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Asthma is a chronic inflammatory disease of airways mediated by T-helper 2 (Th2)

cells involving complex signaling pathways. Although resveratrol has previously been

shown to attenuate allergic asthma, the role of miRNA in this process has not been

studied. We investigated the effect of resveratrol on ovalbumin-induced experimental

allergic asthma in mice. To that end, BALB/c mice were immunized with ovalbumin (OVA)

intraperitoneally followed by oral gavage of vehicle (OVA-veh) or resveratrol (100 mg/kg

body) (OVA-res). On day 7, the experimental groups received intranasal challenge of

OVA followed by 7 days of additional oral gavage of vehicle or resveratrol. At day 15, all

mice were euthanized and bronchioalveolar fluid (BALF), serum and lung infiltrating cells

were collected and analyzed. The data showed that resveratrol significantly reduced IL-5,

IL-13, and TGF-β in the serum and BALF in mice with OVA-induced asthma. Also, we

saw a decrease in CD3+CD4+, CD3+CD8+, and CD4+IL-4+ cells with increase in

CD4+CD25+FOXP3+ cells in pulmonary inflammatory cell infiltrate in OVA-res group

when compared to OVA-veh. miRNA expression arrays using lung infiltrating cells

showed that resveratrol caused significant alterations in miRNA expression, specifically

downregulating the expression of miR-34a. Additionally, miR-34a was found to target

FOXP3, as evidenced by enhanced expression of FOXP3 in the lung tissue. Also,

transfection studies showed that miR-34a inhibitor upregulated FOXP3 expression while

miR-34a-mimic downregulated FOXP3 expression. The current study suggests that

resveratrol attenuates allergic asthma by downregulating miR-34a that induces increased

expression of FOXP3, a master regulator of Treg development and functions.
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INTRODUCTION

Asthma is a chronic inflammatory condition driven by T-helper 2 (Th2)- immune response
characterized by cough, shortness of breath and impairment of lung function which might be life
threatening (1). The inflammation in asthma leads to increase airway hyper-responsiveness and
bronchial spasm and excessivemucous production (2). There are several cellular signaling pathways

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02992
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02992&domain=pdf&date_stamp=2018-12-20
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:prakash@mailbox.sc.edu
https://doi.org/10.3389/fimmu.2018.02992
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02992/full
http://loop.frontiersin.org/people/618936/overview
http://loop.frontiersin.org/people/656153/overview
http://loop.frontiersin.org/people/646430/overview
http://loop.frontiersin.org/people/451427/overview
http://loop.frontiersin.org/people/499453/overview


Alharris et al. Resveratrol Attenuates Allergic Asthma

that are disrupted in asthma resulting in continuous
inflammatory response often to harmless substances such
as dendrites and pollen (3). One of the disrupted pathways,
most often found, comprises of changing the expression of
co-stimulatory molecules and cytokines secretion (4). As a
Th2-driven inflammatory response, asthma is characterized by
increase in the levels of IL-4, IL-5, IL-13, and GM-CSF along with
an increase in the level of TNF-α and TGF-β in BALF and serum,
which primarily act as pro-inflammatory cytokines (5). It is well-
known that asthma and autoimmune diseases with impaired
peripheral tolerance are associated with T-regulatory cell
dysfunction (6). T-regulatory (T-regs) cells are subpopulation
of T-cells responsible for dampening the immune response,
maintenance of peripheral tolerance and prevention of chronic
inflammation (7). T-regs are known to express CD4 and CD25
surface molecules in addition to secretion of anti-inflammatory
cytokines represented by IL-10 (8). The most important
transcription factor for T-reg is FOXP3, which plays an important
role in their differentiation and development (9). In fact, the
knockdown of FOXP3 results in development of autoimmune
diseases in multiple organs due to absence of properly
functioning T-regs (10). Tregs have been found to be defective in
both number and function in allergic disease and their mutation
has been linked to exaggerated immune response (11–15).

micro-RNAs (miRNAs) are small, ∼22 nucleotide long,
non-coding, regulatory RNAs that play a critical role in the
regulation of gene expression at the post-transcriptional level.
miRNAs play a significant role in driving asthma-related immune
responses, although the exact role and subsequent downstream
pathways of regulation remain obscure. Significant alterations
in the expression of miRNA in airway epithelial cell have been
reported in asthma (16). These alterations are only modestly
corrected by inhaled corticosteroids (16), thereby showing that
alternativemodes of treatment are critical that could altermiRNA
expression.

Resveratrol is a poly-phenolic stilbene (3, 4, 5-
trihydroxystilbene) which is abundant in wine, skin of red
grapes, berries, and peanuts (10, 17, 18). Several previous
studies demonstrated that resveratrol has anti-carcinogenic,
anti-inflammatory and cardio-protective effects (10, 19, 20).
Asthma is one of the diseases in which T-regs function is
impaired, and the response of asthmatic patient to systemic
or inhaled steroid is attributed mainly to their ability to
induce immunosuppression via T-reg cell activation (6). The
non-availability of a specific drug to target the downstream
pathways of Th2-driven mechanisms and their modulations
by miRNAs restricts therapy in these conditions (21). The
situation is also complicated by an overdependence on long
acting corticosteroids, which has potential side effects (22–24).
We and others have shown that resveratrol is highly effective in
suppressing inflammation in many autoimmune disease models
(25–27). Furthermore, researchers have shown that resveratrol is
as effective as steroids in treatment of asthma (28, 29). However,
the role of miRNA in resveratrol-mediated attenuation of
allergic asthma, its ability to induce the expression of FOXP3, a
master regulator of Tregs and immunosuppression, has not been
previously investigated. In the current study, we used a murine

model of asthma to study the therapeutic effects of resveratrol
and to address the role of miRNA. Our results showed that
resveratrol induces the repression of miR34a leading to over
expression of FOXP3 as a possible mechanism of attenuation of
allergy/asthma symptoms in mice.

MATERIALS AND METHODS

Animals
Female BALB/c mice aged 6–8 weeks were purchased from
Jackson laboratories. All mice were housed in specific pathogen-
free conditions at the AAALAC-accredited animal facility at the
University of South Carolina, School of Medicine (Columbia,
SC). All performed experimental procedures were approved
by the University of South Carolina Institutional Care and
Use Committee (IACUC). The mice were maintained under
a 12 h light/dark cycle at an ambient temperature of 24 ±

1◦C in a specific pathogen-free animal facility. They received
ad libitum access to normal chow diet and water. Cages were
cleaned every other day and cocoon enrichment was renewed
at the same time. All the experiments were performed in
accordance with the University of South Carolina IACUC
approved protocol AUP2377. Sample size was estimated based
on power analysis and we used groups of 3–5 mice as detailed
in the Figure legends. The mice were kept in the facility
for at least a week for acclimatization before use in the
experiments.

Effect of Resveratrol on Asthmatic Lungs
Because previous studies have shown that female BALB/c mice
are more susceptible to asthma (30–32), we used these mice in
this study. The mice were divided randomly into three groups
(Naïve, OVA-vehicle was designated as OVA-veh, and OVA-
resveratrol was designated as OVA-res) in isolated cages. The
mice from the Naïve group did not get any treatment whereas,
mice from the other two treatment groups were first sensitized
intraperitoneally with 250 µg of chicken egg-derived ovalbumin
(OVA), dissolved in a solution of aluminum hydroxide (4 mg/ml)
in a sterile phosphate buffer saline without Ca++ and Mg++

(PBS), and this day was designated as day 0 of the study (33). On
day 7, both sensitized groups of mice were challenged with 50 µg
OVA suspended in 50 µl of sterile PBS intranasally under short
anesthesia. The OVA-res group were administered by oral gavage,
100 mg/kg resveratrol dissolved in carboxyl methyl cellulose
(CMC) in volume of 200 µl daily from day 1 through day 14 of
the experiment (17, 34–36). We chose the dose (100 mg/kg body
weight) of resveratrol based on our previous studies in which
we found this dose to be optimum (17, 34–36). The mice of
vehicle treatment group (OVA-veh) were given CMC (200 µl)
by oral gavage. All the mice were euthanized on day 15 under
anesthesia.

Histopathology of the Lung
After euthanasia, the lungs were harvested and then perfused
with 4% paraformaldehyde in 0.1M PBS. After perfusion,
harvested lung tissues were first fixed in formalin solution (10%)
and then were embedded in paraffin blocks. Paraffin section of
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lung tissue were cut using a microtome to a thickness of (5µm).
The lung section on slides were stained with Hematoxylin and
Eosin (H&E) dyes. H&E stained lung tissue section were assessed
for histological changes and the cellular infiltration into the
lung tissues were analyzed using Leica DM 2500 fluorescent
microscope (Buffalo Grove, IL, USA).

Analysis of Cytokines
The generation of cytokines post vehicle or resveratrol treatment
was analyzed in the bronchoalveolar lavage fluid (BALF) and
the serum. The analysis of cytokines in BALF was performed
using the protocol as described previously (37). Briefly, trachea
was first tightened using suture and then lungs were isolated as
an intact organ with sutured trachea. Then, sterile ice-cold PBS
(1ml) was injected into the trachea and the draining fluid (BALF)
was collected. The collected BALF was centrifuged at 300× g for
15min and the supernatant was collected and used for cytokines
analysis. To analyze cytokines in sera, blood was collected on day
15 from the retro-orbital space under light anesthesia. The serum
was isolated by centrifugation at 300 × g for 15min at 4◦C. The
collected supernatant was used for cytokine analysis by ELISA.

Cytokines in collected BALF and sera were detected using
sandwich enzyme-linked immunosorbent assay (ELISA) kits for
IL-5 and IL-13, obtained from Affymetrix (Santa Carla, CA,
USA) and free-TGF-β ELISA kit, obtained from Biolegend (San
Diego, CA, USA). The protocols of the manufacturer were used
to perform ELISA. The absorbance values were measured by
Vector2 microplate reader from PerkinElmer (Boston, MA).

Analysis of Lung Infiltrating by Flow
Cytometry
Lung infiltrating cells were analyzed by flow cytometry. Lung
infiltrating cells were isolated using Histopaque and following
the protocol as described earlier (38). In brief, lungs were
first perfused with cold PBS and then harvested from various
treatment groups and single cell suspensions were prepared
as described earlier (39, 40). RBC lysis buffer from Biolegend
(San Diego, USA) was added (250 µl/lung) for 1min to lyze
the red blood cells. FACS buffer was then added and the
cells were collected by centrifuging at 300 × g for 10min at
4◦C. Next, the cells were suspended in 5ml of FACS buffer
and then Histopaque (at room temperature) was added. The
Histopaque columns containing cells were centrifuged at 500
× g for 30min at room temperature. The cells present in
the interphase layer were carefully collected Nd transferred to
another 15ml tube containing 10ml of PBS. The cells were
then washed twice in complete medium (Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% Fetal Bovine
Serum (FBS), 1% penicillin/streptomycin). The collected cells
were suspended in complete medium and the cells were counted
using automated cell counter from Bio Rad (Hercules, CA, USA).
The cells were then stained using fluorophore labeled surface
markers. Staining with antibodies against intracellular cytokine
was performed using Fixation/Permeabilization Solution Kit
(BD, San Jose, CA, USA). Probing the intranuclear transcription
factors was done using True-nuclear Transcription Factor Buffer
set (Biolegend, San Diego, CA, USA). The following antibodies

directed against mouse markers: PE-anti-CD3 conjugated with
PE or PE/cy5.5 fluorophore, anti-CD4 conjugated with PE/cy7,
FITC or APC fluorophore, anti-CD8 conjugated with FITC, anti-
IL-4 conjugated with PE/cy7 fluorophore, anti-CD25 conjugated
BV-786, and anti-FOXP3 conjugated with PE. CD25+FOXP3+
cell percentage was gated on CD3+CD4+ cells. The stained cells
were then analyzed using BD-FACS Celesta flow cytometer and
their DIVA software (BD Biosciences, San Diego, CA). The total
cell number of CD3+CD4+ and CD3+CD8+ was calculated
and expressed by multiplying the percentage of positive cells by
the total cell number divided by 100.

miRNAs Array
For miRNAs arrays, total RNAs including miRNAs isolated from
lung infiltrating cells were used. We had analyzed three samples
each of OVA+veh and OVA+res groups and two samples of
Naïve group. The reason we did not analyze three Naïve samples
is that other coworker in the lab had analyzed five Naïve
samples. We selected the three samples randomly from five
samples to perform miRNAs array assay. In brief, total RNA
from lung infiltrating cells was isolated using RNA assay kit from
Qiagen (Valencia, MD, USA) and following the protocol of the
company. Total RNA was then labeled using kit from Qiagen and
following the protocol of the company for labeling. Briefly, the
volume and the concentration of RNAs from various samples
were adjusted and then control oligonucleotides were added.
Ligase was added to ligate the RNAs end to biotin. The labeled
miRNAs from various samples were added to the cartridges
and hybridization was performed. After 18 h of hybridization,
the cartridges were washed and stained using GCS3000 System
from Affymetrix (Santa Carla, CA, USA) and following the
manufacturer’s protocols. The cartridges were then scanned using
Affymetrix scanner. The results were analyzed using Expression
Console software from Affymetrix. The dysregulated miRNAs
were then analyzed using Ingenuity Pathway Analysis (IPA)
software from Qiagen. To identify the target genes, we uploaded
only those miRNAs demonstrating a fold change ≥2 or ≤-2 into
IPA software. Next, we used the website, http://www.microrna.
org/, to show the alignment betweenmiRNA and the target genes.

Quantitative Real-Time PCR (qPCR) to
Validate miRNAs and Genes Expression
To validate the expression of miRNAs and genes of interest, total
RNAs isolated from pulmonary infiltrating mononuclear cells
from the lungs of Naïve, OVA-veh, and OVA-res groups were
used. The concentration and the quality of RNAs were analyzed
using Nanodrop 2000 (Thermo Fisher Scientific, Rockford, IL,
USA). Equal amounts of RNAs were used for cDNA synthesis.
To examine the expression of miRNAs, cDNAs were synthesized
using miScript cDNA Synthesis kit and following the protocol of
the company (Qiagen, Valencia, MD, USA). SYBR Green PCR
kit from Qiagen was used and the protocol of the company
was followed. To detect gene expression, SSO- Advanced SYBR
Green PCR kit (Bio-Rad, Hercules, CA) was used and the
protocol of the company was followed. Real-Time PCR was
performed for 39 cycles and the details are as follows: 30 s
98◦C (denaturation step), 60 s at 60◦C (annealing step) and
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60 s at 72◦C (extension step, followed by incubation for 10min
at 72◦C. The gene expression was normalized to GAPDH.
GAPDH housekeeping gene was used because its expression
is reliable for one kind of cells (41, 42). The PCR results
of miRNAs expression were normalized to Snord 96A (small
nucleolar RNA, C/D box 96A) was used as a control to
assess the level of miRNA (43). The details of miRNAs and
primer sequences for genes used in qPCR are described in
Supplementary Table 1.

Immunofluorescence and
Immunohistochemistry Assays
To validate the PCR results of upregulated FOXP3 gene
expression, we performed immunofluorescent staining of lung
tissue slides. We calculated the corrected total cell fluorescence
(CTCF) for FOXP3-stained cells in the lung tissue of naïve, OVA-
veh, and OVA-res group using ImageJ software from NIH, we
performed immunofluorescent staining as described earlier (44).
The slides with section of lung tissue were first deparaffinized

according to the standard protocol, antigen retrieval was done
using antigen-retrieval solution from Abcam (Cambridge, MA,
USA). The slides were thenwashedwith PBS twice, permeabilized
with 0.01% Triton X-100 (Sigma) for 15min, washed three times
with PBS 5min each, and then incubated overnight at 4◦C with
primary antibody (mouse-specific FOXP3) antibody fromAbcam
(Cambridge,MA, USA) diluted in 1% FBS in PBS. Next, the slides
were washed with PBS three times 10minutes each and incubated
with anti-mouse secondary antibody diluted in 1% FBS in PBS
for 1 h at 37◦C followed by washing the slides three times with
PBS. The slides were then stained with DAPI to show the nuclei
of the cells and washed three times with PBS and finally mounted
with AntifadeMountingMedium fromVector Labs (Burlingame,

CA). The tissue was visualized and photographed using Leica
Fluorescent microscope.

For immunohistochemistry analysis, the lung tissues section

(5µm thickness) were first deparaffinized using a standard

protocol. Epitopes were retrieved using epitope retrieval solution
and steamer (IHC-Word, Woodstock, MD). Endogenous

FIGURE 1 | Resveratrol attenuates Ova-induced asthma. As detailed in Methods, mice were administered Ovalbumin (OVA) intraperitoneally followed by intranasal

challenge and treated with vehicle (OVA-veh) or 100 mg/kg Resveratrol (OVA-res) daily by oral gavage for 2 weeks and sacrificed on day 15. (A) Histopathological

analysis of the lungs. Significant thickening was observed in the alveolar walls and inflammatory cell infiltration as well as accumulation of edematous fluid in the

alveolar spaces (arrows) and destruction of airways (arrowheads) in OVA-veh group when compared to naïve or OVA-res groups. Measurements of

asthma-associated cytokines are shown for BALF (B) and serum (C). The number mice used are given in parenthesis: Naïve (n = 5), OVA-veh (n = 3), and OVA-res

(n = 3). Asterisks (*) represent significant (p < 0.05) difference for all experiments. ANOVA and post-hoc Tukey’s tests were performed to determine the significant

(*p < 0.05, **p < 0.01, ***p < 0.001) difference between the groups.

Frontiers in Immunology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 2992

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alharris et al. Resveratrol Attenuates Allergic Asthma

peroxidases were blocked using 3% H2O2 for 10min in dark
followed by serum blocking. The tissue was incubated with
primary antibody anti-FOXP3 (Abcam, Cambridge, MA,
USA) at 4◦C overnight. Species-specific biotinylated secondary
antibody and streptavidin conjugated with HRP (Abcam) were
used to implement antigen-specific immunohistochemistry.
The chromogenic substrate 3,3’-Diaminobenzidine (DAB)
(Sigma Aldrich, St Louis, MD) was used followed by Mayer’s
Hematoxylin solution (Sigma Aldrich) as a counterstain. Section
were washed between the steps using phosphate buffered saline
1X. Finally, stained section were mounted with Simpo-mount
(GBI laboratories, Mukilteo, WA). Tissue section were observed
using Olympus BX51 microscope (Olympus, America). Image
Pro Plus software from Media Cybernetics (Rockville, MD) was
used for morphometric analysis of images.

Transfection of Splenocytes With miR-34a
Splenocytes were collected from naïve female BALB/c mice
and cultured in complete RPMI (Roswell Park Memorial
Institute) medium supplemented with 10% FBS and 1%
penicillin/streptomycin. The cells were seeded at density of 2 ×

105 cells /well in a 24-well plate and were activated with 1µg/ml
SEB overnight (39). The cells were then transfected either with

20 nmol mock control obtained from Qiagen or with miR-34a
mimic or anti-miR-34a (inhibitor) using HiPerfect Transfection
reagent from Qiagen. The transfected cells were cultured for 24–
48 h. The transfected cells were then collected and used for total
RNAs including miRNAs isolation. Total RNAs were then used
for validation of miR-34a and FOXP3 gene expression.

Statistical Analysis
We used groups of five mice to study the role of
resveratrol in OVA-induced allergy. One-way ANOVA
with post-hoc Tukey’s test was used to compare between
three groups. Student’s t-test was used to compare
two groups. In all experiments, data were shown as
mean ± S.E.M. and p <0.05 was regarded statistically
significant.

RESULTS

Resveratrol Treatment Improves
Th2-Mediated Immune Response
Hematoxylin and eosin staining of the lung tissue was assessed
by blind observer. The examination revealed that the lung
tissue of OVA-veh group was congested due to presence of

FIGURE 2 | Resveratrol decreases T cell subpopulations in lungs of OVA-administered mice. Resveratrol was used to treat OVA-induced asthma as described in

Figure 1. Lung infiltrating inflammatory cells were stained by flow cytometry. (A) Shows a representative flow cytometric analysis of CD3+CD4+ and CD3+CD8+ T

cells. Data presented in percentage in each Flow data represent the value of three independent experiments. Vertical bars represent total cell number/mouse

(Mean+/– SEM) from multiple experiments. (B) Shows a representative flow cytometric analysis of CD4+IL4+ Th2 cells. (C) Shows a representative flow cytometric

analysis of CD25+FoxP3+ Tregs gated on CD3+CD4+ cells. For (B,C), vertical bars represent percentage of cells/mouse (Mean+/– SEM). The number mice used

are given in parenthesis: Naïve (n = 5), OVA-veh (n = 5), and OVA-res (n = 5). Asterisks (*) represent significant (p < 0.05) difference between two groups using

Student’s t-tests (p < 0.05).
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perivascular and perialveolar inflammatory cell infiltrate and
fluid extravasation along with destruction of alveolar walls
compared to naïve group. Treatment with resveratrol resulted
in restoration of lung tissue architecture, reduction in the
inflammatory cell infiltrate, and disappearance of inflammatory
exudate. The parenchyma of the treated group (OVA-res) was
comparable to the naïve group with normal alveolar wall,
clearance of inflammatory cell infiltrate and reduced alveolar wall
edema (Figure 1A).

OVA-veh group showed a significant increase in the levels
of IL-5, IL-13, and free active TGF-β in BALF when compared
to the naïve group while these cytokines were significantly
lower in BALF of OVA-res group when compared to OVA-veh
(Figure 1B). Furthermore, the level of serum IL-13, and TGF-β
but not IL-5, were significantly lower in the OVA-res group when
compared to OVA-veh (Figure 1C). When we analyzed T cells in
the lungs, we noted that the total cell count of CD3+CD4+ and
CD3+CD8+ was significantly reduced in OVA-res group when
compared to OVA-veh group (Figure 2). Also, percentage of cells
expressing CD3+CD4+IL-4 (Th2 cells) was significantly lower
in OVA-res group when compared to OVA-veh (Figure 2B).
Furthermore, we looked for percentage of cells expressing
CD25+FOXP3+ (Tregs) in the lung infiltrating cells and found
that there was significant increase in the percentage of Tregs in
resveratrol treated group when compared to vehicle (Figure 2C).

Treatment With Resveratrol Alters the
miRNAs Profile
Transcriptome Analysis-generated heat map and volcano plot
analysis showed that most of the altered miRNA were
downregulated (Figures 3A,B). Principal Component Analysis
of two independent samples showed distinct clustering of
miRNA profiles of naïve, OVA-veh and OVA-res groups
(Figure 3C).

Resveratrol Treatment Leads to Alterations
in miRNAs That Target FOXP3, IL-13, IL-10,
and GATA-3.
IPA analysis led to identification of anti-inflammatory pathways
such as FOXP3 (transcription factor for T-regulatory cells)
and IL-10 (Figure 4A) as potential targets of miRNA. In
this analysis, we also identified that miR-34a may target
FOXP3 gene (Figure 4A), which was confirmed by gene
alignment software (Figure 4B). Real-time qPCR analysis
in lung infiltrating cells validated the findings that miR-
34a was induced while FOXP3 was suppressed in OVA-veh
group and treatment with resveratrol led to significant
downregulation miR-34a while increasing the levels of
FOXP3 (Figure 4B). We also studied in these cells, genes
related to Th2 such as GATA-3 (Th2-transcription factor)

FIGURE 3 | Resveratrol treatment alters miRNA profile in lung infiltrating cells. OVA-induced asthmatic mice were treated with resveratrol as described in Figure 1.

Lung infiltrating cells from naïve, OVA-veh, and OVA-res groups were isolated and total RNAs including miRNAs were used to perform miRNA arrays. (A) Heat map

showing miRNAs expression profile with red representing upregulated while blue representing downregulated miRNAs. (B) Volcano Plot shows that OVA-res group

has higher levels of downregulated miRNAs when compared to OVA-veh group. (C) Principal component analysis (PCA) plot showing separation of miRNA in the

three groups. The number of mice used (Naïve: n = 3, OVA-veh: n = 3, and OVA-res: n=3).
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and IL-13 (Th2-related cytokine) and both were significantly
downregulated in OVA-res when compared to OVA-veh

(Figure 4B). Interestingly, IL-10 gene expression was also
significantly higher in OVA-res when compared to OVA-veh

(Figure 4C).

Resveratrol Treatment Leads to Induction
of Foxp3+ Cells in the Lung
We found that corrected total cell florescence (CTCF) for
FOXP3 protein was significantly higher in OVA-res group
when compared to naïve and OVA-veh group (Figure 5A).
Moreover, immunohistochemistry staining of lung tissue section
also showed significant increase in the levels of FOXP3
expression in OVA-res group when compared to OVA-veh
(Figure 5B).

To show further corroborate that the overexpression
of FOXP3 was due to downregulation of miR-34a, we
performed transfection studies using mock, miR-34a mimic
or inhibitor in splenocytes that were activated with SEB. We
observed that upregulation of miR-34a using a mimic, was
associated with downregulation of FOXP3, while use of miR-
34a inhibitor led to upregulation of FOXP3 gene (Figure 6).
Together, these data demonstrate that miR-34a was targeting
FOXP3.

DISCUSSION

Asthma is a common reason for morbidity in children and
adults caused by chronic inflammatory response mediated by
Th2-immune response (45–47). Although a wide range of
pharmacological therapies have been developed as a prophylactic
treatment or to control acute asthmatic attacks such as β2-
adrenergic drugs, steroids, IgE blockers, methylxanthines, and
leukotriene modifying agents, the most effective treatment
stems from the use of steroids (48, 49). However, steroids are
associated with serious systemic side effects such as osteoporosis,
cataract, growth retardation in children and immunosuppression
(50). Resveratrol, a polyphenolic stilbene is effective against
asthma (50, 51) without the serious side effects as shown
by many randomized clinical trials (52–54). In the current
study we demonstrated that resveratrol can efficiently attenuate
allergic asthma in a mouse model. These data are consistent
with other studies demonstrating that resveratrol can suppress
both airway inflammation and airway structural changes in
mouse models of bronchial allergic asthma (28, 51, 55, 56).
It is noteworthy that while such studies have identified many
signaling pathways through which resveratrol can attenuate
allergic asthma including suppression of expression of TGF-
β1/phosphorylated Smad2/3 (28), inhibition of Syk protein
expression (55), and increased expression of INPP4A in
lungs which in turn reduced Akt kinase activity and Akt

FIGURE 4 | Analysis of dysregulated miRNAs and regulation of Foxp3 and cytokine genes post resveratrol treatment. (A) Ingenuity Pathway analysis was performed

to analyze dysregulated miRNAs and identify target molecules. (B) Shows the alignment of targeted gene and miR-34a using miRNA.org software. qPCR was

performed to validate of the expression of miR-34a (C) and its target gene FOXP3 (D), transcription factor GATA3 (E), cytokine IL-13 (F), and cytokine IL-10 (G). The

number of mice used (Naïve: n = 5, OVA-veh: n = 5, and OVA-res: n = 5). Data are shown as Mean +/– SEM of triplicates and asterisks (*) represent significance

(*p < 0.05, **p < 0.01). Significance of data was determined using ANOVA test and post-hoc Tukeys test. Each experiment was repeated at least three times.
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FIGURE 5 | Resveratrol treatment leads to induction of FOXP3+ cells in the lungs: Immunofluorescence and immunohistochemistry were performed to determine the

expression of FOXP3 in lung tissues and FoxP3 expression in the cells was assessed using corrected total cell fluorescence (CTCF) and ImageJ software. (A) Shows

the expression of FOXP3 in lung tissues. The data in vertical bars represent Mean+/– SEM of 10 random spots analyzed. Significance (*p < 0.05) of FoxP3 expression

between the groups was analyzed using Student’s t-test. (B) Shows FoxP3 expression in lung tissues by performing immunohistochemistry. The data represented as

Mean+/– SEM of random 3–5 spots that were analyzed. The number of mice used (Naïve: n = 3, OVA-veh: n = 3, and OVA-res: n = 3). Significance (**p < 0.01, ****p

< 0.0001) in FoxP3 expression was detected using one-way ANOVA and post-hoc Tukey’s test.

phosphorylation (51), the potential role played by miRNA in
resveratrol-mediated attenuation of allergic asthma has not been
previously investigated. In this study, we found that resveratrol
treatment of ovalbumin-induced asthma in mice was associated
with downregulation of several miRNA, particularly, miR-34a
which targeted FOXP3 gene, a T-reg transcription factor, and
caused significant induction of this gene, thereby potentially
inhibiting the Th2-mediated immune response.

The present study also showed that resveratrol treatment
significantly reduced the levels of Th-2 cells and Th2-related
cytokines (IL-5, and IL-13) in addition to asthma-related
cytokines such as TGF-β in BALF, and serum. The reduction in
the level of asthma-related cytokines is an important indicator
of suppression of inflammatory response (57, 58). On the other
hand, the level of IL-10 gene expression, encodes for an anti-
inflammatory cytokine primarily secreted by T-regs, was also
significantly higher in the pulmonary cell infiltrate from OVA-
res group when compared to OVA-veh-treated group. This
finding indicates that resveratrol may promote IL-10 mediated
immune resolution as reported previously (59, 60). These
data on suppression of inflammation were consistent with our
observation that the levels of CD3+CD4+, CD4+IL4+(Th2),

and CD3+CD8+was significantly reduced in Resveratrol treated
group as compared to the asthma controls (OVA-veh).

It has been shown previously that miRNA play an important
role in regulation of inflammation. For example, in the innate
immune system, miR-155 was shown to mediate the effect of
LPS (lipopolysaccharide) on macrophages via TLR (Toll-Like
Receptor) signaling pathway (61). In addition, inflammatory
response to infection in macrophages was mediated by
upregulation of many miRNAs like miR-9, miR-21, and miR-
149 (62–64). The adaptive immune system was also proven to
be regulated by miRNA alteration. Differentiation of naïve T-
cell to effector T- cell was reported to be driven by miRNA
regulation (65, 66). In addition, miRNAs also regulate B-cell
differentiation, maturation and activation (67–69). Even though
resveratrol can alter the miRNA, very few studies mention
the role of miRNA in resveratrol-mediated anti-inflammatory
effect in Ovalbumin-induced asthma (70–76). In the current
study, we found that miR-34a was significantly downregulated
in OVA-res group as compared to OVA-veh. Moreover, we
found that miR-34a showed good alignment with FOXP3
gene using IPA analysis and its subsequent downregulation
by resveratrol treatment might significantly upregulate FOXP3.
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FIGURE 6 | The effect of transfection of miR-34a mimic and inhibitor on Foxp3 gene expression. qPCRs were performed to determine the expression of miR-34a and

FoxP3 post transfection of splenocytes with miR-34a mimic and miR-34 inhibitor. (A) Shows the expression of miR-34a and (B) shows the expression of FoxP3 in

splenocytes post transfection. The data presented as vertical bars represent Mean+/– SEM of triplicates. Significance (*p < 0.05, **p <0.01, ****p <0.0001) of

miR-34a and FoxP3 expression was determined using ANOVA test and Tukey’s-hoc test.

Following the same cues, we performed further studies to mimic
or inhibit the expression of miR-34a by transfecting the cell
with Hi-perfect miR-34a mimic or inhibitor and compared
that with mock control. The results showed that the over-
expression of miR-34a significantly downregulated FOXP3 gene
and the administration of the mir-34a inhibitor significantly
upregulated FOXP3 gene when compared tomock control. Taken
together, these findings indicated that anti-inflammatory effect
of resveratrol in ovalbumin induced asthma may be mediated
by downregulation of miR-34a which in turn upregulated
FOXP3.

It has been shown previously that miRNA play a central
role in the induction of Tregs (77). For example, deletion of
miRNAs by lineage-specific ablation of Dicer or Drosha in T
cells was found to decrease the number of Tregs, leading to
fatal multiorgan inflammatory disease (78). Also, miR-155 knock
out (KO) mice have reduced numbers of FOXP3+ cells (79).
Since such reports, many studies have identified other miRs such
as miR-10b, miR-99a, miR-130a, miR-146b, miR-150, and miR-
320 that can drive Treg differentiation (77). While the role of
miR-34a in regulating FOXP3 expression and Treg induction
has not been previously reported, we found one study in which
lipopolysaccharide suppressed miR-34a leading to upregulation
of CCL2, a macrophage-derived chemokine that recruits Tregs
(80).

In the current study, we also noted that OVA-sensitized mice
showed higher levels of TGF-β and resveratrol treatment led to
decrease in this cytokine production. Interestingly, TGF-β plays
many roles. In asthma, TGF-β acts as a major mediator involved
in pro-inflammatory responses and fibrotic tissue remodeling
within the asthmatic lung (81). It is also known to promote Th2
cytokine profile and elevated TGF-β levels have been detected

in asthmatic airway (81). These observations are consistent
with our current study in which we found that TGF-β levels
were upregulated in OVA-exposed mice and that treatment
with resveratrol led to significant decrease in TGF-β levels.
Thus, resveratrol may also help suppress lung inflammation by
targeting TGF-β. TGF-β is also known for its Yin-Yang role and
thus, it can also induce Tregs (82). However, in our model, it is
more likely that the Treg induction by resveratrol may stem from
its action on miR-34a.

The limitation of this study was using female BALB/C mice
which is due to the fact that they are more susceptible to get
allergic airway diseases than males (30–32). In addition, we need
to validate the results by doing in-vivo transfection with miR-34a
mimic and inhibitor and look at the ability of them to develop
allergic airway diseases.

In summary, our study showed that oral administration of
resveratrol suppressed the asthma-associated immune response
and its action was mediated by upregulation of FOXP3 induced
by miR-34a down-regulation. To the best of our knowledge, we
report a novel finding that resveratrol improves asthma via its
effect on FOXP3 expression in pulmonary infiltrating cell and
its therapeutic effect is mediated by miR-34a inhibition. This
study will go a long way in establishing therapeutic strategies in
treatment of asthma without the anti-asthmatics-associated side
effects.
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