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Scavenger receptors are a highly diverse superfamily of proteins which are grouped

by their inherent ability to bind and internalize a wide array of structurally diverse

ligands which can be either endogenous or exogenous in nature. Consequently,

scavenger receptors are known to play important roles in host homeostasis, with

common endogenous ligands including apoptotic cells, and modified low density

lipoproteins (LDLs); additionally, scavenger receptors are key regulators of inflammatory

diseases, such as atherosclerosis. Also, as a consequence of their affinity for

a wide range of microbial products, their role in innate immunity is also being

increasingly studied. However, in this review, a secondary function of a number of

endothelial-expressed scavenger receptors is discussed. There is increasing evidence

that some endothelial-expressed scavenger receptors are able to directly bind

leukocyte-expressed ligands and subsequently act as adhesion molecules in the

trafficking of leukocytes in lymphatic and vascular tissues. Here, we cover the current

literature on this alternative role for endothelial-expressed scavenger receptors and also

speculate on their therapeutic potential.

Keywords: leukocyte adhesion cascade, SR-AI, LOX-1, mannose receptor, SCARF1, SR-PSOX, stabilin-1,

stabilin-2

INTRODUCTION

The first scavenger receptor was described in the late 1970s by Brown and Goldstein and
was defined by its ability to bind and subsequently internalize low density lipoproteins (LDLs)
(1, 2). However, the term “scavenger receptor” was not coined until a couple of years later
in the early 1980s by Fogelman et al. who were studying the functionality of Brown and
Goldstein’s LDL receptor in monocytes and macrophages (3). Scavenger receptors are now a large
superfamily of proteins which are highly diverse in structure and are sub-divided into a number
of classes (class A-J), with each class sharing structural features; however, there is little or no
sequence homology between the classes and the superfamily grouping is purely a consequence
of shared functional properties (4). Functionally, scavenger receptors have an important role in
both homeostatic and disease states, as they detect and remove, or scavenge, unsolicited self-
antigens, which predominantly manifest as damage-associated molecular patterns (DAMPs), such
as phosphatidylserine on apoptotic cells (5–7) and products of oxidative stress (e.g., oxidized
(ox)LDLs) (8, 9), from general circulation. The removal of apoptotic host cells by scavenger
receptors is particularly pertinent in the context of autoimmune diseases, such as systemic lupus
erythematosus (SLE), which has been shown to spontaneously develop in some lines of scavenger
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receptor-deficient mice (7, 10), thus highlighting their role in
homeostasis. Also, other clinical manifestations, for example
severe renal glomerular fibrosis and premature mortality, have
been shown to spontaneously develop in somemultiple scavenger
receptor-deficient mice as a result of impaired clearance of
harmful factors, such as growth differentiation factor (GDF)-15,
from the systemic blood supply (11). These severe phenotypes are
somewhat surprising given that several scavenger receptors are
able to bind a number of common ligands; therefore, one would
assume there would be a certain amount of redundancy in their
function and, in the absence of one scavenger receptor, the others
would be up-regulated in a compensatory manner to maintain
homeostasis. Nevertheless, this is clearly not the case for several
members of the scavenger superfamily.

In a number of murine models of inflammatory diseases, the
lack of certain scavenger receptors has been shown to be highly
detrimental, thus implicating these receptors in the limitation of
disease pathology. For example, in amurinemodel of Alzheimer’s
disease, reduction or deletion of scavenger receptor class B type I
(SR-BI) resulted in increased severity of disease due to impaired
clearance of amyloid-β by infiltrating macrophages (12). More
recently, we have shown that a lack of the class H scavenger
receptor, stabilin-1, in murine models of liver injury promotes
fibrogenesis, due to impaired clearance of malondialdehyde
(MDA) modified oxLDLs (MDA-LDLs) (13). Conversely, some
scavenger receptors have been shown to actively contribute to
disease pathology, with several implicated in the establishment,
and progression of atherosclerosis due their role in the uptake
and storage of LDLs in macrophages (14–17). Furthermore,
scavenger receptors also play an important role in the host
innate immune system (18–21), as the majority of scavenger
receptors are differentially expressed in a number of professional
innate immune cells, such as monocytes, macrophages and
dendritic cells (22, 23), and are able to recognize a huge array of
microbial antigens (24, 25). However, the paradigm is now being
established that scavenger receptors require the presence of other
pattern recognition receptors (PRRs), such as Toll-like receptors
(TLRs), in order to elicit an immunological response (26–30).

In addition to their intrinsic scavenging capacity, a number
of endothelial-expressed scavenger receptors also exhibit a
secondary function in host immunity as they are able to
directly interact with leukocytes and mediate their passage
across a range of endothelia. This secondary function has
led to the study of some scavenger receptors in lymphocyte
migration in lymph nodes and in the extravasation of leukocytes
during inflammation. In this review, we initially discuss the
processes of leukocyte trafficking, subsequently explore the
current knowledge of scavenger receptor involvement in these
processes and speculate on future research and potential for this
relatively understudied function of scavenger receptors.

Lymphocyte Trafficking in Lymph Nodes
The antigen-driven adaptive immune system requires regulated
trafficking of T cells in order to orchestrate lymphocyte
development, immune surveillance, rapid immunological
responses, and memory (31). Consequently, lymphocytes are
continually recirculating between the vascular and lymphatic

systems and organ tissues. T cells which have not previously
encountered antigens, termed naïve T cells, are programmed to
undergo migratory cycles into and out of secondary lymphoid
organs (SLOs), such as peripheral lymph nodes, tonsils, and
Peyers patches, in search of cognate antigens (31). T cells enter
lymph nodes (LNs) through afferent lymphatic vessels or high
endothelial venules (HEVs) (32) and subsequently interact with
antigen presenting cells, primarily dendritic cells (DCs), which
present antigens encountered in inflamed tissues on their surface
via major histocompatibility complex (MHC) proteins (33).
Once T cells encounter cognate MHC/antigen, in concert with
the relevant co-stimulatory or co-inhibitory molecules, they
become activated, and undergo differentiation into antigen-
specific effector or memory cells (33). The trafficking of T
cells to and from lymph nodes is known to involve intimate
interactions with lymphatic endothelial cells (LECs); however,
the endothelial-expressed molecules involved in these processes
are not well characterized (31). Nevertheless, the involvement
of scavenger receptors has been suggested and is discussed
throughout this review.

The Leukocyte Adhesion Cascade
During injury or infection, leukocytes in the blood are
required to migrate from general circulation, across the vascular
endothelium, and into the inflamed tissue, with the primary
aim of eliminating the inflammatory trigger and/or contributing
to tissue repair (34). In general, the migration of leukocytes
from the blood into inflamed tissues occurs in post-capillary
venules, with the exception of the liver, spleen and lungs (34).
Leukocyte migration is achieved via a multi-step process known
as the leukocyte adhesion cascade (35) (Figure 1), in which the
leukocytes initially tether and roll on the luminal surface of the
blood vessel and undergo arrest, followed by firm adhesion and,
finally, migrate through the endothelial barrier into the tissue
(36). This sequence of events is mediated by a large number
of chemoattractant cytokines (chemokines) (37) and adhesion
molecules (Figure 1) which determine the subset of leukocyte
to be recruited to the site of inflammation and subsequently
regulate their numbers (34). Additionally, crossing the vascular
wall is not only a highly selective and regulatory step in leukocyte
migration, but also acts to prime the tissue-infiltrating leukocytes
(38) in order to deliver an efficient and effective immunological
response.

Endothelial Activation, Initial Capture, and Rolling
Endothelial activation is the initial step which results in the
expression of adhesion molecules and chemokines on the
luminal membrane of endothelial cells involved in the initial
capture of leukocytes from shear flow. Endothelial activation
can be triggered by a wide range of stimuli and is classified
as “type I” or “type II,” depending on the mediating signal
molecule. Type I activation of endothelial cells is a protein-
synthesis-independent process and is predominantly mediated
via ligands of heterotrimeric G-protein-coupled receptors
(GPCRs), such as histamine and thrombin (39). Type I
activation results in the trafficking of pre-formed P-selectin to
the cell membrane within minutes, thus allowing the rapid
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FIGURE 1 | The multistep leukocyte adhesion cascade. Leukocytes are recruited from the bloodstream to inflamed tissues via sequential multi-step process known

as the leukocyte adhesion cascade. Firstly, endothelial activation is triggered by a range of endogenous or exogenous stimuli from the inflamed tissue (1), which

triggers the selectin-dependent tethering and rolling of leukocytes along the luminal surface of the vessel (2). Subsequently, chemokines are presented on the luminal

surface of the endothelium (3) which activate leukocyte-expressed integrins allowing stronger bond formation with their endothelial-expressed ligands. The formation

of these stronger leukocyte-endothelium bonds results in leukocyte arrest (4), following which, intraluminal crawling occurs (5). Next, the leukocyte will undergo

transendothelial migration (6) either via the paracellular or the transcellular pathway. Once the leukocyte has crossed the endothelial layer, it may undertake in

sub-endothelial crawling (7), prior to entering the target tissue proper. TNFα, tumor necrosis factor-α; IL-1β, interleukin-1β; LPS, lipopolysaccharide; oxLDL, oxidized

low density lipoprotein; LOX-1, Lectin-like oxidized low-density lipoprotein receptor-1; SR-PSOX, scavenger receptor that binds phosphatidylserine and oxidized

lipids; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1 ; SCARF1, scavenger receptor class F; member 1; VE-cadherin,

vascular endothelial cadherin; PECAM-1, platelet endothelial cell adhesion molecule-1; JAMs, junctional adhesion molecules; ESAM, endothelial cell-specific adhesion

molecule. (Stock images provided by Servier medical for use under the Creative Commons Attribution 3.0 Unported License).

recruitment of neutrophils to vascular endothelia (40–43).
Type I activation is a highly transient event and, in order
to limit the extent of neutrophil extravasation, the GPCRs
involved are presumed to undergo desensitization (44, 45) to
their stimuli after 10–20min to prevent further endothelial
stimulation (39). Type II activation of endothelial cells is a
much slower process known to be triggered by a much wider
range of stimuli, including inflammatory cytokines [e.g., tumor
necrosis factor (TNF)α, interferon (IFN)γ, and interleukin (IL)-
1β (46)], microbial antigens [e.g., lipopolysaccharide (LPS)
(47, 48)], and oxLDLs (49, 50). Type II activation results in
morphological changes, via the reorganization of actin filaments
(51) and de novo expression of leukocyte adhesion molecules,
such as E-selectin, intracellular adhesion molecule (ICAM)-1
and vascular cell-adhesion molecule (VCAM)-1 (52–55), and
chemokines (56, 57) on the luminal surface of the endothelial
cells. Unlike, type I activation which is stringently regulated
via receptor desensitization, type II activation is much more
long-lived and can chronically persist until the inflammatory
stimulus is removed and the regulatory anti-inflammatory
feedback mechanisms are able to effectively counteract the
proinflammatory exacerbation, commonly via regulation of the
nuclear factor (NF)-κB pathway (58, 59).

Following endothelial activation, the initial capture of
leukocytes from shear flow is mediated by selectins, a family of
three Type I transmembrane Ca2+-dependent lectins which bind
to glycoprotein ligands (60). The selectins are named according

to the cell type in which they were originally described in
(platelet (P)-selectin, leukocyte (L)-selectin and endothelial (E)-
selectin) and consist of an extracellular N-terminal C-type lectin
domain, an epidermal growth factor (EGF)-like domain, a series
of short consensus repeats (SCRs), a transmembrane domain
and a short C-terminal intracellular domain (61). As mentioned
above, stores of pre-formed P-selectin are held within human
endothelial cells (62) and are rapidly trafficked to the surface in
the event of type I activation, but P-selectin is also differentially
regulated in a range of chronic inflammatory diseases (63–
66) and plays a major role in leukocyte recruitment during
prolonged type II activation (67–70). L-selectin is expressed
in the majority of circulating leukocytes and is one of the
first leukocyte-expressed cell adhesion molecules to interact
with the endothelial layer in the initial “tethering” event (71),
whereas E-selectin is constitutively expressed in bone marrow
endothelial cells (72), but is inducible in other endothelia (54). E-
selectin is predominantly involved in the rolling and slow rolling
steps of the adhesion cascade (73, 74). Rolling is the transient
and reversible selectin-ligand interaction which involves the
“catch-bond” phenomenon, where bonds are strengthened with
increasing shear stress (75). Also, the rollingmotion of leukocytes
is able to generate new selectin-ligand bonds before old ones
are broken via the “tether and sling” phenomenon utilized
by neutrophils (76, 77) and differentiated T cell subsets (78).
The rolling and slow rolling steps aim to initiate leukocyte-
endothelial contact and, consequently, further activate the

Frontiers in Immunology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 2904

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Patten and Shetty SRs in Leukocyte Trafficking

leukocyte, thus promoting the successive steps in the adhesion
cascade.

Leukocyte Arrest and Crawling
The arrest of leukocytes rolling along the surface of the
endothelium is triggered by chemokines which are expressed
upon endothelial activation and are immobilized on the luminal
surface via highly negatively-charged polysaccharides, such
as glycosaminoglycans (GAGs) (79, 80). As a consequence
of chemokine-induced “inside-out” signaling, heterodimeric
adhesion receptors expressed on the surface of leukocytes, known
as integrins, undergo conformational changes and become
“activated” (81, 82). Once activated, integrins are able to form
high affinity bonds with their endothelial-expressed ligands and
their clustering in focal adhesion contacts allows for stronger
leukocyte-endothelial bonds (83), thus resulting in leukocyte
arrest [reviewed in detail by Ley et al. (35)].

Once firmly adhered to the endothelial layer, innate immune
cells, such as monocytes, have been shown to patrol the vessel
wall surface (84), scavenging microparticles, and supporting
the recruitment of other cells, such as neutrophils (85). This
intraluminal “crawling” behavior has also been observing in
neutrophils and is thought to mediate their transmigration across
the endothelial layer, as they search for sites of exit from the blood
vessel (86–88). Additionally, a novel phenomenon in hepatic
sinusoidal endothelial cells (HSEC) was recently described in
which peripheral blood lymphocytes were shown to migrate
horizontally from one endothelial cell to another (89). This
intracellular crawling appeared to be HSEC-specific as it did not
occur in more conventional vascular endothelial cells (HUVEC;
human umbilical vein endothelial cells). It was subsequently
speculated that this process could represent a liver-specific
method of immune surveillance (89); however, studies of this
phenomenon were all undertaken in vitro and it is yet to be
confirmed in vivo. Interestingly, once leukocytes have traversed
the endothelial barrier, they have also been shown to undergo
sub-endothelial crawling (90–92) prior to their migration into the
tissue proper.

Transendothelial Migration
The final step in the leukocyte adhesion cascade is the crossing
of the endothelial barrier, which is known as transendothelial
migration (93). Transendothelial migration of leukocytes is a
highly regulated process as maintenance of barrier integrity is
paramount and endothelial cells undergo significant cytoskeletal
remodeling to facilitate the passage of leukocytes, whilst also
preventing vascular leakage (94). There are two possible routes
for leukocytes to transmigrate the endothelial barrier, the
paracellular pathway, or the transcellular pathway [reviewed
extensively by Ley et al. (35) and more recently by Vestweber
(36)]. The paracellular route describes the passage of leukocytes
between the cell-cell junctions of the endothelial layer and has
inevitably been shown to be mediated via a number of key
junctional proteins, such as platelet endothelial cell adhesion
molecule (PECAM)-1 (also known as CD31) (95), CD99 (95,
96), and junctional adhesion molecules (JAMs) (97, 98). Also,
vascular endothelial (VE)-cadherin has been shown to play an

instrumental role in the inhibition of leukocyte extravasation
and must be actively moved away from the site of leukocyte
transmigration to allow the process to occur (99, 100). The
vast majority (∼80–95 %) of cells undergo transendothelial
migration via the paracellular route; however, the remainder
transmigrate through the transcellular pathway which involves
leukocytes passing directly through the cell body of endothelial
cells This process is highly coordinated and requires extensive
remodeling of the endothelial cell’s actin cytoskeleton to form
an appropriately sized pore to accommodate the passage of the
leukocyte, and in particular its nucleus (101). Unsurprisingly,
the transcellular migration of leukocytes is stringently regulated
by the endothelial cell to minimize vascular leakage (101). The
molecules involved in transcellular are less well-studied than
those for paracellular migration; nevertheless, to date, ICAM-1
(53, 94, 102, 103) has been identified as themajor contributor, but
othermolecules, such as PECAM-1, JAM-A, and CD99 (104, 105)
have also been shown to play a role in this process.

With the technological advancements in microscopy, our
knowledge of the processes involved in leukocyte transmigration
are ever-increasing (94, 101, 106, 107); nevertheless themolecular
mechanisms which determine whether leukocytes transmigrate
through the paracellular or transcellular pathways still remain a
mystery. The possibility of scavenger receptors playing a role in
these processes is a tangible prospect and should be investigated
in future studies.

SCAVENGER RECEPTORS IN LEUKOCYTE
TRAFFICKING

Given that a number contain similar structural domains
to those found in the selectin family [e.g., C-type lectin
domains or epidermal growth factor (EGF)-like domains],
it is perhaps unsurprising that several endothelial-expressed
scavenger receptors are also able to directly bind to leukocytes.
Consequently, several scavenger receptors have been shown to
play a role in leukocyte trafficking through lymph nodes and/or
in their extravasation through a range of endothelia. Discussed
below are the scavenger receptors identified to date which play a
role in these processes.

SR-AI
Scavenger receptor (SR)-AI, also known as macrophage
scavenger receptor (MSR)-1 or CD204, was the first scavenger
receptor to be cloned (108), and hence is the first member of
the Class A family and arguably the most studied scavenger
receptor (109). SR-AI is a Type II membrane protein, with its
structure consisting of a short N-terminal cytoplasmic tail, a
transmembrane domain, a spacer region, an α-helical coiled-coil
domain, a collagen-like domain, and a C-terminal scavenger
receptor cysteine-rich (SRCR) domain (110). As is characteristic
of most scavenger receptors, SR-AI has been shown to bind
a highly diverse range of endogenous products including: an
array of modified LDLs (111, 112); apoptotic cells (113); heat
shock proteins (Hsp) (114); collagen (115); β-amyloid (116);
apolipoproteins (117), and advanced glycation end products
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(AGE) (118). Additionally, SR-AI can also bind a range of
exogenous ligands, such as bacterial lipopolysaccharide (LPS)
(119), and lipoteichoic acid (LTA) (120), fungal β-glucan
(121), and viral double stranded (ds)RNA (122–124). SR-AI is
predominantly expressed in myeloid cells, such as monocytes
and tissue-resident macrophages, but was also shown to be
expressed in high endothelial cells of postcapillary venules
(HEV) in peripheral lymph nodes a number of years ago (125).
The adhesive ability of SR-AI has only recently been considered;
however, this recent study has focused on lymphocyte binding to
lymphatic endothelial cells (LEC) (126). In their investigation of
SR-AI in LEC, Iftakhar-E-Khuda et al. utilized binding assays to
primary murine lymphatic endothelial cells in vitro and antibody
blockade on human and murine lymphatic tissue sections ex
vivo to demonstrate its lymphocyte binding capacity in afferent
lymphatics (126). However, they did not observe any differences
in lymphocyte populations in the lymph nodes of wild type (WT)
and SR-AI−/− mice, possibly suggesting a possible redundancy in
SR-AI’s lymphocyte binding activity in vivo, under homeostatic
conditions. This discrepancy between the in vitro and in vivo data
suggests that further investigation of SR-AI’s adhesive properties
is warranted and future studies could possibly explore lymph
node trafficking of leukocytes in mice subjected to injury, such as
LPS-induced toxemia. Additionally, given the SR-AI expression
in HEVs and that inducible expression of SR-AI has been found
in human arterial endothelial cells (127), it is not unreasonable
for future investigations to explore SR-AI expression in a
range of vascular endothelia from different tissues. If found
in these vascular endothelial cells, basic static and flow-based
adhesion assays, such as those utilized previously in our lab
(128), could be employed to determine which step in the
leukocyte adhesion cascade SR-AI potentially acts. Furthermore,
a leukocyte-expressed ligand has yet to be explored and so future
studies should also aim to identify the molecule(s) involved in
SR-AI-mediated leukocyte binding to these endothelia.

LOX-1
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-
1) is another Type II membrane protein which comprises of a
short N-terminal cytoplasmic domain, a single transmembrane
region and an extracellular domain containing a coiled-coil
“neck” region and a C-type lectin-like domain (129) and was
the first member of the Class E family to be described. As its
name suggests, LOX-1 was initially identified as a receptor for
oxLDLs in endothelial cells (129), but has since been shown to
bind a number of other modified LDLs, such as carbamylated
LDLs (130) and glycoxidised LDLs (131). Subsequently, LOX-
1 has also been found to bind a more diverse range of ligands,
including phosphotidylserine on apoptotic cells (132, 133), Gram
positive andGram negative bacteria (134), and C-reactive protein
(CRP) (135). Nevertheless, LOX-1 is a “non-essential” protein,
as LOX-1−/− mice do not exhibit any phenotypic traits. Also,
under physiological conditions, LOX-1 is expressed in relatively
low levels in vascular endothelial cells, but is inducible upon
endothelial activation by ligand binding (136, 137), inflammatory
cytokines (138, 139) or shear stress (140). The leukocyte adhesive
ability of LOX-1was first described in 2002, whenHayashida et al.

demonstrated that transfected Chinese hamster ovarian (CHO)
cells over-expressing LOX-1 augmented the adhesion of primary
peripheral bloodmononuclear cells (PBMCs), andmonocytic cell
line, THP-1, when compared to control transfected cells (141).
Interestingly, this effect appeared to be monocytic cell-specific,
as they did not observe any effects on the Jurkat leukaemic T
cell line (141). Additionally, they demonstrated that the enhanced
adhesion of THP-1 cells to the LOX-1-CHO could be reversed by
antibody or oxLDL blockade and recapitulated this blockade on
bovine aortic endothelial cells (BAEC) in vitro (141). Finally, they
demonstrated that THP-1 cells flowed over LOX-1-CHO cells
at increasing shear stress exhibited increased numbers of cells
rolling and at lower rolling velocities than those flowed overWT-
CHO cells (141), thus suggesting that LOX-1 acts as an adhesion
molecule in the early stages of the leukocyte adhesion cascade.

Following this initial study, Li et al. then demonstrated
that antibody blockade of LOX-1 in vivo, in a rat myocardial
ischaemia-reperfusion model, was able to significantly reduce
the number of infiltrating leukocytes to the myocardial tissues,
which also resulted in a significant decrease in the myocardial
infarct (142). However, their data suggested that the diminished
leukocyte infiltration was due to an indirect effect of LOX-
1 blockade, as they showed a reduction in the expression
of adhesion molecules, such as ICAM-1, VCAM-1, and P-
selectin (142). Nevertheless, in a seminal study, Honjo et al.
demonstrated in a rat model of endotoxemia and endotoxin-
induced uveitis, that antibody blockade of LOX-1 expression
induced in retinal endothelial cells significantly reduced the
number of rolling infiltrating leukocytes, which predominantly
consisted of neutrophils, and also increased the velocity of
rolling (143). This data is suggestive of a direct interaction with
leukocytes in vivo and adds to in vitro studies which show that
LOX-1 functions as adhesion molecule in the early stages of
the leukocyte adhesion cascade. Also, more recently, Ding et al.
demonstrated that LOX-1−/− mice fed a high cholesterol diet
exhibit a lower level of macrophage accumulation in their aortas
compared to WT mice (144); nevertheless, it is unclear whether
this was due a lack of LOX-1-mediated recruitment by the aortic
endothelial cells or a migratory defect in the LOX-1-deficient
macrophages.

From the current data implicating it in the leukocyte adhesion
cascade, it is clear that LOX-1 contributes to the rolling stage
of the adhesion cascade in the recruitment of myeloid cells to
a range of vascular endothelia. Nevertheless, despite a number
of studies now demonstrating this both in vitro and in vivo,
the leukocyte-expressed ligand(s) responsible for LOX-1 binding
have not yet been identified. Additionally, initial studies have
suggested that the adhesive properties of endothelial-expressed
LOX-1 do not extend to cells of lymphoid lineage, this has
only been tested utilizing a leukaemic T cell line and so
further investigation with primary lymphocytes could in fact be
warranted.

Mannose Receptor
The third member of the Class E scavenger receptor family to
be described, the mannose receptor (MR) or CD206, is a Type
I membrane glycoprotein which consists of a short intracellular
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domain, a transmembrane domain, and an extracellular region
comprising of a eight C-type lectin-like domains, a fibronectin
type II domain and an N-terminal cysteine-rich domain (145). As
its name suggests, MR was originally discovered to bindmannose
and other carbohydrate groups in a range of glycoproteins (146);
nevertheless, given that its extracellular region comprises of
several functionally distinct domains, MR has since been shown
to bind a wide range of other endogenous ligands, including
collagen (147, 148), CD45 (149), tumoural mucins (150), and
neutrophil-derived myeloperoxidases (151). Additionally, MR
can bind a range of bacterial- (152, 153), viral- (154–157), fungal-
(158–161), and parasite-derived (21) antigens. The mannose
receptor is predominantly expressed by macrophages (162, 163),
but has also been described in a range of endothelial cells, such
as hepatic sinusoidal endothelial cells (HSEC) (89, 164), dermal
endothelial cells (165) and lymphatic endothelial cells (LEC)
(166–168). The leukocyte adhesive properties of MR were first
described by the Jalkanen group based at University of Turku,
Finland in 2001, when they suggested that MR plays a role in
lymphocyte exiting from lymph nodes as their data confirmed
the MR-mediated adhesion of lymphocytes to LECs (167). These
studies also demonstrated that L-selectin, was the lymphocyte-
expressed ligand required for MR-mediated static adhesion of
lymphocytes to LECs in vitro, which the authors believed to most
accurately mimic physiological conditions within lymph nodes
in vivo (167). Further studies by the same group demonstrated
the binding of B lymphoblastoid cell lines to LEC and high
endothelial venules (HEVs) both on tissues sections ex vivo and
on isolated cells in vitro (166), further strengthening the evidence
for the adhesive functionality of MR. Subsequently, these in
vitro findings were corroborated with in vivo experiments by
Marttila-Ichihara et al. who demonstrated that the adhesion of
both normal lymphocytes and tumor cells to afferent lymphatic
vessels was significantly reduced inMR-deficient mice, compared
to WT (168). More recently, the Jalkanen group also showed
that L-selectin-negative leukocytes trafficking to the lymph nodes
utilize CD44 to bind to MR expressed on LECs and subsequently
migrate to draining lymph nodes (169). The authors also suggest
that therapeutic targeting of MR on LEC could selectively
reduce leukocyte migration from the periphery into the draining
lymph nodes thus potentially acting to dampen inappropriate
inflammatory reactions (169). Expression in vascular endothelial
cells, such as HSEC, suggests that MR could also potentially
facilitate leukocyte binding in the adhesion cascade and future
studies could investigate this.

SCARF1
Scavenger receptor class F, member 1 (SCARF1 or SR-F1),
also known as scavenger receptor expressed by endothelial cells
(SREC)-I, was first identified in cDNA libraries from human
umbilical vein endothelial cells (HUVEC) (170). SCARF1 is a
type I membrane protein which comprises of several extracellular
EGF-like domains, a transcellular domain and, unusually for a
scavenger receptor, a long serine- and proline-rich cytoplasmic
tail (171). SCARF1 has been shown to bind modified low
density lipoproteins (LDLs), specifically acLDLs (172), and acts
as an endocytic receptor for a wide range of damage-associated

products (173), including heat-shock proteins (Hsps) (174–
176) and apoptotic host cells via phosphotidylserine-bound C1q
protein (7). SCARF1 has been shown to play a key role in
the prevention of autoimmunity, as SCARF1-deficient mice
spontaneously develop systemic lupus erythematosus (SLE) due
to the severely impaired clearance of apoptotic cells in the spleen
(7). In addition to binding and internalizing a diverse range
of endogenous proteins, SCARF1 also binds a wide array of
viral (29, 177, 178), fungal (179), and bacterial (28, 30, 180,
181) antigens and SCARF1 expression in alveolar macrophages
has been shown to play an important role in immunological
responses to fungal lung infection (179). SCARF1 is also
expressed in murine splenic endothelial cells (179) and liver
sinusoidal endothelial cells (178) and our lab has corroborated
this and recently described for the first time the expression
on SCARF1 in primary human hepatic sinusoidal endothelial
cells (HSEC) (182). Subsequently, utilizing a combination of
flow-based adhesion assays with immobilized recombinant
proteins, HSEC, and siRNA silencing in HSEC, we were able to
robustly demonstrate that SCARF1 plays a role in the selective
recruitment of CD4+ T cells to the sinusoidal endothelium under
physiological shear stress (182). Additionally, we showed that
SCARF1 facilitates this process via the formation of adhesive cups
which were also rich in ICAM-1 and F-actin and proposed that
SCARF1 acts in the firm adhesion step of the leukocyte adhesion
cascade (182). However, we did not explore the possibility
SCARF1’s involvement in the transendothelial migration step
and future investigations from our lab will explore this. SCARF1
is known to form moderate homophilic interactions (183);
however, we ruled out the possibility of these interactions in
this context, as CD4+ T cells do not express SCARF1 (182).
Therefore, the lymphocyte-expressed ligand of SCARF1 is yet to
be identified and screening experiments could be employed to
determine this in future investigations.

SR-PSOX
Scavenger receptor that binds phosphatidylserine and oxidized
lipids (SR-PSOX) is the only member belonging to the class G
family of scavenger receptors to date (184) and is structurally
unique within the scavenger receptor superfamily. SR-PSOX
is a type I transmembrane glycoprotein with its N-terminal
extracellular domain, consisting of a CXC chemokine motif and a
mucin-like stalk, linked to a transmembrane domain and a short
C-terminal intracellular domain (185). SR-PSOX also exists in a
soluble form which is shed or enzymatically cleaved from the cell
surface via a disintegrin and metalloproteinase (ADAM)-10 and
ADAM-17 (186–189). SR-PSOX was first identified in the human
monocytic cell line THP-1 and was shown to bind and internalize
oxLDL and phosphatidylserine (190). Subsequently, SR-PSOX
has also been shown to bind eryptotic erythrocytes (191, 192) and
bacterial antigens (193, 194) and has been found to be expressed
in a wide range of cell types, including macrophages (195), DCs
(196), smooth muscle cells (197), and endothelial cells (189, 198,
199). Early cloning studies on a chemokine known as CXCL16
(200, 201) found it to be structurally identical to SR-PSOX and,
as CXCL16 is a highly specific ligand for the chemokine receptor
CXCR6, it was soon discovered that SR-PSOXwas able to support
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the adhesion of a range of CXCR6+ leukocytes (202–205).
Subsequent to these findings, it was suggested that SR-PSOX acts
in the “arrest” stage of the adhesion cascade by triggering the
conformational activation of β1 integrins on leukocytes (206).

Possibly the best studied role for SR-PSOX in the recruitment
of leukocytes is in the context of hepatic inflammation (207),
with its endothelial-expressed form known to interact with
intrahepatic CXCR6+ immune cells, such as effector T cells
(206, 208), natural killer (NK) cells (209, 210) and NKT cells
(199). It has recently been shown that genetic deficiency of SR-
PSOX in mice inhibits the extent of inflammation in a model
of acetaminophen (APAP)-induced acute liver injury (211).
In addition, pharmacological intervention with neutralizing
antibodies raised against SR-PSOX has shown inflammation-
reducing efficacy in preclinical murinemodels of sepsis-mediated
(212, 213) and carbon tetrachloride (CCl4)-mediated (207) acute
liver injury. Conversely, an elegant study by Ma et al. has recently
shown that HSEC-expressed SR-PSOX plays a key role in the
recruitment of anti-tumourigenic NKT cells to the liver in a
number of murine models of primary and metastatic hepatic
cancers (214). Thus, the therapeutic targeting of SR-PSOX to
inhibit hepatic inflammation must be carefully considered with
regards to context of the inflammatory injury being treated.

Stabilin-1
Stabilin-1 is a highly conserved type I transmembrane protein
and was the first member of the Class H family of scavenger
receptor to be described. It was originally described in
1991 as MS-1 antigen, when it was used as a histological
marker for non-continuous splenic sinusoidal endothelial cells
(215). Subsequently, three labs independently described the
same molecule as FEEL-1, due to its structure containing
fasciclin (FAS), epidermal growth factor (EGF)-like, laminin-
type EGF-like, and link domains (171), stabilin-1 (216)
and common lymphatic endothelial and vascular endothelial
receptor (CLEVER)-1 (217); however, due to its official gene
nomenclature, STAB1, stabilin-1 is increasingly utilized in the
literature. An early indicator of stabilin-1’s capacity as a scavenger
receptor was its constitutive expression in the professional
scavenging cells of the non-continuous sinusoidal endothelia
in the spleen (215), lymph nodes (218, 219), and liver (220).
Interestingly, stabilin-1 expression is also inducible in continuous
endothelia, in response to angiogenic and proinflammatory
stimuli (221). This inducible expression is thought to originate
from the transient non-continuous state that vascular endothelial
cells transition through during the rapid growth of blood vessels
throughout the wound healing process, tumor vascularization,
and chronic inflammatory skin conditions, such as psoriasis. As
is a prerequisite of being classified as a “scavenger receptor,”
stabilin-1 has been shown to bind a wide variety of ligands,
such as: modified LDLs (13, 222); phosphotidylserine expressed
on apoptotic cells (223–225); secreted protein acidic and
rich in cysteine (SPARC) (226); placental lactogen (227) and
microparticles from both Gram positive and Gram negative
bacteria (228).

Additionally, a number of early studies showed stabilin-1
to be a multi-functional scavenger receptor with the ability

to directly interact with leukocytes and effectively act as a
leukocyte adhesion molecule. However, the ability of stabilin-1 to
perform this particular function has historically been considered
a contentious issue (229, 230), which is possibly confounded by
the fact that the leukocyte-expressed ligand(s) for stabilin-1 still
remains unidentified. Nevertheless, there is a growing body of
evidence for this adhesive function and its first description was by
the Jalkanen group (217), when they demonstrated that antibody
blockade of stabilin-1 on high endothelial venules (HEVs) and
lymphatic vessels, in both in vitro static adhesion assays and
under flow conditions in vivo, significantly diminished the
number of adherent lymphocytes, granulocytes, and monocytes
(217). Around this time, the same group presented further
evidence, showing the stabilin-1-mediated adhesion of B
lymphoblastoid cell lines to lymphatic endothelial cells andHEVs
in vitro (166). Subsequently, this group then demonstrated that
stabilin-1 plays a key role in the transmigration of leukocytes
through vascular and lymphatic endothelial cells in vitro (218)
and later confirmed in vivo that it mediates the transendothelial
migration of T cells and B cells across HEVs to the draining
lymph nodes (219). Furthermore, they also showed that antibody
blockade of stabilin-1 effectively inhibited peritonitis in mice by
decreasing granulocyte recruitment by ∼50%, whilst migration
of monocytes and lymphocytes into the inflamed peritoneum
was almost completely inhibited (219). More recently, the
Jalkanen group have also shown that stabilin-1 plays a key
role in the recruitment of immunosuppressive macrophages and
T regulatory (Treg) lymphocytes in in vivo models of tumor
growth and metastasis, with reduced numbers of both cell
types demonstrated in the absence and therapeutic blockade of
stabilin-1 (231).

In addition to this, and consistent with the Jalkanen group’s
data, our lab has implicated stabilin-1 in the transendothelial
migration of both Tregs and B-cells through hepatic sinusoidal
endothelial cells (HSECs) in vitro, under conditions whichmimic
the physiological flow and proinflammatory microenvironment
of the hepatic sinusoids during liver injury (89, 220, 232).
Interestingly, in the context of hepatic microvasculature,
monocyte recruitment does not appear to be supported by
stabilin-1, with antibody blockade on HSEC in vitro exhibiting
no effect on neither monocyte adhesion nor transmigration,
under physiological flow (unpublished data). Also, the leukocyte
adhesion function of HSEC-expressed stabilin-1 appeared to
be redundant in vivo, in murine models of liver injury, as no
significant differences in Treg or B cell numbers were found
between stabilin-1−/− mice and their wild type counterparts,
in both carbon tetrachloride (CCl4)- and methionine and
choline-deficient (MCD) diet-induced liver injury models (13).
Nevertheless, given that Karikoski et al. showed significantly
decreased numbers of Tregs were present in their murine tumor
models when stabilin-1−/− mice were compared to WT controls
(231), it can be speculated that stabilin-1’s role in the recruitment
of Tregs across HSEC will be potentially important in the context
of hepatocellular carcinoma (HCC). Karikoski et al. also showed
that stabilin-1−/− mice presented with smaller primary and
metastatic tumors than WT mice (231) and these findings were
corroborated with preliminary data in human HCC tissues
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ex vivo, which has shown that stabilin-1 expression is highly
augmented in peritumoural endothelia and correlated with
adverse histological features (233). This suggests that stabilin-1
potentially plays an adverse role in malignancy by potentiating
the suppression of the host immune response to a neoplasm;
consequently, a Phase I/II trial, TIETALC, (Tumor Immunity
Enabling Technology Against Liver Cancer) is currently being
designed at the University of Birmingham to test the efficacy of
targeting stabilin-1 in HCC (234).

Stabilin-2
The second member of the Class H scavenger receptor family,
stabilin-2, also known as FEEL2 or HARE (hyaluronan receptor
for endocytosis), is very similar in structure to stabilin-1
with both exhibiting similar domain organization in their
extracellular regions. Stabilin-2 was originally described as a
clearance receptor for hyaluronan (216, 235, 236); however, it
is now known to bind a wide range of structurally diverse
ligands. For example, stabilin-2 has also been shown to bind to
acLDLs (228), heparin (237), apoptotic (238, 239), and necrotic
(240) cells and microparticles from both Gram positive and
Gram negative bacteria (228). Like stabilin-1, stabilin-2 has
also been shown to be expressed in HSEC (235, 241, 242)
and can also mediate lymphocyte recruitment to the hepatic
sinusoidal endothelium (241). Through a number of mutation
experiments and antibody blockade studies in vitro, Jung et al.
found that the fasciclin 1 (FAS1) domains of stabilin-2 were
response for lymphocyte binding and identified αMβ2 integrin
as the lymphocyte-expressed ligand (241). They also determined
that stabilin-2 expression was not regulated in HSEC by
proinflammatory stimuli previously shown to activate endothelia

and subsequently suggested that stabilin-2 predominantly acts
in the firm adhesion step of the leukocyte adhesion cascade as
its forced down regulation via shRNA treatment did not affect
lymphocyte rolling or transendothelial migration, but was still
able to significantly reduce the number of adherent cells (241).
Despite their identification of the lymphocyte-expressed ligand
for stabilin-2, the study undertaken by Jung et al. remains the
only exploration of stabilin-2’s lymphocyte binding ability to
date. Since monocytes (243) and neutrophils (244) also express
αMβ2, it would be interesting to investigate whether or not
stabilin-2 is also able to mediate the binding of these myeloid
populations. Furthermore, the Jung study was restricted to
stabilin-2-mediated lymphocyte binding in the context of HSEC
(241); however, splice-variants have also been identified in non-
continuous sinusoidal endothelia of other tissues, such as lymph
nodes and the spleen (235, 245) and so future studies could also
explore the potential role of stabilin-2 in leukocyte recruitment
to these alternative tissues.

FUTURE WORK AND THERAPEUTIC
POTENTIAL

Trafficking of leukocytes represents the fundamental basis of any
type of immunological response and so targeting this process
remains an attractive prospect in the suppression of a wide variety
of inflammatory diseases. Whilst many of the key players in this
process have been identified, we have summarized the gathering
evidence that scavenger receptors can act as atypical adhesion
receptors which contribute to leukocyte homing (Figure 1). In
summarizing this literature, it is evident that further work is

TABLE 1 | Summary of endothelial-expressed scavenger receptor function, leukocyte/ligand binding, and translational stage of research.

Scavenger

receptor

Endothelial cells (EC) studied Role in leukocyte

trafficking

Leukocyte binding Leukocyte ligand(s) Translational stage

LEUKOCYTE ADHESION CASCADE

SR-PSOX Hepatic sinusoidal (HSEC) Arrest CD4+ and CD8+ T cells,

NK cells, NKT cells

CXCR6 In vivo, murine models of

acute liver injury

LOX-1 Bovine aortic endothelial cells

(BAEC); rat retinal ECs

Rolling Neutrophils,

monocytes/macrophages

Unknown In vivo, rat model of

endotoxemia

SCARF1 Hepatic sinusoidal (HSEC) Firm adhesion CD4+ T cells Unknown In vitro, primary human cell

models

Stabilin-1 Peritoneal vascular ECs; tumor

vascular ECs; hepatic sinusoidal

(HSEC)

Transendothelial

migration

Treg, B cells, granulocytes

and monocytes

Unknown Phase I/II clinical trials in

HCC being designed

Stabilin-2 Hepatic sinusoidal (HSEC) Firm adhesion PBLs αMβ2 integrin In vitro, primary human cell

models

LYMPH NODE TRAFFICKING

SR-AI Lymphatic (LEC) PBLs Unknown In vitro, primary murine and

human cell models

Ex vivo, static adhesion

assays

Stabilin-1 Lymphatic (LEC) and high

endothelial venules

T cells, B cells Unknown In vivo, murine models

Mannose

receptor

Lymphatic (LEC) and high

endothelial venules

PBLs L-selectin, CD44 In vivo, murine models
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required to understand the exact mechanisms by which scavenger
receptors contribute to leukocyte adhesion and migration.

Scavenger receptors can rapidly recycle from the cell
membrane (246) and are also known to interact with other
pattern recognition receptors (20); this therefore leads to the
question of whether or not scavenger receptors contribute to
leukocyte adhesion in a direct or indirect manner. In addition,
given that scavenger receptors have important homeostatic
functions in the remove of endogenous waste products from cell
turnover, further experimental work is required to understand
how the multifunctional properties of these receptors influence
their in vivo contributions. It is currently unclear if there is a
hierarchy in ligand recognition/affinity and how the leukocyte
homing properties of scavenger receptors work alongside their
homeostatic functionality. Whilst the experiments described in
this review have confirmed a role for scavenger receptors in
leukocyte homing, in several cases the identity of the ligand
they bind on leukocytes have not been elucidated (Table 1),
although imaging has demonstrated that some these receptors,
such as stabilin-1 and SCARF1, directly interact with leukocytes
on the endothelial surface (182, 220). The development of high
resolution imaging will hopefully help answer some of these
questions, focusing on the trafficking of scavenger receptors and
their membrane dynamics during leukocyte recruitment as well
as their interaction with other cell membrane molecules.

Despite the need for further experimental work in this
area, the potential of scavenger receptors as therapeutic targets
in inflammatory disease should be explored. Due to their
enrichment in specialized vascular beds, such as lymphatics
and other sinusoidal endothelial vasculature, and the fact
that leukocyte recruitment differs here from conventional
vascular beds, scavenger receptors may predominantly influence
recruitment in an organ-specific manner. They present a
promising avenue for the translational development of clinical
therapies to target inappropriate inflammatory reactions, such as
autoimmunity, as well as hepatic inflammation and recruitment
in the bone marrow niche.With regards to the potential targeting
of scavenger receptors in the leukocyte adhesion cascade, liver-
specific targeting may present more viable therapeutic targets
than endothelia of other organs, given the increased expression
of scavenger receptors in HSEC (247). Additionally, the low shear
stress environment results in a largely selectin-free leukocyte
adhesion cascade, thus allowing for a greater contribution by
atypical adhesion molecules to leukocyte recruitment.

However, targeting the leukocyte adhesion cascade to treat
inflammatory diseases could potentially be associated with
significant side effects related to impaired immune surveillance
and increased risk of invasion by pathogenic organisms.
Nevertheless, detailed analysis of leukocyte recruitment of
some scavenger receptors have shown that, rather than a pan-
leukocyte effect, some of them influence the trafficking of
specific subsets of leukocytes (Table 1). This suggests that these
receptors may indeed be therapeutically effective in shaping the
immune microenvironment by altering the balance of immune
populations at the site of inflammation, whilst also minimizing

potential side effects. Stabilin-1, for example, predominantly
mediates the recruitment of regulatory T cells across liver
endothelium suggesting that blocking its action would be more
appropriate in the setting of malignancy to boost tumor-
specific immune responses, whilst other scavenger receptors,
such as LOX-1, appear to be more pro-inflammatory. Several
preclinical experimental approaches have utilized monoclonal
antibodies to block the action of this family of receptors in
leukocyte recruitment; therefore, the development of humanized
therapeutic antibodies appears to be a reasonable approach to
target these receptors in the clinic. However, a caveat when
using monoclonal antibodies is the probability of off-target
effects, considering the differential expression of many scavenger
receptors in a range of professional immune cells. Therefore, a
more LEC- or HSEC-specific approach, e.g., adenoviral vector
(AVV) delivery of siRNA, would perhaps be the most germane
approach, as this would feasibly negate any potential off-target
effects. Finally, the emerging evidence that scavenger receptors
interact with other receptors and their multifunctional properties
suggest that, as well as monotherapies, scavenger receptors
could also be combined with other therapies, for example TLR-
directed treatments, to alter leukocyte trafficking and boost the
effectiveness of other therapies which target other arms of the
immune response.

CONCLUSIONS

There is an increasing amount of evidence describing the
role of endothelial-expressed scavenger receptors in leukocyte
trafficking. In this capacity, a number of scavenger receptors
are able to directly interact with leukocytes and mediate
their passage across a range of endothelia. This secondary
function is relatively understudied and further work could
lead to novel immunological therapies which could effectively
treat inflammatory conditions and contribute to combinatorial
approaches to manage these conditions.
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