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Under non-inflammatory conditions HLA class II is predominantly expressed on

hematopoietic cells. Therefore, donor CD4 T-cells after allogeneic stem cell

transplantation (alloSCT) may mediate graft-vs.-leukemia reactivity without graft-vs.-host

disease (GVHD). We analyzed immune responses in four patients converting from mixed

to full donor chimerism without developing GVHD upon purified CD4 donor lymphocyte

infusion (DLI) from their HLA-identical sibling donor after T-cell depleted alloSCT. In vivo

activated T-cells were clonally isolated after CD4 DLI. Of the alloreactive T-cell clones,

96% were CD4 positive, illustrating the dominant role of CD4 T-cells in the immune

responses. We identified 9 minor histocompatibility antigens (MiHA) as targets for

alloreactivity, of which 8 were novel HLA class II restricted MiHA. In all patients, MiHA

specific CD4 T-cells were found that were capable to lyse hematopoietic cells and to

recognize normal and malignant cells. No GVHD was induced in these patients. Skin

fibroblasts forced to express HLA class II, were recognized by only two MiHA specific

CD4 T-cell clones. Of the 7 clones that failed to recognize fibroblasts, two targeted

MiHA were encoded by genes not expressed in fibroblasts, presentation of one MiHA

was dependent on HLA-DO, which is absent in fibroblasts, and T-cells recognizing the

remaining 4 MiHA had an avidity that was apparently too low to recognize fibroblasts,

despite clear recognition of hematopoietic cells. In conclusion, purified CD4 DLI from

HLA-identical sibling donors can induce conversion from mixed to full donor chimerism

with graft-vs.-malignancy reactivity, but without GVHD, by targeting HLA class II restricted

MiHA.
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INTRODUCTION

Allogeneic stem cell transplantation (alloSCT) provides a
potentially curative therapy for patients with a variety of
hematologic malignancies. However, acute graft-vs.-host disease
(GVHD) and treatment of GVHD remain major causes of
transplant related morbidity and mortality. The most efficient
method to prevent GVHD is T-cell depletion (TCD) of the graft.

AlloSCT regimens using infusion of positively selected CD34
cells or using the CD52 antibody Alemtuzumab for TCD have
demonstrated efficient engraftment and reduced acute GVHD

(1–4). However, TCD substantially impairs post-transplant anti-
viral and anti-tumor immunity (4–6). Due to the reduced
antitumor effect of TCD grafts, pre-emptive post-transplant
donor lymphocyte infusion (DLI) may be needed for treatment of
mixed chimerism or persistent disease. Indeed, DLI after alloSCT

can mediate the beneficial graft-vs.-leukemia (GVL) reactivity,
but frequently still at the cost of GVHD (7–10).

Separation of GVL from GVHD may be achieved by
infusion of alloreactive donor T-cells that recognize patient
hematopoietic cells, including the malignant cells, but not
other tissue cells of the patient or donor hematopoietic cells
(11). Following HLA matched alloSCT, infusion of donor
CD8 T-cells recognizing minor histocompatibility antigens
(MiHA) selectively expressed in hematopoietic cells may result
in destruction of patient hematopoietic cells including the
malignant cells, without harming normal tissues (12–15). MiHA
are polymorphic peptides derived from genes containing single
nucleotide polymorphisms which differ between donor and
recipient and can be recognized in the context of (self) HLA.
Although infusions of patient hematopoiesis directed donor CD8
T-cells are being explored, the numbers of known hematopoiesis
restricted MiHA that can be targeted are too limited for broad
application (16–19).

In contrast to HLA class I, constitutive expression of HLA
class II molecules is predominantly restricted to normal and
malignant hematopoietic cells (20–23). Therefore, infusion of
donor CD4 T-cells recognizing HLA class II restricted MiHA
may result in selective recognition of recipient normal and
malignant hematopoietic cells, thereby inducing GVL without
GVHD even if MiHA are targeted that are encoded by genes
that are broadly expressed in recipient tissues (24–28). This is
supported by previous findings that, following an HLA 10/10
matched, but HLA-DPB1 mismatched TCD alloSCT, allo-HLA-
DP directed CD4 T-cells can cause GVL without GVHD (29, 30).
However, under inflammatory circumstances, expression of HLA
class II is significantly upregulated on non-hematopoietic cells,
making these tissues susceptible to recognition by CD4 T-cells.
Indeed, during viral infections, allo-HLA-DP directed CD4 T-
cells can induce GVHD (31), suggesting that also CD4 T-cells
directed against broadly expressed HLA class II restricted MiHA
may cause GVHD when HLA class II expression is upregulated
on non-hematopoietic cells. However, we recently demonstrated
that not all MiHA encoded by broadly expressed genes are
adequately presented in HLA class II on non-hematopoietic cells
due to absence of HLA-DO, the natural inhibitor of HLA-DM
(32). Furthermore, we demonstrated that selective GVL also

depends on the magnitude and diversity of alloreactive T-cell
responses and not only on tissue distribution of the MiHA that
are targeted (33). Thus, even under inflammatory conditions,
GVHD target tissues may not always be damaged by CD4 T-cells
recognizing MiHA encoded by broadly expressed genes.

Within an ongoing clinical trial, initiated in the Leiden
University Medical Center, treating patients 3 months after TCD
alloSCT with an HLA-identical sibling donor with purified donor
CD4 T-cells with primary aim to improve immune reconstitution
(34), we observed hematopoiesis restricted immune responses, as
illustrated by conversion from mixed to full donor chimerism,
without GVHD in four patients. We identified alloreactive CD4
T-cells recognizing HLA class II restricted MiHA in all four
patients without the presence of alloreactive CD8 T-cells in
3 of 4 patients. Using whole genome association scanning, 9
HLA class II MiHA were identified as targets for recognition.
No GVHD was induced by these MiHA specific CD4 T-cells,
corresponding to lack of HLA class II expression onGVHD target
tissues under steady state conditions. Even after upregulation
of HLA class II on non-hematopoietic cells, recognition was
relatively restricted to hematopoietic cells, although the majority
of the identified MiHA were encoded by genes that are broadly
expressed. MiHA specific CD4 T-cells from all four patients were
able to recognize malignant cells. Therefore, CD4 DLI after TCD
alloSCT may be an attractive strategy to separate GVL from
GVHD in patients transplanted with an HLA-identical sibling
donor.

MATERIAL AND METHODS

Patients
At the Leiden University Medical Center (LUMC) patients to
be transplanted with mobilized peripheral blood stem cells from
HLA-identical sibling donors are treated with a conditioning
regimen consisting of fludarabine (50 mg/m2 orally from day
−10 to −5), busulfan (0.8 mg/kg iv four times a day on
day −7 and −6) and alemtuzumab (15mg iv on day −4
and −3) in case of a non-myeloablative conditioning, or
consisting of cyclophosphamide (60 mg/kg iv on day −6 and
−5) and total body irradiation (9Gy on day −1) in case of a
myeloablative conditioning regimen. Stem cell grafts are T-cell
depleted by addition of 20mg alemtuzumab to the bag before
administration and no post-transplant immune suppression
is applied (4, 35). Three months after TCD alloSCT, in the
absence of overall grade II or more GVHD according to the
Glucksberg-Seattle classification, (36) patients are eligible for
treatment with infusion of purified donor CD4 T-cells at a
dose of 106 cells per kilogram body weight in the setting of
a randomized clinical trial (EudraCT Number: 2008-001447-
19). This ongoing phase II open-label single-center randomized
clinical trial was approved by the LUMC Institutional Review
Board and national authorities. Purified CD4 DLI cell products
were manufactured by positive selection using CD4 Reagents
(Miltenyi Biotec, Bergisch Gladbach, Germany) and CliniMACS
System (Miltenyi Biotec) according to the manufacturer’s
instructions. The study aims to evaluate the immunological
effects of prophylactic DLI of purified CD4 T-cells early after
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TABLE 1 | Patients characteristics and chimerism data on different time points from CD4 DLI (patient A–D) or from randomization to the control arm (patients E–H).

Patient Age,

gender

Disease Condi-tioning

regimen

Days from

CD4 DLI or

randomization

Absolute

leucocyte count

(× 109/L)

Absolute

CD3 count

(× 106/L)

Chimerism (% cells from recipient origin)

CD8

T-cells

CD4

T-cells

B cells Granulocytes

A 46,

female

Plasma

cell

myeloma

NMA −45

−3

46

95

3.6

5.8

4.2

5.4

529

274

211

420

57

77

60

<1

9

28

16

<1

1

4

<1

<1

<1

4

<1

<1

B 57,

male

Plasma

cell

myeloma

NMA −56

−7

35

91

3.5

5.6

4.6

6.2

128

359

529

574

74

2

1

<1

4

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

C 48,

male

Chronic

myeloid

leukemia

(blastic

phase)

MA −48

0

50

92

8.6

3.8

3.2

2.7

88

389

254

258

26

90

55

<1

5

13

5

<1

<1

<1

<1

<1

2

5

8

<1

D 62,

male

Acute

myeloid

leukemia

NMA −54

−5

45

94

3.2

3.7

4.4

7.7

73

100

196

275

90

86

17

<1

15

53

8

1

<1

<1

<1

<1

<1

<1

<1

<1

E 62,

male

Plasma

cell

myeloma

NMA 0

28

91

1.5

3.6

4.2

326

652

571

60

48

88

7

6

60

<1

<1

<1

<1

<1

<1

F 55,

male

Plasma

cell

myeloma

NMA 0

47

90

4.1

4.8

5.0

91

128

222

55

38

37

20

22

16

<1

<1

<1

<1

<1

<1

G 55,

male

Acute

myeloid

leukemia

NMA 0

49

98

4.6

10.6

5.3

85

67

62

4

<1

2

27

2

2

1

2

2

1

<1

1

H 51,

female

Plasma

cell

myeloma

NMA 0

43

97

2.9

3.0

5.8

976

695

454

<1

<1

2

1

<1

1

n.a. 1

<1

1

NMA, non-myeloablative; MA, myeloablative; N.a., not available.

TCD alloSCT. The primary objective is to evaluate whether CD4
DLI improves immunological recovery within 6 months after
alloSCT. Secondary objectives are the evaluations of influence on
chimerism and disease status after CD4 DLI. Since the trial is still
ongoing, we do not describe the results of the entire clinical trial
in this manuscript, but only the results of an in depth analysis of
immune responses occurring in a selection of trial participants.

Isolation, Expansion, and Selection of
T-Cell Clones
Peripheral blood, bone marrow, and skin biopsies for the
generation of fibroblasts were obtained from the patients,
their donors, and third party healthy individuals after
approval by the LUMC Institutional Review Board and
informed consent according to the Declaration of Helsinki.
Mononuclear cells were isolated using Ficoll separation and
cryopreserved.

To isolate in vivo activated T-cells, peripheral blood
mononuclear cells (PBMC) obtained after CD4 DLI or 6
weeks after randomization in case patients did not receive
CD4 DLI, were stained with antibodies against CD8
(Alexa Fluor, Invitrogen/Caltag, Buckingham, UK), CD4
(FITC, BD/Pharmingen, Breda, Netherlands), CD14 (APC,

ITK/Biolegend, Uithoorn, Netherlands), and HLA-DR (PE, BD).
HLA-DR+ CD8 and HLA-DR+ CD4 T-cells were sorted single
cell into 96-well U-bottomed plates (Corning, Amsterdam,
Netherlands) or 384-well flat bottomed plates (Greiner Bio-One,
Alphen a/d Rijn, Netherlands). T-cell clones were expanded
using Iscove’s modified Dulbecco’s medium (IMDM, Lonza
BioWhittaker, Verviers, Belgium) with 5% pooled human

serum, 5% fetal bovine serum (FBS, Gibco Invitrogen, Bleiswijk,
Netherlands), 100 IU/ml Interleukin 2 (Chiron, Amsterdam,

Netherlands), 2 ng/ml Interleukin 7 (Miltenyi Biotec), 2 ng/ml

Interleukin 15 (Miltenyi Biotec), 0.8µg/ml phytohemagglutinin
(Murex Biotec Limited, Dartford, UK) and 25–50 × 103

irradiated third party PBMC as feeder cells. Proliferating T-cell

clones were restimulated every 10–14 days and tested for
reactivity against patient and donor derived EBV-LCL. After

overnight incubation of 2 × 104 patient or donor derived
EBV-LCL with 2 × 103 T-cells, recognition was measured
by IFNγ ELISA according to the manufacturer’s instructions

(Sanquin Reagents, Amsterdam, Netherlands). A T-cell clone
was determined to be alloreactive when at least 500 pg/ml IFNγ

was produced after incubation with patient derived EBV-LCL
and no IFNγ was produced after incubation with donor derived
EBV-LCL.
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FIGURE 1 | Sorted cell populations. Marked cell populations, being in vivo activated HLA-DR positive CD4 or CD8 T-cells from four patients were single cell sorted

using flowcytometry using HLA-DR PE, CD4 FITC, and CD8 AF700 monoclonal antibodies.

HLA Restriction and TCRBV Usage of
Alloreactive T-Cells
To determine whether HLA-DR, HLA-DQ, or HLA-DP was
the HLA restriction molecule for recognition by alloreactive
CD4 T-cells, patient derived EBV-LCL were pre-incubated with
saturating concentrations of monoclonal antibodies (MoAb)
against HLA class II (PdV5.2), HLA-DR (B8.11.2), HLA-DQ
(SPVL3), or HLA-DP (B7.21) for 30min at room temperature
before addition of the T-cells, and inhibition of IFNγ production
was determined. T-cell receptor-β variable chain (TCRBV) usage
of the T-cell clones was investigated by flow cytometry using
specific monoclonal antibodies as provided with the TCRBV
repertoire kit (Beckman Coulter).

MiHA Identification by Whole Genome
Association Scanning
The method of whole genome association scanning (WGAS)
using an HLA transduced panel of third party EBV-LCL was
described earlier (37). In short, 48–116 third-party EBV-LCL
were transduced with one of the possible HLA restriction
molecules. The transduced EBV-LCL were incubated with the
alloreactive CD4 T-cells and IFNγ production was measured
using ELISA. The presence or absence of recognition of the
different EBV-LCL was compared with the EBV-LCL genotype
data of over one million single nucleotide polymorphisms (SNPs)

in order to find an association between the recognition and the
presence of a certain SNP. If association with a missense SNP was
found, patient and donor variant peptides encoded by the SNP
region were synthesized. If incubation of donor derived EBV-LCL
loaded with patient variant peptide, titrated in a concentration
from 10−4 to 10−10 M, resulted in IFNγ production by the T-cell
clone, this peptide was confirmed to be the MiHA.

Cytotoxicity of MiHA Specific CD4 T-Cells
Cytotoxic capacities of alloreactive CD4 T-cells was analyzed
following incubation of 2.5 × 105 T-cells with 2.5 × 104 EBV-
LCL target cells labeled with PKH26 Red Fluorescent (Sigma-
Aldrich, Zwijndrecht, Netherlands). Target cell survival after 24 h
was measured by flowcytometric cell counting of the target cells
using Flow-Count fluorospheres (Beckman Coulter, Woerden,
Netherlands) (38). Percentage cell lysis was calculated by the
formula 100–100∗(total number of surviving target cells after
incubation with T-cells/total number of target cells without
incubation with T-cells). Statistical analysis was performed using
Mann-Whitney U-test and significance was defined by p < 0.05.

Recognition of PHA Blasts, Malignant Cells
and Skin Derived Fibroblasts
To investigate the recognition of patient derived activated T-
cells, T-cells isolated from the patient before alloSCT were
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TABLE 2 | Numbers of expanded and alloreactive CD4 and CD8 T-cells after isolation of in vivo activated T-cells 6 weeks after CD4 DLI (patient A–D) or randomization

(patient E–H).

Patient A Patient B Patient C Patient D Patient E Patient F Patient G Patient H

Day 45 after

CD4 DLI

Day 94 after

CD4 DLI

Total number of expanded CD4 T-cell clones 332 205 341 384 452 516 360 384 384

Alloreactive CD4 T-cell clones 10 2 41 106 4 1 0 1 0

EBV-LCL reactive CD4 T-cell clones 15 25 1 3 0 20 18 9 4

Total number of expanded CD8 T-cell clones 99 90 66 416 144 538 250 173 344

Alloreactive CD8 T-cell clones 1 0 0 1 4 0 0 2 0

EBV-LCL reactive CD8 T-cell clones 59 33 0 0 1 24 69 5 43

treated with phytohemagglutinin (PHA blasts) and incubated
withMiHA specific CD4 T-cells in a stimulator to responder ratio
of 5:1. To investigate the recognition of malignant cells, MiHA
specific CD4 T-cells were incubated with primary malignant
cells preferably of the patient. If not available, third party cells
representative for the malignancy of the patient were used, like
bone marrow cells of a patient suffering from chronic myeloid
leukemia and multiple myeloma cell lines UM-6 (CVCL-W395),
UM-3 (CVCL-W394), RPMI8226 (ATCC CRM-CCL-155), or
U266 (ATCC-TIB-196). The malignant cells expressed the MiHA
and HLA restriction molecule of interest endogenously or after
retroviral transduction. To investigate recognition of skin derived
fibroblasts, 4 × 103 fibroblasts were incubated with 2 × 103

MiHA specific CD4 T-cells. Fibroblasts were induced to express
HLA class II molecules on the cell surface by culturing them
with 200 IU/ml IFNγ (Boehringer Ingelheim, Rijnland-Palts,
Germany) for 5 days in Dulbecco’s Modified Eagle Medium
(DMEM, Lonza BioWhittaker) supplemented with 10% FBS.
Because peptide processing in HLA class II could be different
in fibroblasts compared to EBV-LCL due to the absence of
HLA-DO in fibroblasts, the role of HLA-DO in the recognition
of fibroblasts by alloreactive CD4 T-cells was studied using
fibroblasts that were retrovirally transduced with HLA-DOα

and HLA-DOβ as described previously (32). HLA class II
expression on target cells was analyzed using flowcytometry
with monoclonal antibodies against HLA-DR (PE, IgG2a, L-
243, BD), HLA-DQ (PE, IgG2a, 1a3, Bio-Connect, Huissen,
The Netherlands) and HLA-DP (PE, IgG3, B7.21, Bio-Connect)
and T-cell recognition was analyzed by measurement of IFNγ

production.

Gene Expression Profiles
To investigate whether the MiHA encoding genes are expressed
in hematopoietic cells only or also in non-hematopoietic cells,
quantitative RT-PCR was performed using TaqMan Assays
(ThermoFisher, Breda, Netherlands). Expression of the gene of
interest was corrected for expression of household reference
genes GAPDH and B-actin.

RESULTS

Patient Characteristics
The first 15 patients who were treated with CD4 DLI in
the intervention arm of the clinical trial, did not develop

FIGURE 2 | IFNγ production of alloreactive CD4 T-cell clones. Recognition of

patient and donor derived EBV-LCL by CD4 T-cells measured by INFγ

production after overnight incubation. Each dot represents the INFγ release by

one alloreactive CD4 T-cell clone after overnight incubation in a responder to

stimulator ratio of 1:10. All CD4 T-cell clones did recognize patient derived

EBV-LCL and did not recognize donor derived EBV-LCL and are therefore

defined as alloreactive.

GVHD, except for patient D, who developed mild skin
GVHD (overall grade I) 3 months after infusion, which
resolved completely after start with topical steroids. To
investigate whether CD4 DLI could induce an allo-immune
response following the infusion in the absence of GVHD,
peripheral blood subset chimerism was analyzed. In 11 of
15 patient no conversion of chimerism occurred. However,
4 of 15 patients converted from markedly mixed to full
donor chimerism within 3 months after infusion of donor
CD4 T-cells, indicating the development of an allo-immune
response in a selection of patients after CD4 DLI (Table 1).
These four patients were selected for further analysis. Also
four patients from the control group were selected. In the
control group, no conversion of chimerism was observed,
although in patient G improvement of chimerism occurred
(Table 1).

Isolation of Alloreactive T-Cells
To characterize the allo-immune response observed after
infusion of donor CD4 T-cells in these four patients, peripheral
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TABLE 3 | Classification of alloreactive T-cell clones according to HLA restriction molecule and TCR Vβ usage.

Patient HLA class II restriction molecule# TCR Vβ usage Identified MiHA Number of clones

Patient A undetermined unknown – 1*

DQ 2 LB-LILRB1-1I 6*

DQ 2 – 2*

DQ 9 – 1*

Patient B DR 8 LB-ABCA5-1R 1*

DR 13.2 LB-RPS4Y 1*

Patient C DR 2 SCL19A1 21*

DR 5.3 SCL19A1 1‡

DR unknown LB-ZDHHC13-1K 10*

DR unknown LB-KHNYN-1K 3*

DR 7.1 LB-KHNYN-1K 1‡

DR 9 LB-CTSB-1G 1*

DR 13.2 LB-CTSB-1G 1‡

DR 9 LB-LGALS8-1C 2*

DR unknown LB-LGALS8-1C 1*

Patient D undetermined 3 – 2*

DQ 5.1 – 1

DP 2 LB-LY75-2R 38*

DP 3 LB-LY75-2R 1‡

DP 4 LB-LY75-2R 32‡

DP 8 LB-LY75-2R 6‡

DP 13.2 LB-LY75-2R 3‡

DP unknown LB-LY75-2R 27*

#HLA class II restriction molecule was determined using monoclonal antibodies against pan HLA class II (PdV5.2), HLA-DR (B8.11.2), HLA-DQ (SPVL3) and HLA-DP (B7.21).

*WGAS was performed using one of these T-cell clones.
‡MiHA specificity of these T-cell clones was determined by recognition of donor EBV-LCL loaded with the MiHA identified using WGAS analysis of another T-cell clone.

blood samples were taken during conversion of chimerism.
In vivo activated, HLA-DR expressing CD4 and CD8 T-cells were

clonally isolated using flowcytometric cell sorting (Figure 1) and
5–25% of the single T-cells expanded, resulting in 295–1,396

growing T-cell clones per patient (Table 2). These T-cell clones

were tested for allo-reactivity, defined as IFNγ production of at

least 500 pg/ml after overnight incubation with patient derived
EBV-LCL and absence of IFNγ production after incubation with
donor derived EBV-LCL (Figure 2). Reactivity to both patient

and donor derived EBV-LCL was interpreted as EBV specific
T-cells present in the in vivo activated T-cell compartment

(Table 2). Total frequencies of 1–28% of the expanded CD4 T-

cells were alloreactive as compared to only 0–3% of the expanded
CD8 T-cells (Table 2). As controls, four patients randomized

to the control arm of the study, who did therefor not receive

CD4 DLI and in which conversion of chimerism did not occur,
were analyzed 6 weeks after randomization. In these patients

1–5% of expanded CD4 T-cell clones and 3–28% of expanded
CD8 T-cell clones were EBV specific. However, only 0–0.3% of

expanded CD4 T-cell clones and 0–1% of expanded CD8 T-
cell clones were alloreactive (Table 2). These data illustrate that

conversion from mixed to full donor chimerism after CD4 DLI
was associated with development of dominant alloreactive CD4

T-cell responses.

Identification of HLA Class II Restricted
MiHA Using WGAS
To characterize the MiHA that are recognized by the alloreactive
CD4 T-cell clones, WGAS was applied. We first determined
the HLA class II restriction molecules of the T-cell clones
using monoclonal antibodies against HLA-DR, DQ, or DP. In
addition, TCRBV usage of each T-cell clone was analyzed using
flowcytometry. If T-cell clones recognized a target antigen in
the context of the same HLA molecule and expressed the same
TCRBV, it was considered likely that these clones recognized the
same MiHA, and therefore initially one clone was selected for
WGAS (Table 3). A representative example of WGAS with a T-
cell clone from patient C is shown in Figure 3. When association
was found between T-cell recognition and one or more SNPs
in the genotypes of a panel of EBV-LCL, patient and donor
allelic variants of the peptides encoded by the polymorphic region
were synthesized, loaded on donor EBV-LCL and tested for
recognition by the T-cell clone. When the MiHA was identified
by WGAS and confirmed by T-cell recognition of peptide-pulsed
donor EBV-LCL, all other T-cell clones from the same patient
were tested for recognition of the identified MiHA. From the T-
cell clones that failed to recognize the identifiedMiHA, one T-cell
clone was selected for additional WGAS analysis attempting to
further identify additional MiHA. A total number of 16 WGAS
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FIGURE 3 | Representative example of the identification of a MiHA by WGAS. (A) IFNγ production of clone P07-066 from patient C upon incubation with a panel of

71 SNP genotyped EBV-LCL which were transduced with HLA-DRB1*15:01. (B) Identification of associating SNPs on chromosome 11 that are present in EBV-LCL

that were recognized by clone P07-066 and absent in EBV-LCL that were not recognized. (C) Identification of missense SNP rs2271001 encoding the possible MiHA

recognized by clone P07-066. (D) IFNγ production by clone P07-066 after incubation with donor EBV-LCL loaded with donor or patient derived allelic peptide variants

at titrated concentrations. The patient, but not donor, peptide was recognized by the T-cells, thereby validating the peptide as MiHA.

experiments were performed, resulting in the identification of 9
MiHA. Eight out of these nine antigens were novel MiHA. In
addition to alloreactive CD4 T-cells, 5 alloreactive CD8 T-cell
clones were isolated from PBMC of patient D (Table 2). The 4
CD8 T-cell clones isolated 94 days after CD4 DLI all used the
same TCRBV, which was different from the TCRBV usage of
the CD8 T-cell clone isolated 45 days after CD4 DLI. WGAS
resulted in identification of the novel HLA-A∗03:01 restricted
MiHA LB-NADK-1K, which was the target for all 5 isolated CD8
T-cell clones. Table 4 gives an overview of the identified MiHA
and their HLA restriction molecules. The HLA-DRB1∗15:01
restricted MiHA from gene SLC19A1 was earlier described (26),
but we found that this MiHA could also be presented and
recognized in HLA-DRB1∗11:01. For 4 T-cell clones from patient
A and for 3 T-cell clones from patient D, as well as for 1 T-cell
clone from control patient E and 3 T-cell clones from control
patient G, MiHA could not be identified due to lack of associating
SNPs in WGAS. For all other T-cell clones, however, MiHA were
succesfully identified.

In summary, using WGAS, a total of 9 HLA class II and
one HLA class I restricted MiHA were identified as targets for
alloreactive T-cells isolated from patients who converted from
mixed to full donor chimerism after CD4 DLI.

Reactivity of MiHA Specific CD4 T-Cells
Against Hematopoietic Cells
Since the induction of MiHA specific CD4 T-cells correlated with
conversion from mixed to full donor chimerism as a result of
disappearing lymphohematopoietic cells from recipient origin,
we investigated whether the isolated MiHA specific CD4 T-
cells were capable of exerting cytotoxic activity against recipient
hematopoietic cells. MiHA specific CD4 T-cell clones were
incubated with patient derived EBV-LCL at an effector to target
ratio of 10:1, and after 24 h of co-incubation the numbers
of surviving target cells were quantified by flow cytometry.
For all MiHA, individual MiHA specific CD4 T-cell clones
were identified that exerted cytotoxic activity against EBV-LCL,
resulting in 19–51% specific lysis, although not all differences
of the mean lysis of all MiHA specific CD4 T-cell clones with
background lysis were statistically significant due to low number
of experiments (Figure 4). Since conversion of chimerism was
most prominent in the T-cell compartment (Table 1), recognition
of PHA-stimulated patient T-cells (PHA blasts) by MiHA specific
CD4 T-cells was investigated. CD4 T-cells specific for LB-RPS4Y,
LB-ABCA5-1R, and LB-LY75-2R as well as CD8 T-cells specific
for LB-NADK-1K all recognized PHA blasts as illustrated by high
IFNγ release. CD4 T-cells specific for SLC19A1 produced less
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TABLE 4 | Overview of identified MiHAs and their characteristics.

MiHA name SNP Peptide polymorphism* Restriction Number of different

TCRBV usages of MiHA

T-cell clones

T-cells isolated

from patient

Contribution

to immune

response#

LB-LILRB1-1I rs1061680 PSPVVNSGGNV[I/T]LQCDSQVA DQB1*06:02 1 A 60%

LB-RPS4Y -‡ EKTGEHFRLVYDTKGRFAVH DRB1*03:01 1 B 50%

LB-ABCA5-1R rs17686569 GKEAIRISGI[R/Q]KTYRKKGEN DRB1*11:01 1 B 50%

LB-KHNYN-1K rs3742520 ARGDTYAVEKEGG[K/T]QGGPREMDWG DRB5*01:01 2 C 9.8%

LB-ZDHHC13-1K rs2271001 INNRLDLV[K/R]FYISKGAVVDQ DRB1*15:01 1 C 24%

LB-CTSB-1G rs1803250 HNFYNVDM[G/S]YLKRLCGTF DRB1*11:01 2 C 4.9%

LB-LGALS8-1C rs1041935 DQLDPGTLIVI[C/R]GHVPSDADRF DRB1*11:01 2 C 7.3%

SLC19A1 rs1051266 DPELRSWR[R/H]LVCYLCFYG DRB1*15:01 1-2 C 54%

SLC19A1 rs1051266 DPELRSWR[R/H]LVCYLCFYG DRB1*11:01 1-2 C

LB-LY75-2R rs17827158 RAGRPTIKNE[R/K]FLAGLSTDG DPB1*04:01 6 D 97%

LB-NADK-1K rs4751 AVHNGLGE[K/N]GSQA A*03:01 1 D –

* Patient type amino acid residues are underlined.
# Proportion of alloreactive CD4 T-cell clones recognizing this MiHA as a percentage of all alloreactive CD4 T-cells isolated in that particular patient.
‡Male specific peptide.

FIGURE 4 | Cytotoxic capacities of MiHA specific CD4 T-cells. Cell lysis

calculated after measurement of target cell survival using flowcytometric cell

counting after 24 h of incubation with the MiHA specific CD4 T-cells in an

effector to target ratio of 10:1. Target cells were patient EBV-LCL and effector

cells were MiHA specific CD4 T-cells. CD4 T-cells with irrelevant specificity

were used as negative controls. EBV-LCL from patient A, B, C and D are

represented by black, dark gray, light gray, and blocked bars, respectively. For

all MiHA, individual MiHA specific CD4 T-cell clones were identified that

exerted cytotoxic activity against EBV-LCL, resulting in 19–51% specific lysis,

although not all differences of the mean lysis by MiHA specific CD4 T-cell

clones with background lysis were statistically significant (Mann-Whitney

U-test) due to low number of experiments.

IFNγ upon incubation with PHA blasts as compared to EBV-
LCL, whereas the remaining T-cell clones specific for the other
MiHA did not recognize PHA blasts (Figure 5A).

Although all patients were in complete remission of their
disease at the time of infusion of CD4 DLI, recognition of
malignant cells by MiHA specific CD4 T-cells was investigated

to assess their potential to mediate GVL reactivity. Primary
malignant cells were only available from patient D and for this
reason, third party target cells were used as representative for the
malignancies of patient A, B, and C. These target cells expressed
the MiHA and HLA restriction element of interest. LB-LILRB1-
1I specific CD4 T-cells were incubated with myeloma cell-lines
UM-6, UM-3, RPMI8226, and U266 transduced with HLA-
DQB1∗06:02. LB-RPS4Y specific CD4 T-cells were incubated
with myeloma cell-lines RPMI8226 [HLA-DRB1∗03:01 positiv
(39)] and U266 transduced with HLA-DRB1∗03:01. LB-ACBA5-
1R specific CD4 T-cells were incubated with myeloma cell-lines
UM-6 and RPMI8226 transduced with HLA-DRB1∗11:01. MiHA
specific CD4 T-cells isolated from patient C were incubated with
third party bone marrow cells from a patient with CML. Since
these third party CML cells were negative for LB-CTSB-1G,
recognition of malignant cells by CD4 T-cells specific for this
MiHA could not be tested. Reactivity of MiHA specific T-cells
from patient D was tested against autologous purified primary
AML cells. As shown in Figure 5B, in all four patients, allo-
reactive MiHA specific CD4 T-cells were detected that were able
to recognize malignant cells.

In conclusion, the results showed that all isolated MiHA
specific CD4 T-cells had cytolytic capacity to eliminate recipient
hematopoietic cells and that PHA blasts were recognized to a
lesser extent than EBV-LCL. Moreover, in all four patients, MiHA
specific CD4 T-cells with the potential to recognize malignant
cells were found.

Reactivity of MiHA Specific CD4 T-Cells
Against Skin Fibroblasts
To investigate whether non-hematopoietic cells from GVHD
target tissues could be targeted under inflammatory conditions
due to upregulation of HLA class II expression, we tested
recognition of skin derived fibroblasts by the MiHA specific T-
cells. Skin fibroblasts were available for two patients (C and
D). No fibroblasts were available from patients A and B and
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FIGURE 5 | Recognition of PHA blasts and malignant cells by MiHA specific T-cells. Recognition of PHA blasts and malignant cells by MiHA specific CD4 T-cells was

measured by IFNγ production, represented as percentage of production after incubation with patient EBV-LCL. Surface expression of HLA class II was confirmed by

flow cytometry (data not shown). (A) Recognition of patient derived PHA blasts. CD4 T-cells specific for LB-RPS4Y, LB-ABCA5-1R, and LB-LY75-2R as well as CD8

T-cells specific for LB-NADK-1K produced high amounts of IFNγ upon incubation with patient derived PHA blasts. SLC19A1 specific CD4 T-cells produced less IFNγ

after incubation with PHA blasts than with EBV-LCL and the other MiHA specific CD4 T-cells did not recognize PHA blasts. T-cell clones directed against the HLA

restriction molecule were used as positive controls (B) Recognition of MiHA and HLA restriction molecule expressing malignant cells by MiHA specific T-cells.

LB-LILRB1-1I specific T-cells were tested against myeloma cell-lines UM-6, UM-3, RPMI8226, and U266. LB-RPS4Y specific T-cells against myeloma cell-lines

RPMI8226 and U266 and LB-ACBA5-1R against myeloma cell-lines UM-6 and RPMI8226. T-cells derived from patient C were tested against third party CML cells

and T-cells derived from patient D against patient derived AML cells. MiHA specific CD4 T-cells recognizing malignant cells could be detected in all four patients.

we therefore used fibroblasts expressing the MiHA and HLA
restriction molecule from third party individuals. Expression of
HLA class II molecules on fibroblasts was induced by addition of
IFNγ to the culture mediummimicking inflammatory conditions
(Supplementary Figure 1). CD4 T-cells directed against allo
HLA class II alleles were used as positive controls and all
fibroblasts tested were recognized by these clones. Since HLA
class I is constitutively expressed on fibroblasts, as expected, CD8
T-cells specific for LB-NADK-1K recognized fibroblasts already
without INFγ pretreatment (Figure 6A). CD4 T-cells specific
for LB-RPS4Y and LB-ZDHHC13-1K were able to recognize
fibroblasts after IFNγ pretreatment (Figure 6B), whereas all
other MiHA specific T-cell clones did not recognize (IFNγ

pretreated) fibroblasts. CD4 T-cells specific for LB-LILRB1-
1I and LB-LY75-2R failed to recognize fibroblasts (Figure 6C)
due to the lack of expression of the MiHA encoding genes
in fibroblasts (data not shown), while CD4 T-cells specific for
the other 5 MiHA did not recognize fibroblasts pretreated with
IFNγ (Figure 6D) despite expression of the encoding genes
(data not shown). To investigate whether lack of recognition of
INFγ pretreated fibroblasts is caused by absence of HLA-DO,

fibroblasts were transduced with HLA-DOα/β and tested for
T-cell recognition. After transduction and pretreatment with
IFNγ, fibroblasts were recognized by CD4 T-cells specific for
LB-LGALS8-1C, indicating that presentation of this MiHA is
dependent on HLA-DO (32)

These results illustrate that not only restricted expression
of HLA class II on hematopoietic cells defines hematopoiesis
specific recognition by MiHA specific CD4 T-cell clones, but that
even under inflammatory conditions, hematopoiesis restricted
recognition is a common phenomenon.

DISCUSSION

Our results illustrate that purified CD4 DLI, administered with
the intention to promote immune reconstitution after TCD
alloSCT, can result in conversion from mixed to full donor
chimerism without occurrence of GVHD, associated with the
development of strong alloreactive CD4 T-cell responses against
HLA class II restricted MiHA. Using WGAS we identified 9
MiHA targeted by CD4 T-cells. These MiHA specific CD4
T-cells were likely to be responsible for the hematopoiesis
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FIGURE 6 | Recognition of fibroblasts by MiHA specific T-cells. T-cell recognition of EBV-LCL, fibroblasts and fibroblasts forced to express HLA class II molecules

using interferon gamma (IFN) pretreatment. (A) CD8 T-cells specific for LB-NADK-1K recognized fibroblasts already without IFNγ pretreatment. (B) CD4 T-cells specific

for LB-RPS4Y and LB-ZDHHC13-1K recognized fibroblasts only after IFNγ pretreatment. (C) CD4 T-cells specific for LB-LILRB1-1I and LB-LY75-2R failed to

recognize fibroblasts due to lack of expression of the MiHA encoding genes. (D) CD4 T-cells specific for the remaining 5 MiHA failed to recognize fibroblasts despite

detectable gene expression and pretreatment with IFNγ. After transduction with HLA-DOα/β, fibroblasts were recognized by LB-LGALS8-1C specific CD4 T-cells,

indicating that presentation of this MiHA was HLA-DO dependent.*, not tested.

specific immune response. Three months after TCD alloSCT,
in the absence of immune suppression, only purified CD4
T-cells were infused, and conversion of chimerism occurred
in the first weeks after CD4 DLI in all patients except for
patient B in which conversion of chimerism started before,
but continued after infusion. During this hematopoiesis specific
immune response only alloreactive CD4 T-cells recognizing
HLA class II restricted MiHA could be identified in PBMC
from 3 of 4 patients. These CD4 T-cells were able to exert
direct cytoxicity against hematopoietic target cells in the
absence of CD8 T-cells. Reactivity against patient derived
activated T-cells (PHA blasts) could be demonstrated by
MiHA specific CD4 T-cells in all four patients, strongly
suggesting that conversion to full donor chimerism in the
T-cell compartment was caused by the alloreactive CD4 T-
cells. Although T-cells do not constitutively express HLA
class II molecules, they can become targets for CD4 T-cells
due to upregulation of HLA class II upon activation (40).
From all four patients, MiHA specific CD4 T-cells could
be isolated recognizing malignant cells in vitro, illustrating
the capacity of these T-cells to mediate graft-vs.-malignancy
reactivity.

Immune responses by MiHA specific CD4 T-cells are
likely to preferentially target cells of hematopoietic origin,
since under non-inflammatory conditions HLA class II is
predominantly expressed on hematopoietic cells. Under
inflammatory conditions, however, non-hematopoietic tissues
can become targets for CD4 T-cells due to upregulation of HLA

class II expression (31, 40). LB-LILRB1-1I and LB-LY75-2R are
MiHA encoded by genes that are not expressed in fibroblasts, and
therefore, even under inflammatory circumstances fibroblasts
will not be targeted by CD4 T-cells specific for these MiHA.
Although all other identified HLA class II restricted MiHA
were encoded by broadly expressed genes, only two MiHA
specific CD4 T-cell clones were reactive with HLA class II
expressing fibroblasts. Apparently, not only expression of the
HLA restriction molecule and MiHA encoding gene in GVHD
target tissue determine whether these non-hematopoietic cells
are targeted by specific CD4 T-cell. We previously showed
that, due to the lack of HLA-DO in non-hematopoietic cells,
there is a difference in physiology of peptide presentation
in HLA class II in hematopoietic cells compared to GVHD
target cells (32, 41). Some peptides can only be presented in
HLA class II in the presence of HLA-DO, which is expressed
in hematopoietic cell types, but not in the majority of non-
hematopoietic cells. LB-LGALS8-1C is an example of an
HLA-DO dependent antigen since fibroblasts were only
recognized by specific CD4 T-cells after enforced expression of
HLA-DO. All other MiHA specific CD4 T-cell clones recognized
EBV-LCL, but not HLA class II expressing fibroblasts, which
may be due to differential avidity of the T-cell clones for these
tissues.

Recently, we showed that GVL reactivity without GVHD
by MiHA specific CD8 T-cells is not solely determined by
tissue distribution of the recognized MiHA, but predominantly
depends on magnitude and diversity of alloreactive T-cell
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responses (33). In the four patients analyzed here, conversion to
full donor chimerism after CD4 DLI occurred without GVHD.
In patients A and B, T-cell responses with low magnitude and
diversity were induced and the majority of T-cells in patient A
were specific for an hematopoiesis restricted MiHA. In patient C,
magnitude and diversity were higher, but absence of HLA-DO or
low avidity of the T-cells for fibroblasts explained lack of GVHD.
In patient D there was a high magnitude of a T-cell response,
which was directed against an hematopoiesis restricted MiHA.
Thus, none of the patients experienced an immune response
with both high magnitude and diversity against MiHA that are
broadly expressed, resulting in a low risk of GVHD even after
upregulation of HLA class II expression.

Patient D developed mild skin GVHD 3 months after CD4
DLI. At this time point, CD8 T-cells specific for LB-NADK-1K
were isolated that recognized fibroblasts, while at the earlier time
point of conversion of chimerism, more than 99% of alloreactive
T-cells isolated were CD4 T-cells that lacked reactivity against
fibroblasts. These data suggest that LB-NADK-1K specific CD8
T-cells were responsible for development of this mild GVHD,
while LB-LY75-2R specific CD4 T-cells may have mediated
conversion of chimerism.

In conclusion, purified CD4 DLI administered 3 months after
TCD alloSCT from an HLA-identical sibling donor can lead to
conversion of mixed to full donor chimerism due to graft-vs.-
patient hematopoiesis reactivity without GVHD by mediating
a MiHA specific HLA class II restricted immune response
against patient hematopoietic cells, which can also target the
malignant hematopoietic counterpart. Even under inflammatory
conditions GVL may be separated from GVHD due to the
higher susceptibility of hematopoietic cells compared to non-
hematopoietic cells from GVHD tissues to be targeted by MiHA

specific CD4 T-cells and the limited diversity and magnitude of
the induced immune responses.
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