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MicroRNAs (miRNAs) are evolutionary conserved small non-coding RNA molecules that

affect gene expression by binding to target messenger RNAs and play a role in biological

processes like cell growth, differentiation, and death. Different CD4+ T cell subsets

such as Th1, Th2, Th17, and T regulatory cells, exert a distinct role in effector and

regulatory-type immune responses. miRNAs have been shown to respond to dynamic

micro-environmental cues and regulate multiple functions of T cell subsets including

their development, survival and activation. Thus, miRNA functions contribute to immune

homeostasis, on the one side, and to the control of immune tolerance, on the other.

Among the most important proteins whose expression is targeted by miRNAs, there are

the cytokines, that act as both key upstream signals and major functional outputs, and

that, in turn, can affect miRNA level. Here, we analyze what is known about the regulatory

circuit of miRNAs and cytokines in CD4+ T lymphocytes, and how this bidirectional

system is dysregulated in conditions of pathological inflammation and autoimmunity.

Furthermore, we describe how different T cell subsets release distinct fingerprints

of miRNAs that modify the extracellular milieu and the inter-cellular communication

between immune cells at the autocrine, paracrine, and endocrine level. In conclusion,

a deeper knowledge of the interplay between miRNAs and cytokines in T cells may have

pivotal implications for finding novel therapeutic strategies to target inflammation and

autoimmune disorders.
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INTRODUCTION

MicroRNAs (miRNAs) are small (∼22 nucleotides in length), non-coding RNAs, processed from
longer transcripts, the pri-miRNAs, first cut to form a stem-loop structure, the pre-miRNAs.
These molecules are then further processed to form the mature miRNA duplex by the subsequent
action of two type III RNA endonucleases, Drosha (nuclear), and Dicer (cytoplasmic). The
miRNA duplex is loaded into the Argonaute (Ago) protein to form a mature RNA interference

silencing complex (RISC). The mature single stranded miRNA pairs to sites usually within the 3
′

untranslated region of messenger RNAs (mRNAs), causing mRNA decay and block of translation.
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A detailed description of miRNA biogenesis goes beyond the
scope of the present review but can be found elsewhere
(1). miRNA pathway, possibly derived from the ancient RNA
interference (RNAi) pathway, is common to all eukaryotes and
highly conserved. One of the first miRNAs discovered, lethal-
7 (let-7), a regulator of developmental timing in Caenorhabditis
elegans, shows a correspondent temporal expression in bilaterian
animals and is crucial in regulating mammalian developmental
differentiation and glucose metabolism (2–5). In humans, almost
two thousand different miRNAs are known and the majority
of mRNAs are miRNA conserved targets (6). This broad
regulation of the transcriptome expression potential suggests
miRNAs may influence all physiological and pathological
processes.

A major research effort has investigated the specific impact
of miRNAs on the immune system. We will here focus on
a population of T lymphocytes, CD4+ T helper (Th) cells,
crucial in orchestrating CD8+ T and B cell-dependent adaptive
immune response. T cell receptor (TCR) stimulation, the
cytokine milieu and co-stimulatory signals together lead to
naïve Th cell proliferation and differentiation into effector
subtypes, characterized by specific transcription factors,
cytokine fingerprints, and pathogenic targets (7). Th1 cells
are defined by the master regulator T-bet, produce high
levels of Interleukin (IL)-2 and interferon (IFN)-γ and direct
immunity toward intracellular bacteria and viruses; Th17
cells, promoted by the expression of the master regulator
Rorγt, combat extracellular bacteria, and fungal infections
by releasing IL-17; the master regulator Gata3 drives the
differentiation of Th2 cells, which produce IL-4, IL-5, and
IL-13 and recognize extracellular parasites. Follicular helper T
cells (Tfh), characterized by the activity of the master regulator
Bcl-6, are located within B cell follicles of secondary lymphoid
organs, mostly secrete IL-4 and IL-21 and are responsible for
the maintenance of germinal centers and the development
of humoral immunity. CD4+CD25highFOXP3+ regulatory T
(Treg) cells represent a functionally distinct lineage committed
to exert an anti-inflammatory/immune suppressive control
and sustain immunological homeostasis (8). Treg cells act by
inhibiting the action of the pro-inflammatory counterpart CD4+

Th1 and Th17 (also referred to as T conventional or Tconv)
cell subsets by the production of IL-10, IL-35, and transforming
growth factor (TGF)-β. Although the categorization of Th
subpopulations is useful, the reported existence of cells with
cytokine signatures and functional properties intermediate
between the described subsets indicates a certain degree of
plasticity (9, 10).

Since the dysregulation of cytokines is associated to deranged
inflammation, effector Th cell differentiation/activation must
be strictly regulated in order to avoid exaggerated and/or
pathological responses (11). Beside epigenetic remodeling
and lineage-restricted transcription factors, miRNA-dependent
regulation is now recognized to significantly modulate Th
gene expression and cytokine-related functional outputs. In this
minireview, we will analyze relevant data on miRNA-based
networks that regulate the tuned release of specific cytokines by
Th subsets, central to mount efficacious immune responses and
maintain immune homeostasis.

GLOBAL miRNA MODULATION DURING
CD4+ T CELL DEVELOPMENT AND
DIFFERENTIATION

During T lymphocyte development, miRNA pool is highly
dynamic, ranging from around 30,000 to ∼5,000 copies
per cell when comparing the highly proliferative CD4CD8
double negative to the double positive lymphocytes undergoing
selection. The miRNAs:total RNA ratio steadily increases during
maturation, suggesting that miRNA suppressive potential is
also regulated in terms of quantity relative to ribosomal
and messenger RNA (12). Furthermore, when Th cells are
TCR-stimulated, the RNA yield per cell increases with many
housekeeping mRNA transcripts being induced. In parallel,
global miRNA expression significantly diminishes, even before
any cell division; this down-regulation depends on both
pri-miRNA transcription decrease and RISC activity decline
secondary to a massive Ago ubiquitination and subsequent
proteasome-dependent degradation (13).

Ablation of the machinery for miRNA biogenesis during
thymocyte differentiation or Th cell activation has devastating
effects, demonstrating the critical role miRNAs play during Th
gene expression reprogramming. Dicer or Drosha deletions in
murine Th cells result in aberrant development, differentiation
and cytokine production. Dicer deficient Th cells are not only
unable to engage robust proliferation upon stimulation while
actually undergoing increased apoptosis, but also show the
preferential expression of IFN-γ, indicating a skewed subset
commitment toward the Th1 lineage (14–17). Consistently, when
miRNAs are depleted due to Ago deficiency, Th are more
prone to differentiate into cytokine producing cells, suggesting
that miRNA down-regulation promotes acquisition of effector
functions by relaxing the repression of genes that direct Th cell
differentiation, like cytokines and/or cytokine regulators (13)
(Figure 1).

miRNA maturation pathway is also necessary for the
development of thymic Treg cells and the induction of FOXP3
by TGF-β. Treg specific deletion of Dicer or Drosha shows a
dramatic output, with the development of a lymphoproliferative
phenotype resembling the one observed in the absence of FOXP3
itself (18–20).

miRNAs ON THE CUSP OF THE GENE
EXPRESSION NETWORKS CONTROLLING
CD4+ TH CELL FUNCTION

The most prominent feature of Th cell differentiation is based
on cytokine and transcription factor feedback loops that polarize
gene expression. Th cell fate is sensitive to subtle changes of
these regulatory circuits and therefore particularly responsive
to miRNA regulation. Accumulating studies ablating and/or
overexpressing single miRNA molecules or miRNA clusters are
dissecting miRNA salient action in Th subset differentiation.

miR-17-92 Cluster
A milestone work has been conducted on the mir-17–92
cluster, that encodes miR-17, 18a, 19a, 19b, 20a, and 92
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FIGURE 1 | miRNA role in different T cell subset differentiation. (A) Upon naive T cell activation, increase in cytokine production is dependent on miRNA/total RNA

ratio decrease. (B) During Th1 cell differentiation, up-regulation of miR-155-5p and miR-17-92 results in suppression of IFN-γ Rγ chain and c-Maf and PTEN on one

side and Bim and TGFBR2 on the other, important to block Th2 differentiation and unlock cell proliferation respectively. During Th17 differentiation, miR-155-5p

induction leads to SOCS1 inhibition, which in turn unleashes IL17A production. During follicular helper T cells (Tfh) cell differentiation, CXCR5 up-regulation, important

for migration into follicles, is dependent on miR-17-92 cluster downregulation. During Treg cell differentiation, the increase of miR-10 expression blocks the expression

of Bcl-6 (Thf differentiation) and NCOR-2 (Th17 maturation).

inside a single polycistronic transcript. This cluster sustains
lymphocyte proliferation and inhibits cell death by targeting
the tumor suppressor phosphatase and tensin homolog
(PTEN) and the proapoptotic protein Bcl-2-like protein 11,
commonly named Bim; indeed, lymphocyte-specific transgenic
mice over-expressing the cluster die as a consequence of
lymphoproliferative disease and autoimmunity (21, 22).
In particular, the mir-17–92 cluster pushes toward a more
pronounced pro-inflammatory type-1 phenotype, with increased
IFN-γ production and, upon viral infection, miR-17–92
expression is required for clonal expansion of virus-specific Th1

and memory formation (23, 24). Two cluster members, miR-17
and miR-19b, are the key players controlling Th1 responses,
supporting IFN-γ production and suppressing inducible Treg
differentiation, with PTEN and TGFβ receptor 2 (TGFBR2)
as the functionally primary targets of miR-19b and miR-17,
respectively (25) (Figure 1). These two miRNAs are also essential
during the induction of graft-vs.-host disease (GVHD) in mice,
as the systemic administration of antagomir to block either one
of the two significantly inhibits alloreactive T-cell expansion and
IFN-γ production, and prolongs survival (26). During Tfh cell
differentiation, the master transcription factor Bcl-6 represses
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miR-17, miR-18a, and miR-20a and thus releases their repression
on C-X-C motif chemokine receptor 5 (CXCR5), required for
the migration of cells into follicles (27) (Figure 1). On the other
hand, in a viral infection model, miR-17–92 acts as a critical
regulator of Tfh cell differentiation by restraining the expression
of genes “inappropriate” to this cell subset (28); in an airway
inflammation model in vivo, miR-18a specifically targets three
key transcription factors in the Th17 gene-expression program
small mother against decapentaplegic 4 (SMAD4), hypoxia
inducible factor 1α (HIF1α), and retinoid-related orphan
receptor α (RORα), and blocks the differentiation of tissue Th17
cells expressing C-C chemokine receptor 6 (CCR6), RORγt, and
IL-17A (29).

miR-155
Another relevant example of a miRNAwith dramatic effect on Th
subset differentiation is miR-155, which maps within an exon of
the non-coding RNA bic. This gene is found highly expressed in
activated B and T cells and lymphomas and miR-155 transgenic
mice develop B cell malignancies (30–33). In conditions of miR-
155 deficiency, CD4+ Th cells proliferate normally upon TCR-
stimulation but show a significant reduction of Th1 commitment
and IFN-γ production and an increase in the number of IL-4
producing cells. miR-155 ability to skew Th differentiation away
from the Th2 phenotype and attenuate Th2 cell responses in
vivo depends on its capacity to directly suppress the transcription
factor c-Maf, a potent trans-activator of the IL-4 promoter (34)
(Figure 1). miR-155 is also able to promote Th1 differentiation
and IFN-γ release through the modulation of the IFN-γ signaling
by directly targeting IFN-γRα chain (Figure 1). Gain and loss-of-
function analysis showed that miR-155 also positively regulates
Th17 differentiation and induces the release of IL-17A through
Janus kinase/signal transducer and activator of transcription
(JAK/STAT). The direct target was suggested to be the suppressor
of cytokine signaling 1 (SOCS1), which negatively feedbacks
cytokine signal transduction (35) (Figure 1). Interestingly, in
Th2 inducing conditions, miR-155 becomes unable to suppress
the IFN-γRα messenger possibly because of preferential binding
to high affinity Th2 specific mRNA targets, such as c-Maf, or
because this suppression requires additional factors, including
other miRNAs, exclusively expressed in Th1 cells (36).

THE BIDIRECTIONALITY OF
CYTOKINE-miRNA RELATIONSHIP

A pivotal study has described the pleiotropic effect of TGF-
β on the miRNome. SMADs, signal transducers of TGF-
β, promote the expression of a plethora of miRNAs by
facilitating the cleavage by Drosha, through the recognition of a
consensus sequence within the stem region of miRNA primary
transcripts, illustrating that TGF-β gene regulation also relies
on miRNA modulation (37). Another example of cytokine-
dependent miRNA regulation is recordable during the switch
from a resting state to clonal expansion of antigen-activated Th
lymphocytes, when the suppressor of proliferation Forkhead box
protein O1 (FOXO1) is initially inactivated by post-translational

modifications, and then post-transcriptionally inhibited by IL-2-
induced miR-182 (38).

An intriguing case of miRNA-cytokine tango is that of miR-
29a and IFN-γ. A wide screen for miRNA function in primary
Th cells identified miR-29 as able to correct the aberrant IFN-
γ expression associated with global miRNA deficiency. This
miRNA targets both T-bet and EOMES, two transcription factors
known to induce IFN-γ production, but it also suppresses IFN-γ
production by directly targeting its mRNA (39).

The transgenic expression of a “sponge” target to compete
with endogenous miR-29 targets in Listeria monocytogenes
infected mice increased IFN-γ serum concentrations and
decreased infection burdens, further suggesting that miR-29
suppresses immune responses to intracellular pathogens by
targeting IFN-γ (40). The direct involvement of miR-29 in IFN-γ
regulation remains controversial, as no correlation between miR-
29a and IFN-γ expression of Th cells was observed in patients
during active tuberculosis in more recent works (41, 42).

miRNA REGULATION OF TREG CELL
IDENTITY AND THE CONTROL OF
IMMUNE HOMEOSTASIS

In 2010, it was demonstrated that a single miRNA can control
immune homeostasis. Treg specific deletion of miR-146a-5p
resulted in a breakdown of immunological tolerance manifested
in fatal IFN-γ dependent lesions in a variety of organs,
associated with the augmented expression and activation of the
direct target Signal transducer and activator of transcription
1 (STAT1) (43). Another study confirmed that miR-146a null
mice lose peripheral T cell tolerance and die prematurely
of a spontaneous autoimmune disorder, characterized by
splenomegaly, lymphadenopathy, and multiorgan inflammation
(44). miR-146a is part of a regulatory negative feedback loop
that controls TCR signaling to NF-κB and the resolution of
Th responses: mice Th cells lacking miR-146a are hyperactive
in both acute antigenic and chronic inflammatory autoimmune
responses because in physiological conditions TCR-driven NF-
κB activation up-regulates the expression of miR-146a, which
in turn down-regulates NF-κB activity, at least partly through
repressing the NF-κB signaling transducers TNF receptor-
associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1
(IRAK1) (45). Upon Treg induction, TGF-β is able to specifically
induce miR-10a. By simultaneously targeting the transcriptional
repressor Bcl-6 and the corepressor nuclear receptor corepressor
2 (NCOR2), miR-10a hampers the phenotypic conversion of
Treg into Tfh cells and at the same time blocks differentiation
into the Th17 subset. In other words, TGF-β can fine-tune
the plasticity and fate of Th cells also through the specific
induction of a single miRNA (46) (Figure 1). Notably, although
under basic conditions miR-17–92-deficient Treg cells are able
to maintain immune homeostasis, the expression of miR-17–92
cluster (above described as central for Th1 differentiation) reveals
to be also critical for the accumulation of activated antigen-
specific Treg, the differentiation into IL-10-producing effector
cells and clinical remission from experimental autoimmune
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encephalomyelitis (EAE, a model of human multiple sclerosis)
(47). Furthermore, while Treg cells do not seem to need
miR-155 to exert their suppressive function, FOXP3 positively
regulates miR-155 expression and this miRNA deficiency impairs
Treg development by increased levels of SOCS1 and reduced
responsiveness to IL-2 (48, 49).

GENETIC BASIS OF miRNA REGULATION

A remarkable work of miRNA expression quantitative trait
loci (miR-eQTL) analysis discovered that most of these loci
are located upstream of their associated intergenic miRNAs
by mapping more than five thousand individuals. Cis-miR-
eQTLs miRNAs display differential expression in relation to
the corresponding trait, and distal regulatory elements may
also affect interindividual variability associated with a variety of
complex traits (50). A single-miRNA based meta-analysis has
extensively reviewed studies suggestive of an association between
the miR-146a single nucleotide polymorphisms (SNPs) and
susceptibility to autoimmune diseases confirming that specific
miR-146a SNPs are associated with susceptibility to multiple
sclerosis (MS) and systemic lupus erythematosus (SLE) (51).
miRNA regulation can also change in response to genetic variants

in the 3
′
untranslated region (UTR) of mRNA targets that

may affect mRNA stability, translation and miRNA binding. An
SNP inside the IKAROS Family Zinc Finger 3 (IKZF3) gene
is predicted to create a new recognition site for miR-326 and
lead to significantly lower levels of IKZF3 in subjects carrying
the allele. IKZF3 is a transcription factor important for B-
cell activation, and the lack of this gene causes a lupus like
syndrome in mice, suggesting a role for the regulatory loop of
IKZF3 and miR-326 in autoimmunity (52). On the other hand,

Steri et al. described a genetic variant located in the 3
′
UTR

of the TNF Superfamily Member 13 (TNFSF13B) gene which
shortens the untranslated region and deletes a miR-15a binding
site. As a consequence, the protein encoded by this mRNA,
BAFF, a soluble cytokine important for B cell development, and
differentiation, increases in the blood of variant individuals,
leading to augmented circulating B cells and immunoglobulins
and an increased susceptibility to MS and SLE (53). A significant
effort of data integration has more recently linked the prediction
of SNPs affecting miRNA binding sites, statistics from 12
studies on different autoimmune diseases, public expression
quantitative trait locus (eQTL) data and mRNA/small RNA-
seq data and succeeded to reveal new autoimmune disease
non-coding risk SNPs that might be involved in the miRNA-
dependent causal mechanisms, providing valuable information
for further functional studies (54).

miRNAs AS POTENTIAL THERAPEUTIC
TARGETS IN AUTOIMMUNITY

The capability of miRNAs to skew Th subset differentiation
candidates them as therapeutic targets in autoimmune
conditions. T cell-specific miR-17–92 deficiency reduces Th17

TABLE 1 | A list of bibliographic references for the reported functional links

between miRNAs and cytokines (either direct or indirect), ranked according to

miRNA nomenclature.

Direct or Indirect

Cytokine Target

System Cellular Type PMID

miR-7 IL-6 [↑] Human PBMCs 27749601

miR-9 IL-2 [↑]

IFN-γ [↑]

Human CD4+ T cells 22585398

miR-10a IL-12 [↓] Human Dendritic cells 25281418

IL-23 [↓] CD4+ T cell

IFN-γ [↑] Human Treg cells 23825948

miR-10b IL-17A [↓] Human CD4+ T cells

Th17 cells

28039186

miR-15a/16-1 IL-22 [↓] Mouse CD4+ T cells 29023933

miR-17, miR19b

(miR-17∼92)

IFN-γ [↑] Mouse CD4+ T cells 26138686

[-10pt] IFN-γ [↑] Mouse Th1 cells 21972292

miR-18

(miR-106∼363)

IL-17A [↓] Mouse CD4+ T cells 28617945

miR-19

(miR-17∼92)

IL-4 [↑]

IL-5 [↑]

IL-13 [↑]

Human CD4+ T cells 25362490

miR-20a-5p

(miR-17∼92)

IL-17 [↓] Human CD4+ T cells 28972028

miR-20a

(miR-17∼92)

IL-2 [↓]

IL-6 [↓]

IL-8 [↓]

IL-10 [↓]

Human CD4+ T cells 25884400

miR-20b IL-17 [↓] Mouse CD4+ T cells 24842756

miR-21 IL-4 [↑]

IL-5 [↑]

IL-12-p35 [↓]

IL-13 [↑]

Mouse CD4+ T cells

CD8+ T cells

28379062

TGF-β [↓] Human Plasma Treg

cells

26383248

TGF-β [↓] Mouse Bone marrow

MSC

26086742

TNF-α [↑]

IFN-γ [↑]

IL-17A [↑]

Mouse T cells 23395552

IL-12 [↓]

IL-4 [↑]

IFN-γ [↓]

Mouse Dendritic cells

CD4+ T cells

21849676

miR-23a cluster IFN-γ [↓] Human CD8+ T cells 25030422

miR-24 IFN-γ [↓] Human CD4+ T cells 24704866

(Continued)
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TABLE 1 | Continued

Direct or

Indirect

Cytokine

Target

System Cellular Type PMID

miR-25

(miR-106b∼25)

TGF-β [↓] Human Treg cells 20637509

miR-26a IL-6 [↓] Mouse CD4+ T cells 25728641

miR-27 IL-4 [↓]

IL-5 [↓]

Human,

mouse

CD4+ T cells 22088562

miR-29 IFN-γ [↓] Human CD4+ T cells 22772450

IL-32nonα [↓] Human PBMCs

CD4+ T cells

CD14+

monocytes

25808800

IFN-γ [↓] Mouse CD4+ T cells,

CD8+ T cells

21706005

IFN-γ [↓] Mouse CD4+ T cells 21820330

miR-30a IL-17A [↓] Human,

Mouse

CD4+ T cells 27581464

IL-17A [↓]

IL-17F [↓]

Human,

Mouse

CD4+ T cells 27006279

miR-31 IFN-γ [↑]

IL-2 [↓]

IL-4 [↓]

Human CD4+ T cells 26978146

IL-2 [↑] Human T cells 23303246

miR-101 IL-2 [↓] Human CD4+ T cells 27898347

miR-106a

(miR-106∼363)

IL-17A [↓] Mouse CD4+ T cells 28617945

miR-106b

(miR-106b∼25)

TGF-β [↓] Human Treg cells 20637509

miR-125b CCL4 [↓] Human Monocytes

CD8+ T cells

25620312

IFN-γ [↓]

IL-2 [↓]

Human CD4+ T cells 21706005

miR-126 IFN-γ [↓] Mouse CD4+ T cells 28987000

miR-128 IL-4 [↓]

IL-5 [↓]

Human,

mouse

CD4+ T cells 22088562

miR-146a IL-6 [↓]

IL-21 [↓]

Mouse CD4+ T cells 28872459

TGF-β [↑] Mouse Dendritic cells 26700406

IL-10 [↑] Mouse Monocytes 26526003

IFN-γ [↓]

IL-2 [↓]

IL-17 [↓]

Mouse T cells 22891274

(Continued)

TABLE 1 | Continued

Direct or

Indirect

Cytokine

Target

System Cellular Type PMID

miR-150 IL-10 [↑] Human CD4+ T cells 26746193

IL-2 [↓]

TNF-α [↓]

Human CD4+ T cells 26549736

miR-155 IL-17 [↑] Human CD4+ T cells 28471953

IL-6 [↑]

IL-23 [↑]

IL-1β [↑]

TNF-α [↑]

IL-17A [↑]

Mouse Dendritic cells

CD4+ T cells

27052830

IFN-γ [↑]

IL-17 [↑]

Rat CD4+ T cells 26349986

IL-21 [↑] Human CD4+ T cells 26055806

IL-17 [↑] Human CD4+ T cells 25761610

IL-17 [↑] Mouse Dendritic cells

CD4+ T cells

25651871

IFN-γ [↑] Mouse CD4+ T cells 24891206

IL-13 [↑] Mouse CD4+ T cells 25024218

IL-9 [↑]

IL-10 [↑]

IL-22 [↑]

Mouse CD4+ T cells 24856900

IL-2 [↓] Human CD4+ T cells 22785227

IL-17 [↑] Mouse Th17 cells 23686497

IL-17 [↑] Mouse Th17 cells 23091595

IFN-γ [↑] Mouse T cells 23200854

IL-17A [↑]

IL-6 [↑]

IL-12 [↑]

IL-23 [↑]

TNF-α [↑]

Mouse CD4+ T cells

Dendritic cells

20888269

IL-4 [↓]

IL-5 [↓]

IL-10 [↑]

Mouse CD4+ T cells 17463290

miR-181 IFN-γ [↓] Human CD4+ T cells 24704866

miR-181c IL-2 [↓] Human CD4+ T cells 21112091

miR-182 IL-2 [↓] Human Treg cells 23825948

miR-200a IL-17 [↑]

IL-23 [↑]

Human CD4+ T cells 28738533

IL-2 [↑] Mouse CD4+ T cells 28438897

miR-210 TNF-α [↑] Human CD8+ T cells 27749601

IL-17 [↓] Mouse T cells 24608041

(Continued)
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TABLE 1 | Continued

Direct or

Indirect

Cytokine

Target

System Cellular Type PMID

miR-212/132 IL-10 [↓] Mouse CD4+ T cells 25862525

IL-17 [↑] Mouse CD4+ T cells 23818645

miR-301a TNF-α [↑]

IL-17 [↑]

Human

Mouse

CD4+ T cells

Th17 cells

26338824

IL-17 [↑] Mouse CD4+ T cells 22517757

miR-326 IL-17 [↓] Human CD4+ T cells 27454344

IL-17 [↑] Human Th17 cells 19838199

miR-340 IL-4 [↓]

IL-5 [↓]

Human,

mouse

CD4+ T cells 22088562

miR-363-3p

(miR-106∼363)

IL-17A [↓] Mouse CD4+ T cells 28617945

miR-425 IL-2 [↓]

IFN-γ [↓]

Human CD4+ T cells 28192189

Let-7 family IL-10 [↓] Human CD4+ T cells 22586040

IL-13 [↓] Human T cells 21616524

Let-7a IL-13 [↓] Mouse CD4+ T cells 20630862

Let-7e IL-4 [↓]

IL-10 [↓]

IL-17 [↑]

IFN-γ [↑]

Mouse CD4+ T cells,

CNS-

mononuclear

cells

23079871

Let-7f IL-17 [↓] Human CD4+ memory

T cells

21508257

Let-7i IL-2 [↑] Human CD4+ T cells 27145859

IL-10 [↓] Rat Dendritic cells 26755202

The species in which the observation was made and the cell type are also registered.

differentiation and ameliorates EAE symptoms, identifying this
miRNA cluster as a potential target for the clinical intervention
of MS (55). miR-155 expression is found highly elevated in
heart tissue in an inflammatory cardiac disease driven by
autoantigen-specific CD4+ Th cells (experimental autoimmune
myocarditis, EAM) and miR-155 inhibition results in attenuated
severity of disease and cardiac injury, reduced Th17 immune
response, and decreased dendritic cell function of secreting
Th17-polarizing cytokines. Th cells from miR-155-inhibited
EAM mice exhibit reduced proliferation and IL-17A secretion
in response to autoantigens. These findings demonstrate
that miR-155 adversely promotes inflammation by driving a
Th17/Treg imbalance in favor of Th17 cells, and anti-miR-155
treatment can significantly reduce the autoimmune response
(56). miR-155 was also proposed as a therapeutic target in

a model of Th1/Th17-related inflammation during chronic
cardiac rejection (57). Furthermore, in vivo silencing of let-7e,
found up-regulated in Th cells of EAE mice, is able to inhibit
encephalitogenic Th1 and Th17 cells and attenuate the disease,
with reciprocal promotion of Th2 cell maturation (58). miR-340
is increased in memory Th cells from patients with MS, and
favors pro-inflammatory Th1 responses while inhibiting Th2
cell development. These effects are mediated by IL-4 direct
suppression, resulting in decreased GATA3 levels, and a Th2
to Th1 cytokine shift; treatment of Th cells from MS patients
with miRNA inhibitors leads to the restoration of Th2 responses
(59). Finally, miR-146a-deficient mice develop more severe EAE,
with Th cells being more prone to differentiate into Th17 cells.
In these animals, an enhancement of IL-6- and IL-21-induced
Th17 differentiation pathway suggests miR-146a functions as a
molecular stop signal for this autocrine pathway in autoreactive
cells, and highlights miR-146a potential as a therapeutic target
for treating autoimmune diseases (60).

THE EXTRACELLULAR
VESICLE-ASSOCIATED miRNAs AS NOVEL
MEDIATORS OF INFLAMMATION

Most cells in the body release membrane bound vesicles of
nanometric size (from 50 nm to 1 micron), either formed by the
inward budding of multi-vesicular endosomes and subsequent
fusion to the plasma membrane (exosomes), or directly budding
from the plasma membrane (61, 62). Vesicle lumen contains
miRNAs and other non-coding RNAs, not randomly but instead
preferentially exported (63–67). Th subsets also release miRNAs
not passively mirroring specific signatures at the intracellular
level (68, 69). miRNA expression in Treg-cell-derived exosomes
are distinct from that of pro-inflammatory Th1/Th17 subsets,
suggesting a regulatory mechanism enforcing subset-specific
vesicular diversity (69, 70). Extracellular vesicles (EVs) play an
important role in T cell-to-cell communication, intervening in
antigen presentation, cell stimulation, differentiation, cell killing,
cytokine transport and stability, tolerance induction and allograft
rejection (71–84). In both human and mouse, gene silencing
mediated by miRNA-containing EVs was shown to participate
into Treg-dependent immune suppression (69, 70).

The hypothesis that miRNA release into the
microenvironment adds a further mechanism of plasticity
to fine-tune specific Th responses at the paracrine level in vivo,
is strengthened by the finding of miRNA-containing EVs in
all tested biological fluids [blood, urine, saliva, breast milk,
among others (85–92)], that suggests also an endocrine role.
Very recently, systemic extracellular miRNA dysregulation in
MS was implicated in the reduced frequency and dysfunctional
suppression of Treg cells in disease. Kimura et al. showed that
induction of human IFN-γ−IL-17A−FOXP3+CD4+ T cells is
inhibited in the presence of patient (compared with healthy)
blood exosomes, and that the exosomal miRNA profile of
patients is characterized by significantly higher level of let-7i,
able to target insulin like growth factor 1 receptor (IGF1R) and
TGFBR1 in naïve Th cells (upon up-take of let-7i containing
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exosomes) and suppress induction of Treg cells, thus fueling MS
pathogenesis (93).

Therefore, extracellular miRNAs may represent novel
pathogenic mediators in the onset of autoimmune reactions and
potential therapeutic targets in these diseases.

CONCLUSIONS

miRNAs are “rheostats,” capable to fine-tune mammalian gene
expression. Single miRNAs may only marginally regulate target
genes but, when the cell responds to environmental changes,
the coordinated modulation of tens of miRNAs altogether
is a powerful strategy to efficiently affect many components
of a genetic network. We have described the most relevant
examples, but a more exhaustive list of miRNA-dependent
cytokine modulation is reported in Table 1.

Studies in different Th subsets concur to show that
miRNAs are able to direct differentiation by restraining the
expression of genes “inappropriate” to that specific cell subset,
including cytokines characterizing the function of other subsets.
Furthermore, master regulatory transcription factors positively
induce Th differentiation also through “repression of miRNA-
based repression” of genes “appropriate” to that specific cell
subset. In most cases, a single miRNA targets different sets of
mRNAs depending on cell context and the co-expression of other
miRNAs and/or higher affinity gene targets, resulting in different
functional outputs. Finally, the contiguity of different Th subsets,
or better their (not yet completely revealed) plasticity, is also
evident when considering that the same miRNAs are crucial
in the differentiation of functionally divergent subsets such as
Th1/17 and Treg. Hence, we need to not only identify which

miRNAs regulate which cytokines but also frame the mechanistic
miRNA regulation in a subset-specific context. The picture is
further complicated by EV-associated miRNAs traveling in the
extracellular space and becoming regulatory signals in cell-to-cell
communication likewise cytokines themselves.

In conclusion, if we want to take advantage of the powerful
regulatory action of miRNAs for therapeutic purposes, in the
next years we will have to fully untangle the intricate web of
miRNA-target genes to safely re-direct the differentiation and
function of CD4+ Th cell subsets in pathological conditions such
as autoimmunity.
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