestine (SI) and
colon (14–16). As in other tissues, LP cDCs comprise cDC1 and
cDC2 which can be defined in mice and humans by expression
of X-C motif chemokine receptor 1 (XCR1) or signal regulatory
protein α (SIRPα/CD172a), respectively, (1, 17).

Additional cell surface markers are used in particular species
to define intestinal cDC subsets further. In mice, cDC1 are
CD103+CD11b–, whereas cDC2 comprise CD103–CD11b+
cells and a gut-specific CD103+CD11b+ population (18)
(Figure 1). The two CD11b+ populations are closely related;
CD103–CD11b+ cDC give rise to CD103+CD11b+cells under
the influence of TGFβ (23). There are more CD103+CD11b+
in the SI than in the colon (24). Equivalent cDC populations are
present in the human intestine (25) and are often identified based
on expression of CD103 in conjunction with SIRPα rather than
CD11b.

LP DC populations are dependent on FLT3L for development
and are derived from a committed pre-cDC progenitor
(Figure 1). Some pre-cDC can acquire expression of α4β7
integrin and thereby commit to an intestinal cDC fate (16, 19, 20).
LP cDCs express the cDC-specific transcription factor Zbtb46
(11) but not the macrophage marker CD64. Critically, all have
the capacity to migrate in a CCR7-dependent manner to draining
LN to interact with recirculating T cells (26, 27). LP cDC subsets
require different transcription factors for development and their
selective deletion has enabled some of their functions to be
defined (Figure 1). Detailed discussion of these experiments is
beyond the scope of this review but the reader is referred to other
recent authoritative articles (21, 22).

Antigen Sampling
To protect against luminal pathogens and establish regulatory
response to innocuous antigens, DCs continuously sample
intestinal contents (28, 29). In PP, microfold (M) cells in
the follicle associated epithelium internalize bacteria and other
particulates and deliver them to underlying DCs [reviewed in
(30)]. PP cDCs can also capture translocated IgA immune
complexes (31) and extend dendrites through M cell specific
transcellular pores (32). cDCs cross-present viral antigen
captured from infected epithelial cells (33, 34). Ileal CD103+
cDCs in the epithelium (Figure 1) sample soluble and particulate
antigen (35). Transport of low molecular weight soluble material

by SI goblet cells (36) and retro-transport of IgG immune
complexes across the epithelium (37) can also deliver antigen to
cDCs. Non-migratory CX3CR1+ macrophages in the SI sample
antigens via trans-epithelial processes (38–41) and hand on to
migratory CD103+ cDCs (38). The functional significance of
different modes of sampling and the impact of inflammation are
poorly understood.

Imprinting of Gut Tropism
Lymphocytes activated in gut lymphoid tissue traffic to the
intestinal mucosa because they express specific adhesion
molecules and chemokine receptors. The integrin α4β7 binds
MAdCAM-1 expressed by intestinal vascular endothelium and
facilitates entry to both the colon and the SI. The chemokine
receptor CCR9 is required for entry to the SI, where its ligand
CCL25 is expressed (42). GPR15 is implicated in homing to
the colon but there may be important differences between mice
and humans with regard to its role in the trafficking of effector
vs. regulatory T cell populations (43–45). These mechanisms
facilitate lymphocyte homing to the intestine in the absence
of overt inflammation and enable intestinal responses to be
regulated independently of the systemic response. In mice, cDCs
that have migrated from LP to mesenteric lymph nodes induce
expression of α4β7 and CCR9 on T cells they activate (46–49)
via production of all-trans retinoic acid (RA) (50). Only cDC
from the intestine express the enzyme RALDH2 (encoded by
aldh1a2), required for the generation of RA from dietary vitamin
A, explaining the site-specific induction of gut tropism (50).
Initial data suggested that only CD103+ cDC had imprinting
activity (15, 46, 51, 52) but it has subsequently been detected
in mouse CD103– cDCs (26). Also, both CD103+ and CD103–
cDCs in the human colon express ALDH1A2 (53). Stromal cells
in mesenteric lymph nodes can also produce RA to reinforce the
imprinting activity of migratory intestinal cDCs (54–56).

Induction of Regulatory and Effector T Cell
Responses
In the steady-state, intestinal DCs can induce Treg. In the mouse
SI, induction of gut tropic Treg directed against soluble antigens,
by both CD103+CD11b+ and CD103+CD11b– DCs, occurs
in the mesenteric LN (52) and underlies the long-recognized
phenomenon of oral tolerance generated to such antigens (57).
The ability of SI CD103+ cDC to generate Treg is dependent
on their expression of the integrin αvβ8, which activates latent
TGFβ, and is enhanced by their production of RA (58–62). PD-
L1 and PD-L2 have also been implicated in generation of Treg by
MLN cDC (63). It is notable that induction of tolerance to colonic
antigens differs from tolerance in the SI in that it is induced
in the iliac, not mesenteric, nodes, is mediated by CD103–
CD11b+ cDC and is independent DC-generated RA (16). The
generation of Treg directed against commensal bacteria has been
less studied. Nonetheless, in a cell transfer model, the rapid
generation of Treg from naïve commensal-reactive transgenic
CD4T cells requiredNotch2-dependent but not Batf3-dependent
cDC, suggesting that SIRPα+ cDC2, possibly CD103+CD11b+
cells, play a dominant role (7).
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FIGURE 1 | Summary of the origins and properties of intestinal DC. FLT3L-dependent development of cDC gives rise to two major subsets via CDP and committed

pre-cDC in the BM. cDC1 are XCR1+ and depend on transcription factors including IRF8 and BATF3; cDC2 are SIRPα+ and depend on transcription factors that

include IRF4. Population of the intestinal mucosa may be via an intermediate gut-committed α4β7+ precursor [sometimes termed pre-mucosal (µ) DC] stage (19, 20).

In the mouse LP, the cDC2 population comprises two closely related CD11b+ subsets that can be distinguished by the presence or absence of CD103;

CD11b+CD103+, found predominately in the SI, are probably derived from the CD11b+CD103– cells under the influence of TGFβ. The cDC1 population is

CD11b–CD103+. Similar populations in the human intestine can be identified on the basis of CD103 and SIRPα expression. In the LP they are exposed to

conditioning factors (shown as blue arrows) from epithelial cells and other sources which further shape their functional properties. All three subsets have the capacity

to migrate to draining lymph nodes to interact with recirculating T cells. Here, production of RA by LP- derived DCs, particularly those expressing CD103, imprints gut

tropism on T cells they activate by inducing expression of α4β7 integrin and the chemokine receptor CCR9. Although DCs can induce both Treg and effector T cells,

with some specialism across DC subsets, the balance of these outcomes favors regulation in the steady-state. The reader is referred to recent reviews for a more

in-depth discussion of intestinal DC subsets (21, 22). HSC, haematopoietic stem cell; CMP, common myeloid progenitor; MDP, monocyte dendritic cell precursor;

CDP, common dendritic cell precursor; pDC, plasmacytoid DC; Mono, monocyte; X-present, cross-presentation to CD8+ T cells.

T cell responses stimulated by DCs in the steady-state are
not exclusively regulatory. Effector T cells are present in the
lamina propria of healthy mice and humans; although some of
these may reflect past pathogen encounter others are specific for
the commensal microbiota (64, 65). Effector cells in the healthy
intestine enhance the epithelial barrier (66) and protect against
translocation of pathogens (67). Their activity can be locally
controlled by regulatory CX3CR1hi mucosal myeloid populations
(68), anti-inflammatory cytokines such as TGFβ (69) as well as
Treg. CD103– cDC migrating from the mouse SI can prime
effector T cells in the absence of stimulation (26) indicating one
mechanism by which these responses can be generated.

Conditioning of Intestinal DC
The ability of intestinal cDC to generate RA and promote
tolerance requires active Wnt/β-catenin signaling with the cDCs
(70) and is determined in part by local environment cues (71).
Epithelial cells promote the ability of DC to generate both
regulatory (72, 73) and Type 2 responses (74). In the mouse,
epithelial TSLP, with IL-25 and IL-33, inhibits IL-12 production

by DCs and promotes their ability to generate Th2 responses that
clear Trichuris muris infection (74). RA and TGFβ from human
epithelial cells promote regulatory DC function (72). Exposure
to RA can induce characteristics of SI DCs in vitro (75) and
is required for aldh1a2 expression (76). Sources of RA include
epithelial cells (77), LP stromal cells (78), and bile retinoids (79).
In contrast, prostaglandin E2 has been reported to negatively
regulate the expression of RA generating enzymes in DC (80).
Dietary and microbial products, including ligands of the aryl
hydrocarbon receptor [AhR (81)] and butyrate (82), also affect
intestinal DCs.

INTESTINAL DENDRITIC CELLS IN THE
PROMOTION OF EFFECTOR FUNCTION
AND INFLAMMATION

Promotion of Effector Function
The balance of responses induced by DC can change in the
context of infection to favor effector mechanisms. Signaling
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through p38 MAPK in CD103+mouse DC regulates the balance
of Treg and Th1 development from naïve T cells (83); in its
absence, expression of RALDH2 and generation of Treg are
reduced but Th1 responses enhanced.

A change in the balance of T cell responses induced by
intestinal cDC may result from direct modulation by danger
signals, altered conditioning of the resident cDC population
or recruitment of distinct pro-inflammatory DC (Figure 2).
Intestinal cDC express pattern recognition receptors and respond
to microbial products (84, 85). Subsets of mouse and human
DC differentially express Toll-like receptors (TLRs) suggesting
specialization for direct recognition of particular microbes (25,
86). Mouse CD103+CD11b+ cDCs express TLR5 and their
ability to induce Th17 responses is enhanced following activation
with flagellin (24, 85, 87, 88). Activation of CD103+CD11b+
cDC results in increased production of IL-6 and IL-23 which
promote Th17 development and production of the anti-microbial
peptide RegIIIγ (85, 89). Administration of a TLR7 agonist
in vivo results in activation of a CD103+CD11b– cDC migratory
subset with the ability to generate effector CD8+ T cell responses
to cross-presented antigen (90).

In most tissues, exposure to microbial products is sufficient
to convert immature cDCs to mature cells which generate
potent effector responses. However, exposure to PAMPs from
the commensal microbiota is likely to be a common occurrence
in the healthy intestine and therefore a second signal may also
be required. Indeed, mouse CD103+ SI cDCs can induce Treg
even in the presence of the high level of costimulatory molecule
expression characteristic of mature cDC (58). The nature of
this second signal is not known but IgA-containing immune
complexes, normally restricted to the lumen, but present in
significant quantities in damaged tissues, can enhance the pro-
inflammatory activity of DCs (91).

Intestinal cDCs reside in themucosa for a few days (92) during
which time they are conditioned to acquire regulatory properties.
cDCs that escape conditioning in the steady-state may facilitate
the generation of “tonic” protective effector T cell responses. An
increase in turnover following exposure to TLR ligands (93, 94)
or inflammatory cytokines could shorten residence time, reduce
exposure to conditioning factors and increase cDC-generated
effector responses.

Intestinal cDC function may also be influenced remotely
during their development in the bone marrow. Intestinal
inflammation alters hematopoiesis to influence the development
ofmonocytes and subsequently the intestinal populations derived
from them (95). These concepts remain to be explored for cDCs
but changes in blood DCs have been described in IBD (96, 97).

Alternative precursors may also be recruited into the tissue
under inflammatory conditions to provide cells with the ability
to generate effector responses. Monocytes can give rise to DC-
like cells (monocyte-derived DC; moDC) under inflammatory
conditions (98, 99). In healthy mice, monocytes recruited into
the intestine differentiate into anti-inflammatory macrophages
(100–103). However, under inflammatory conditions this
differentiation process is interrupted, generating a population
with some DC-like properties including the ability to activate
naïve T cells and generate Th1 cells (102). Similarly, cells

expressing the monocyte marker CD14 accumulate in the
inflamed mucosa of inflammatory bowel disease (IBD) patients
(104, 105) and these too have a high capacity to naive stimulate
T cells and generate gut tropic Th1 cells and Th17 cells (104).
However, it is unclear if monocyte derived-cells can migrate to
lymphnodes or act solely within the mucosa.

Effector cells generated by DCs could also be released from
local control within the tissues where diverse antigen presenting
cell (APC) populations exert a local influence (68, 106–110). In
the context of chronic inflammation, T cells lose responsiveness
to regulatory TGFβ due to over-expression of SMAD7, an
inhibitor of TGFβR signaling (69). In addition, inflammatory
cytokines can change the repertoire of peptides presented by DCs
(111) and the emergence of “cryptic” determinants may allow
escape from Treg control.

Irrespective of the combination of mechanisms which allow
effector responses to be enhanced to deal with infections, a key
unanswered question remains how these responses are confined
to the pathogen and do not normally extend to co-sampled
commensal organisms.

DC and Inflammatory Intestinal Disease
Many immune pathways key to IBD pathogenesis, highlighted
by the identification of genetic variants associated with disease
susceptibility, can be mapped to DCs. Nucleotide-binding
oligomerization domain–containing-2 (NOD2), loss of function
variants of which are associated with Crohn’s disease (CD), is a
bacterial sensor in DCs; its engagement impacts upon bacterial
handling, cytokine production and antigen presentation (112,
113). DCs that express CD-associated variants are defective in
these pathways (112, 113). The IL-23 axis is implicated in CD
and DCs are a major source of bacterially driven intestinal IL-
23 (85, 87, 89). Moreover, expression of genes associated with
variation in CD prognosis, rather than susceptibility, can also be
mapped to DCs (114).

Mouse models of colitis provide direct evidence for the
importance of DCs. Transfer of bone marrow derived DCs
increases inflammation whereas depletion of DCs reduces it (115,
116). Colitis develops in mice in which TGFβ receptor signaling
is non-functional in DCs (23, 117) and, in T cell deficient mice,
administration of an agonistic anti-CD40 antibody activates DCs
and induces IL-23-dependent intestinal inflammation (118).

DCs isolated from inflamed intestinal tissue show evidence
of enhanced microbial recognition and heightened activation.
More colonic cDCs from inflamed tissue of IBD patients express
TLR2 and TLR4 (119, 120) and they also express higher levels of
activation-associated CD40 (119). In CD, mature CCR7+ DCs,
retained in the mucosa by locally produced ligands, cluster with
proliferating T cells (121).

In CD, more colonic LP cDCs produce IL-12/23p40 and IL-
6 but the proportion of cDCs that produce IL-10 is similar
to healthy controls (119). Production of pro-inflammatory
cytokines by colonic cDCs in CD correlates with disease activity,
levels of inflammation and aspects of the intestinal microbiota
(122). In UC, the frequency of cDCs producing IL-12/23p40 and
IL-10 has been reported to be greater (122) or similar (119) to
healthy controls in different studies. Production of IL-6 by cDC
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FIGURE 2 | Enhanced generation of effector T cells in response in infection and inflammatory disease. A number of mechanisms act to shift the balance of response

induced by intestinal DC to favor the generation of effector responses. These are important for pathogen clearance but if dysregulated may lead to inflammatory

disease. Increased exposure to PAMPS and DAMPS, as the result of loss of barrier integrity or tissue penetration by pathogens may be sensed by LP DC populations

leading to their activation (A). Altered microbial sensing by epithelial cells due, for instance, to engagement of basolateral PRRs, may change the nature of

conditioning factors they produce. Increased DC turnover may reduce exposure to those conditioning factors that normally promote regulatory function in intestinal

DC (B). Alternatively, different types of DC, specialized to promote effector responses, may be recruited to the intestine under these conditions. These could be

DC-like cells derived from monocytes (C) or possibly “reprogrammed” DC arise as a result of altered differentiation in the BM (D). There may also be a release from the

regulatory mechanisms that normally limit effector function within the mucosa, due, for instance to a loss of response to regulatory cytokines like IL-10 or TGFβ or a

failure to interact with CX3CR1+ cells that promote regulation (E). The role of DCs on determining responsiveness to these local control mechanisms is not known.

from UC patients was not increased in either study. In coeliac
disease, activated DC producing Th1-promoting cytokines
accumulate in the duodenal mucosa (123). In the MLN of CD
patients, DCs release more IL-23 upon bacterial stimulation and
CD4+ T cells produce more IL-17 and IFNγ (124).

MicroRNAs are short non-coding RNA molecules that
function in RNA silencing and post-transcriptional regulation
of gene expression. Expression of microRNA (miR)-10a, which
acts in DC to limit their ability to produce IL-23/23p40 and
generate Th1 and Th17 responses, is reduced in the inflamed
mucosa of IBD patients (125). The IBD-associated reduction in
mir-10a is accompanied by increased expression of IL-12/23. In
UC, immature colonic DCs are poorly stimulatory but induce
an atypical T cell response characterized by increased IL-4 but
reduced IFNγ and IL-22 (120, 126) possibly indicating a reduced
ability to induce barrier protective T cell responses.

Numbers of CD103+ cDCs are reduced in mice with chronic
ileitis (127) and in the colon of UC patients (128). Whether
these differences reflect a change in phenotype or altered cDC
populations is not clear. Unlike equivalent cDCs from normal

human colon, CD103+ colonic cDCs from UC patients do not
generate Foxp3+ Treg but do generate IFNγ-, IL-13-, and IL-
17-producing CD4T cells. CD103+ cDCs from UC patients
also have higher expression of IL-6, IL-12p40, IL-12p35, and
TNFα (128).

RA is required for optimal Treg induction by intestinal
CD103+ cDCs in the steady-state but these cells have reduced
expression of RA-generating enzymes in mice with colitis (127,
129). The effects of RA on the immune system are context
dependent [reviewed in (130, 131)] and it can promote pro-
inflammatory as well as regulatory responses (132). In the
presence of IL-15, RA induces the release of pro-inflammatory
IL-12 and IL-23 by cDC and promotes intestinal inflammation
(133). There is conflicting data on the production of RA by DC
in the inflamed human colon: increased (53) and decreased (134)
expression of RA-generating enzymes have both been reported
in IBD. It should be borne in mind that neither study measured
RA itself nor assessed other factors that regulate RA availability,
such as expression of CYP26 enzymes that degrade RA
(135).
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CONCLUDING REMARKS

Antibodies which target α4β7, an integrin which can be
imprinted by intestinal DCs to facilitate T cell entry to the
intestine, are already used to treat IBD. DCs also control the
balance between regulatory and effector T cell responses in the
intestine. Understanding the mechanisms involved and their
regulation will facilitate rational manipulation of DCs to promote
effector responses in the context of infection and vaccination
or to re-establish regulation in the context of inflammatory
disease.
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