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A large number of tumor intrinsic and extrinsic factors determine long-term survival in

human cancers. In this study, we stratified 9120 tumors from 33 cancers with respect

to their immune cell content and identified immunogenomic features associated with

long-term survival. Our analysis demonstrates that tumors infiltrated by CD8+ T cells

expressing higher levels of activation marker (PD1hi) along with TCR signaling genes

and cytolytic T cell markers (IL2hi/TNF-αhi/IFN-γhi/GZMA-Bhi) extend survival, whereas

survival benefit was absent for tumors infiltrated by anergic and hyperexhausted CD8+

T cells characterized by high expression of CTLA-4, TIM3, LAG3, and genes linked

to PI3K signaling pathway. The computational approach of using robust and highly

specific gene expression signatures to deconvolute the tumor microenvironment has

important clinical applications, such as selecting patients whowill benefit from checkpoint

inhibitor treatment.

Keywords: tumor microenvironment, gene signatures, inflamed tumors, CD8+ T cell infiltration, TCR signaling,

anergic and exhausted T cells and prognosis

INTRODUCTION

Tumor microenvironment (TME) ecosystem, with its complex mixture of non-malignant and
malignant cells, regulates tumor growth, progression to metastasis, treatment response, and
development of resistance to therapy (1, 2). The TME ecosystem has come to the forefront
of scientific scrutiny as a critical determinant of response to cancer immunotherapy drugs (3).
Therefore, it has become imperative to develop methods and tools to examine the TME ecosystem
in a greater detail and discover features that are permissive for mounting an anti-tumor immune
response (4). The functional heterogeneity of the TME is contributed not only by the composition
of different cell types in the tumor, but also their activation state, regulated by a complex milieu of
chemical signals to which these cells are exposed. A further layer of complexity is introduced by the
genetic changes that happen during tumor evolution (5). Delineating the hidden features within
the TME is, therefore, a promising area for discovering predictive and prognostic biomarkers (4).

Two major strategies are used to analyze the TME: (1) Deconvolution of the complete cellular
composition of the TME, and (2) Assessing the enrichment of individual cell types present in
the TME. Deconvolution approaches are fraught with many different biases because of strict
dependencies among all the inferred cell types (5). Therefore, assessing the enrichment of individual
cell types is a better approach, if robust cell type-specific signatures are available. The existing
signatures derived from differential expression of genes (6, 7), correlation of immune-related genes
(8), or quartile-based methods (9) results in a large number of genes (usually a few thousand),
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whose expression is not highly specific to a given cell type
and therefore unsuitable for the analysis. Recent studies have
leveraged single-cell sequencing as a powerful tool to analyze
the tumor microenvironment at a higher resolution (10–12).
However, loss of cell viability and inefficient capture of rare cells,
in particular, limit its application in a clinical setting.

In this study, we have created minimal gene expression
signature profiles (MGESPs) for eight broad categories of
immune cells (CD8+, CD4+ T cells, B cells, Treg cells, NK
cells, Macrophages, Monocytes, and Neutrophils). Validation of
the MGESPs on pure immune cell expression data generated
by different platform technologies revealed a high degree of
specificity in discriminating cognate from non-cognate cells.
We demonstrate the utility of the MGESPs by enumerating the
presence of different immune cell types in over 9,000 complex
tumor microenvironments across 33 cancers. The analysis
revealed different patterns of immune infiltration in different
cancers driven by restricted expression of chemoattractant
genes and by pathways dysregulated as a result of mutations
in oncogenes and tumor suppressor genes. Additionally, we
identified CD8+ T cell-specific markers whose expression
strongly correlates with protective CD8+ T cell immunity in
a pan-cancer setting. We have validated the utility of these
marker genes by estimating a T-cell activation score on a
independent cohort of patients with advanced melanoma treated
with immunotherapy drugs. We observed that these genes can be
used to monitor immunological response in patients.

RESULTS

Minimal Gene Expression Signature
Profiles (MGESPs) of Immune Cells
We employed a three-step strategy to create non-overlapping
cell type-specific gene signatures for eight immune cells—CD8+,
CD4+, T cells, B cells, Treg cells, NK cells, Macrophages,
Monocytes, Neutrophils, which we refer to as the MGESPs
(Minimal Gene Expression Signature Profiles). The systematic
approach used for creating the MGESPs is described in
Figure 1A. In the first step, we used the ARS (Average Rank
score) and the MES (Marker evaluation score) derived from large
microarray datasets of pure immune cells as described in Wang
et al. (13) to prioritize the genes. The ARS score was used to
identify genes that are highly expressed in a given cell-type. We
next used the MES score which is a measure of the intercellular
variability to quantitatively assess the suitability of a gene to be a
part of theMGESPs. In the second step, we verified the expression
of the selected genes in pure RNA-Seq data to ensure that the
signature genes for a given cell type show significant expression
across different platforms. In the final step, the function of the
prioritized genes was evaluated in the cognate cell type using
literature curation. Next, we used the single sample Gene Set
Enrichment analysis GSEA (ssGSEA) to derive a normalized
score for each of the cell types in a given sample based on the
MGESPs. ssGSEA uses an Empirical Cumulative Distribution
Function (ECDF) of the genes in a given signature and the
remaining genes to derive an enrichment score (14).

Validation of Gene Signatures
We used pure immune cell expression data derived from
four different platforms to validate our MGESPs (1) RNA-
Seq data (122 samples) for all the eight immune cell types
(15, 16); (2) microarray data (219 samples) across the eight
cell types; (3) single cell expression data (2,764 single cells)
covering B cells, Macrophages and NK cells (10); (4) FACS
sorted immune cells from peripheral blood mononuclear cells
(PBMCs) from the ImmPort, Study id :SDY305 (25 samples) (17)
(Supplementary Table 1).

The robustness of the MGESPs was evaluated using the
scores obtained for the eight-immune cell-types on pure cell
RNA-Seq data as shown in Figure 1B. As shown in each facet
of Figure 1B, all the gene signatures exhibited a significantly
higher score for their cognate cell type compared to the
non-cognate cell types. The high specificity of our signatures
was further reconfirmed in an independent pure immune
cell type microarray data (Supplementary Figure 1A). Further,
expression-based clustering of MGESPs on a mixture of RNA-seq
data from 122 samples separated the immune cell populations
according to their developmental lineage as shown by the t-
SNE plot (Figure 1C) (18). Figure 1D shows B-cells distantly
clustered from other cell types. CD8+ cells clustered closer to NK
cells and CD4+ cells clustered closer to Treg cells, respectively.
Neutrophils, Monocytes, and Macrophages clustered closer to
each other according to their developmental lineage. Hierarchical
clustering of expression data from both RNA-Seq (Figure 1D)
and microarrays (Supplementary Figure 1B) separated the
immune cells from each other further reinforcing the robustness
of the MGESPs. Next, we tested our signatures on single-
cell sequencing data from tumor-infiltrated lymphocytes (B-cell,
Macrophages, CD8+ T cells, and NK cells) in melanoma patients
(GSE72056) (10) and observed higher scores for the cognate
cell types (Supplementary Figure 1C). To further validate our
signatures, we used FACS-sorted immune cells and compared
signature-based prediction with FACS-based prediction of
specific immune cell types (17). Cell-type-specific scores were
calculated from RNA-seq data and correlated with the FACS data
(Supplementary Figure 1D). Overall, our signatures correlated
well with FACS data except for Treg cells where our signature
identified the FACS sorted cells as CD4+ T cells. This could be
because the markers used for identifying and sorting the Treg
cells in this study did not include Foxp3, but used CD25, which
is also expressed by non Treg cells. To further establish that the
CD4 and the Treg signatures are indeed specific, we used data
from 1,185 single cells labeled as T cells (GSE72056) (10) and
applied CD4, CD8, and Treg signatures. The signatures separated
the CD4 and Treg cells demonstrating the specificity of our
signatures (Supplementary Figure 1E) Taken together, extensive
validation of the MGESPs enabled detection of specific immune
cell types with high specificity from complex transcriptomic data.

The Immune Landscape of Human Cancers
We leveraged the whole transcriptome data from 9,640
tumors across 33 cancers and estimated the level of tumor-
infiltrating immune cells using the MGESPs. We observed
variable abundance of different immune cells in the tumor
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FIGURE 1 | Creation and validation of minimal gene expression signature profile (MGESP) for eight different immune cells. (A) Workflow for creating and validating the

MGESPs. (B) Validation of MGESPs on RNA-Seq data represented as boxplots with signature on the x-axis and immune score on the y-axis. Each facet represents

the immune score calculated for the signature mentioned on the x-axis for both their cognate and non-cognate cell types. A higher score was obtained for the cognate

cell types as represented in each facet (Wilcoxon Test : P-value < 0.05). (C) Visualization of immune cell-types using the expression of MGESPs on two-dimensional

coordinates from t-stochastic neighbor embedding (t-SNE) algorithm. (D) Hierarchical clustering of immune cell-types on RNA-Seq data from pure immune cells.

microenvironment (Supplementary Figure 2). To study the
distribution of the infiltrating immune cells across the different
cancer types and investigate the mechanisms of immune cell
infiltration, we sorted the tumors by their immune infiltration
scores and calculated the percentage of samples from each cancer

present in each of the four quartiles (2,410 tumors in each
quartile from all 33 cancers; Figure 2A, left panel). Next, we
analyzed what fraction of tumor samples from different cancers
is present in each quartile and plotted the % as a heatmap
(Figure 2A, right panel). By focusing primarily on the first (Q1:

Frontiers in Immunology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 3017

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Manoharan et al. Functional CD8 T-Cells Increase Survival

Highest infiltration) and last quartile (Q4: Lowest infiltration),
we were able to identify the pattern of immune infiltration in all
cancers.

The first quartile of B cell infiltration (highest infiltration) was
populated by DLBCL (Diffuse large B-cell lymphoma) cancer as
expected (Figure 2A, right panel) and SKCM (skin cutaneous
melanoma), UVM (uveal melanoma) and SARC (sarcoma).More
than 95% of the samples from GBM (glioblastoma) and LGG
(low-grade glioma) showed high infiltration of monocytes and
high infiltration of NK and CD8+ T cells was detected in
98% of LAML (Acute Myeloid Leukemia) and 95% of THYM
(Thymoma). An interesting finding of this analysis is that
different renal cancer subtypes showed contrasting immune
infiltration patterns. Kidney renal cell carcinoma (KIRC) being
an immune-sensitive tumor (19) had a high infiltration of all
the immune cell types except Treg cells (Figure 2A, right panel),
dark red Q1 boxes, whereas kidney renal papillary cell carcinoma
(KIRP) showed lesser infiltration of most immune cell types
(Figure 2A, right panel), white Q1 boxes. Interestingly, kidney
chromophobe cancer (KICH) showed a high infiltration of NK
cells and low infiltration of other cell types, previously reported
by immunohistochemistry analysis (20). Taken together, our
analysis reveals both known and novel aspects of tissue-specific
immune cell compositions in different cancers.

Immune cells interact with each other and with non-
immune cells to define the inflammatory properties of the
tissue microenvironment. For example, the co-occurrence
of T cells and NK cells in tumors enhances the efficacy
of cancer immunotherapy drugs (21). There has been no
systematic analysis of co-infiltration of multiple immune
cells across different cancers. Therefore, we used the TCGA
data to investigate the landscape of co-infiltrating immune
cells in all 33 cancers and observed interesting correlations
(Supplementary Figure 3). For cancers that have shown a good
response to immune checkpoint inhibitors (SKCM, KIRC, BLCA,
LUAD, HNSC), a positive correlation between CD8+ T cells and
NK cells, was observed with the strongest correlation detected
in SKCM and LUAD (Figure 2B). We also observed good
correlation between CD8+ T cells and NK cells in cancers where
immunotherapy has not been tested yet, such as testicular germ
cell cancer (TGCT), KIRP, and lung squamous cell carcinoma
(LUSC) and speculate that a subset of tumor samples from these
cancers may be sensitive to checkpoint inhibitor treatment. Co-
infiltration of immune cells across different cancers is given in
Supplementary Figure 3.

Factors Regulating the Infiltration of
Immune Cells in Tumors
To examine the mechanism of selective recruitment of specific
immune cells in different tumors, we first considered the
expression of the chemoattractant genes, which mobilizes
immune cells to sites of inflammation as a possible mechanism.
Analysis of co-expression of chemoattractant genes specific
to each immune cell type obtained from literature survey
(Supplementary Table 2) and their infiltration scores across all
33 cancers indicated that the chemoattractant gene expression

scores were positively correlated with immune cell infiltration
across all cancers, except CD4+ T-cells, where we observed an
inverse correlation (Figure 2C).

Next, we considered mutations in oncogenes and tumor
suppressor genes as possible drivers of immune cell infiltration
through the expression of chemoattractant genes, or by
other mechanisms, such as changes in the tumor stroma,
or directly impeding the migratory behavior of immune
cells. We selected tumor samples across different cancers
enriched or depleted for different immune cells and analyzed
mutations in all genes. We identified mutations in known
and novel genes associated with enrichment or depletion
of specific immune cells in different cancers (T-test: P-
value < 0.05; Figure 2D and Supplementary Figure 4. We
observed that the same mutation affected the infiltration of
distinct immune cell populations in two different cancers.
For example, in LUAD, higher Treg infiltration was seen
in samples harboring oncogenic KRAS mutation (G12V/D),
whereas the same mutation in pancreatic adenocarcinoma
(PAAD) correlated with high infiltration of CD8+, CD4+ T
cells, and Neutrophils. Several novel dependencies of clinical
relevance were detected between mutations and infiltration of
specific immune cells. For example, loss of function mutations
in RNF43 and DOCK-3 genes were associated with higher
infiltration of CD8+ T cells in colon adenocarcinoma (COAD;
Figure 2D and Supplementary Figure 4A). RNF43 is a negative
regulator of Wnt signaling (22), and DOCK-3 is a negative
regulator of multiple signaling pathways including the Wnt
β-catenin signaling (23). NK cell infiltration was higher in
COAD samples carrying BRAF V600E and a frameshift mutation
in RNF43 (Figure 2D, Supplementary Figure 4B). A snapshot
showing the impact of other oncogenic mutations such as
KRAS, BRAF, and FGFR3 on the composition of the tumor-
associated immune infiltrate is shown in Figure 2D and
Supplementary Figures 4C–E. A complete list of mutations
significantly associated with enrichment or depletion of immune
cells is provided in Supplementary Table 3. We demonstrate
that the relationship between driver mutations and their impact
on immune infiltration is complex and is centrally dependent
on the cancer type. Our analysis further reiterates that both
chemoattractant gene expression and oncogenic mutations act
together for the recruitment of specific immune cells in the TME
and therefore contribute to the changes in the TME as the tumor
develops over time.

Prognostic Impact of Tumor-Infiltrated
Immune Cells in Different Cancers
Cancer-related inflammation is the seventh hallmark of cancer
(24, 25) and in many solid tumors higher levels of tumor-
infiltrating leukocytes (TIL) is often correlated with increased
progression-free survival (PFS) and overall survival (OS) (26–
28). Both targeted, and large-scale genomic studies have revealed
that different cancers benefit from infiltration of different
immune cells. For example, CD8+ T cells, activated macrophages
(M1-type), and NK cells are associated with good survival,
whereas myeloid-derived suppressor cells (MDSCs), Treg cells
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FIGURE 2 | Comprehensive analysis of the immune landscape of 9,640 tumors across 33 cancers using MGESPs. (A) Workflow to identify cancers with the highest

infiltration of a given immune cell-type (left panel). MGESP-derived score for each immune cell-type was calculated for each of the tumors in the dataset and arranged

into quartiles. The number of samples in each quartile was used to create the heatmap (right panel). The color represents the proportion of tumor samples belonging

to each cancer present in the quartile. Red and white color indicates a higher and lower number of tumor samples, respectively in a given quartile. (B) Represents the

correlation of immune infiltration seen in SKCM and LUAD cancers. (C) Infiltration of immune cells is dependent on the expression of chemoattractant genes specific

to each immune cell-type. Dependence is shown as a correlation plot of scores derived using a chemoattractant gene signature for each immune cell type and

MGESP scores for each of the eight-immune cell-types across all cancers. (D) Enrichment of specific immune cells in tumors carrying mutations in a subset of

oncogenes and tumor suppressor genes. Bubble plot showing genetic alterations showing significant correlation with the infiltration of different immune cells (T-test,

p-value ≤ 0.005). Each colored bubble represents a specific immune cell, and the size of the bubble represents number of tumors carrying a specific mutation. See

Supplementary Table 3 for a complete list.
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FIGURE 3 | The relationship between the composition of immune infiltrate and its effect on patient survival across cancers. (A) Correlation between infiltration of

different immune cells and patient survival. For each cancer, survival benefit between the top and bottom 20% tumor samples infiltrated by specific immune cells was

compared. Size of the bubble shows significance (p-value < 0.05), red and white indicates good and poor prognosis, respectively. (B) Changes in the composition of

immune infiltrate with tumor stage in different cancers. Only the immune scores differing significantly between cancer stages for a given cell-type are represented by

the pie plot (cor. test, p-value < 0.05).

and alternatively activatedmacrophages (M2-type) are associated
with poor survival (29, 30).

In accordance with other published studies, CD8+ T
cell infiltration was associated with improved survival
(See section Materials and Methods) in seven of the 23
cancers (31–36), whereas monocyte/macrophage infiltration
exhibited poor survival in seven of the 23 cancers
(Figure 3A, Supplementary Table 4). Both CD8+ T cells
and NK cells showed a good survival benefit in SKCM samples
and interestingly as described earlier, infiltration of CD8+ and
NK cells were also highly correlated in this cancer. In addition to
CD8+ T cell infiltration, infiltration of B cells also showed a good
survival benefit in HNSC. Increased numbers of intraepithelial
CD8+ T cells in metastatic tumors, as well as large numbers of
peritumoral B cells in lymph node metastases, have been shown
to be associated with favorable outcome in previous studies (37).

To further investigate whether the immune cell composition
of the tumor changed from being protective to permissive as
cancer progressed, we mapped the relative levels of immune
cells in early and late-stage cancers. Our analysis indicated
that in many cancers, such as COAD, SKCM, thyroid cancer
(THCA), and uterine corpus endometrial carcinoma (UCEC)
there was a progressive decrease in CD8+ T cell infiltration
with increased disease stage (Figure 3B). Conversely, monocyte
infiltration increased with stage in many cancers, indicating
adverse impact on survival.

CD8+ T Cell-Dependent Long-Term
Survival Benefit in Human Cancers
A pro-inflammatory tumor microenvironment characterized
by the presence of CD8+ T cells, NK cells, and M1-type

macrophages is strongly correlated with long-term survival
benefit, whereas an immune suppressive microenvironment
infiltrated by Treg cells, MDSCs and alternatively activated
macrophages (M2-type) predict poor survival (38, 39). There has
been a renewed interest in defining the immunogenic state of
a tumor to predict response to checkpoint blockade inhibitors.
Analysis performed in the previous section suggested that
prognosis was correlated with infiltration of specific immune cell-
types. To investigate the mechanism of prognosis, we performed
unsupervised clustering of 9,120 tumor samples across 33 cancers
based on their combined immune infiltrate composition, instead
of analyzing infiltration of one or few cell types as reported in
other studies (40–42). The tumor samples clustered into four
major groups according to the relative content of eight different
immune cells (Figure 4A).

The distribution of different cancers in each of the clusters is
shown in Figure 4B. Cluster-1 was enriched for uveal melanoma
(UVM), low-grade glioblastoma (LGG), and glioblastoma (GBM;
Figure 4B), whereas cluster-3 was exclusively composed of acute
myeloid leukemia (LAML, 170 of 173 tumor samples). Clusters-
2 and 4 were composed of a mix of different cancer types
(Figure 4B). Cluster-1 and 3 had poor epithelial content, whereas
cluster-2 and 4 were enriched in epithelial tumors (Figure 4C).
The stromal content of cluster-2 and 4 was significantly high
compared to cluster-1, and 3 and the immune content of cluster-3
and 4 were significantly higher than clusters 1 and 2 (Figure 4C).
Analysis of the immune infiltrate compositions of cluster-1 and
2 revealed poor infiltration of CD8+ T cells and NK cells but
rich in macrophages and monocytes (Figure 4D). Cluster-2 had
significantly higher CD4+ T cells compared to all other clusters,
whereas Cluster-3 and 4 were rich in CD8+ T cells (Figure 4D).
As expected, cluster-3 containing exclusively of LAML (Acute
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FIGURE 4 | Analysis of immune infiltrate of TCGA tumors using minimal gene expression signature profiles. (A) Unsupervised clustering of 9,548 TCGA tumors based

on the infiltration of eight different immune cells. Four major clusters are shown with their corresponding immune cell infiltration pattern represented as a heatmap

below the dendrogram. (B) Percentage of tumors in each cluster distributed across different cancers. (C) Distribution of Stromal, Immune and Epithelial content of

samples in each cluster. The scores were derived using signatures from Yoshihara et al. (43). The significance was ascertained by Wilcoxon text, P-value < 0.05. (D)

Boxplot showing the variation in the distribution of immune infiltration scores for each immune cell type across the four clusters (Wilcoxon text, P-value < 0.05). (E)

Boxplot showing variation in the distribution of the total number of mutations in the cluster (Wilcoxon text, P-value < 0.05). (F) Variation in the immune score

distribution of the MSI+ and MSI- tumors (Wilcoxon text, P-value < 0.05).

Myeloid Leukemia) samples had significantly lower macrophage
content than all other clusters (Figure 4D). The mutational
burden was slightly higher in cluster-4 tumors (Figure 4E),

which correlated with higher CD8+ T cell infiltration in cluster-
4. Tumors with high mutation burden, such as MSI+ tumors
showed higher CD8+ T cell infiltration. However, cluster-4 with
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high CD8+ T cell infiltration contains <5% of all MSI+ tumors
suggesting that other factors, besides mutation burden regulate
CD8+ T cell infiltration (Figure 4F).

Given that each cluster is unique in its immune cell
composition, we investigated differences in survival between
the clusters. Cluster-4 tumors showed slightly better prognosis
compared to cluster-1, or cluster-2, confirming that infiltration
of CD8+ T cells is associated with long-term survival
benefit (Supplementary Figures 5A,B). Of the 1,552 cases in
cluster-4, 1,200 belongs to the alive group and the rest
were deceased. We used these two groups of tumors to
identify inflammatory features in CD8+ T cell-high tumors
that were associated with long-term survival. The immune
microenvironment profile of the alive group showed slightly
higher content of CD4+ and CD8+ T cells compared to the
deceased group. The alive group was also characterized by
lower infiltration of Treg cells and monocytes compared to the
deceased group (Supplementary Figure 5C). However, we failed
to observe any differences in the expression of inflammation
markers between the two groups, though the immune-
suppressive markers showed lower expression in the alive group
(Supplementary Figure 5D, Supplementary Table 5). Next, we
examined the functional state of CD8+ T cells in the
two groups. Significantly, while CD8+ T cells expressed the
activation marker PD-1 in both alive and deceased groups,
the deceased group was specifically enriched in CD8+ T cells
expressing anergic and exhaustion markers—CTLA-4, LAG3,
and TIM3 (Supplementary Figure 5E) indicative of the presence
of dysfunctional CD8+ T cells in these group of tumors. In
addition, the dysfunctional T cells in the deceased group showed
reduced expression of CTLmarkers (Supplementary Figure 5F),
further confirming their weak anti-tumor activity.

To further investigate the significance of CD8+ T cell
function in determining prognosis, we analyzed the cancer types
represented in cluster-4 and the proportion of alive and dead in
each cancer type as shown in Supplementary Figure 6A. Tumors
belonging to the deceased group were present in most cancer
types except thyroid cancer where all tumors belonged to the
alive group. Few cancers such as kidney renal carcinoma (KIRC),
mesothelioma (MESO), skin cutaneous melanoma (SKCM), and
ovarian (OV) contain >25% of dysfunctional CD8+ T cells
higher than the rest of the cancers (15–20% dysfunctional T cells).
This analysis confirmed that the unsupervised clustering method
did not introduce a bias in the selection of cancer types that could
have confounded our correlation between dysfunctional CD8+

T cells and poor survival. We also determined the mutation
counts between tumors belonging to the alive and dead groups
and found them to be similar (Supplementary Figure 6B). Next,
we stratified the tumors according to their stage and determined
the proportion of early (stage-1&2) or late (stage-3&4) tumors
in the alive vs. the dead group (Supplementary Figure 6C). We
observed an increase in the proportion of early-stage tumors
in the alive group and late-stage tumors in the dead group
suggesting that infiltration of functional and dysfunctional CD8+

T cells correlated with early or late-stage tumors, respectively.
Surprisingly, a closer inspection of the functional status

of CD8+ T cells in early-stage tumors revealed that whereas

tumors in the alive group showed the exclusive signature
of functional CD8+ T cells, the deceased group showed the
presence of dysfunctional CD8+ T cell signature (Figure 5A).
This observation strongly substantiates our hypothesis that the
presence of functional CD8+ T cells is a hallmark of long-
term survival for early-stage tumors. The late-stage tumors in
both alive and dead groups contain dysfunctional CD8+ T
cells, although expression of IFN-γ was restricted to the tumors
belonging to the dead group (Figure 5A).

Having identified that the tumor microenvironment of
the deceased group is enriched in dysfunctional CD8+ T
cells, we examined factors that may have contributed to the
anergic/exhausted phenotype. We analyzed genes differentially
expressed between the two groups and mapped the differentially
expressed genes onto pathways using REACTOME (44)
(Supplementary Table 6). A list of differentially expressed genes
is shown in Supplementary Table 7. We detected significant
upregulation of a core network of genes functioning in T cell
receptor (TCR) signaling specific to the alive group (Figure 5B
and Supplementary Figure 7). Remarkably, all the upregulated
genes encoded proteins of the TCR complex and proximal
kinases that transduce TCR signaling following receptor
activation (Figure 5B). We further assessed the contribution of
these genes on patient survival using Cox regression analysis (see
Materials and Methods section for deails of the analysis). Briefly,
we computed activation scores as weighted average of gene
expression of the genes associated with an activated phenotype
of T-cells (Supplementary Figure 7). The survival analysis
showed that high T-cell activation score was associated with
an improved survival independent of age, stage and cancertype
(p-value: 2e-07; Figure 5C). The association was verified using
a multivariate cox regression analysis. The hazard ratios were
0.49 (95% CI 0.36–0.67) for the group with high T-cell activation
scores (Supplementary Table 8).

These observations suggested that the dysfunctional state of
CD8+ T cells in the deceased group was linked to the reduced
expression of TCR signaling genes and higher expression of
genes conferring an anergic and exhausted phenotype. This is the
first systematic study to demonstrate key molecular mechanisms
determining long-term survival using an immunogenomic
approach.

A recent analysis of melanoma samples treated with
nivolumab reported poor response to cancer immunotherapy
drugs when their tumor microenvironment was infiltrated by
dysfunctional T cells (45). The TCR signaling gene signature
identified in this analysis was independently validated in the
gene expression dataset from a cohort of patients with advanced
melanoma (GSE91061). The change in enrichment of the T-
cell activation score derived from the functional CD8+ T cell
signature was applied to this cohort of patients. Patients who
achieved partial or complete response to Ipilimumab (PR/CR)
showed higher functional CD8+ T cell score (Figure 5D upper
panel–right box) compared to Ipilimumab untreated patients.
Further, patients who progressed on Ipilimumab but responded
to Nivolumab (SD and PR/CR; Figure 5D lower panel, right
box) showed higher functional CD8+ T cell activation score.
In summary, the functional CD8+ T cell score was associated
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FIGURE 5 | Functional phenotype of CD8+ T cells correlate with long-term survival and response to checkpoint inhibitor treatment. (A) correlation between CD8+ T

cell infiltration and expression of anergic and exhaustion markers in early and late-stage tumors in alive and the deceased groups. (B) Schematic representation of the

genes upregulated in the alive subjects of cluster-4. (C) Kaplan-Meier plot showing the survival difference associated with patients with high and low T-cell activation

scores adjusted for age and stage using cox regression. (D) Boxplot showing enrichment of functional CD8+ T cell score in the melanoma cohort who responded to

Ipilimumab or Nivolumab monotherapy (Student’s T-test, p-values represented in the figure).

with response to both checkpoint inhibitors Ipilimumab and
Nivolumab.

DISCUSSION

The immune checkpoint blockade therapies have achieved
significant clinical success by targeting the T cell compartment
in many cancers (46–48). However, only a small subset of
patients achieves a long-term benefit from these therapies.
Multiple studies have uncovered a correlation between clinical
response to checkpoint blockade with pre-existing tumor-
infiltrating lymphocytes, neo-antigen load, T-cell repertoire,
reduced angiogenesis, and lack of mesenchymal cells in the
tumor stroma (49–51). However, sensitive biomarkers to select
patients in the clinic who will benefit from a checkpoint
blockade therapy are not available. In this study, using a
systematic immunogenomic approach we describe key molecular
features that determine survival and identify novel biomarkers of
inflamed tumors. Our success in stratifying tumors according to
their immune cell infiltration was largely contributed by highly
specific and robustMGESPs for eight different immune cell types.
The published immune cell-specific gene expression signatures

frommultiple studies lack specificity and sensitivity for analyzing
the complex tumor microenvironment.

We profiled the immune landscape of 9,640 tumors covering
33 cancer types using the MGESPs. Our analysis shows that
tumors have distinct immune cell infiltration profiles that cannot
be predicted apriori from analysis of tumor mutation burden
or from mutations in oncogenes and tumor suppressor genes.
We find that expression of immune cell-specific chemoattractant
genes is strongly correlated with the infiltration of specific
immune cells in all cancers (52, 53). In addition, our study
reveals that associations between specific genetic alterations
in oncogenes and tumor suppressor genes and the impact
of such alterations on immune cell infiltration are cancer-
specific. For example, a novel association was detected between
mutations in two different modulators of the Wnt signaling
pathway (RNF-43 and DOCK3) and increased CD8+ T cell
infiltration in colorectal adenocarcinoma (COAD). RNF-43
is an E3 ligase that destabilizes frizzled receptors on the
membrane (FZD) by ubiquitination and proteasome degradation
resulting in the reduced surface expression of these receptors to
induce down-regulation of the Wnt signaling pathway (54, 55).
Dedicator of cytokinesis-3 (DOCK3) protein binds β-catenin and
prevents its nuclear translocation thereby negatively regulating
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the Wnt-β-catenin signaling. We postulate that the frameshift
mutations in RNF-43 and DOCK3 genes identified in the
study are expected to increase Wnt signaling—the former by
stabilizing the FZD receptors on the membrane (54) and the
latter by releasing β-catenin for nuclear translocation (23). Our
observation that increased infiltration of CD8+ T-cells correlated
with loss of functionmutations in RNF-43 andDOCK3 in human
colon adenocarcinoma contrasts with the findings described
in Spranger et al. (56). Further work is needed to delineate
the complex role of Wnt signaling in immune cell infiltration.
Our analysis also uncovered that BRAF V600E mutation in
thyroid cancer (THCA) creates an immune suppressive tumor
microenvironment by increasing Treg, neutrophil, andmonocyte
infiltration, while decreasing the infiltration of NK cells and
CD4+ T-cells. This study stands out to be one of the largest
analysis where the impact of all mutations across 33 cancers
have been systematically associated with the enrichment or
depletion of a variety of immune cells uncovering novel targets
for immunopotentiation.

An interesting finding of our analysis, that tumor samples
across different cancers cluster by their immune cell content
supports the hypothesis that even when tumors originate from
the same tissue-type, they become highly divergent as a result of
their tumor microenvironment composition. A large proportion
of TCGA tumors (∼25%) are infiltrated with high CD8+ T cells
(Figure 4A, cluster-4). Given that cancer immunotherapy drugs
work better if tumors are infiltrated by CD8+ T cells, deeper
analyses of the microenvironment of these tumors promise
discovery of additional features of good prognosis and increased
response to checkpoint blockade. Indeed, our analysis reveals
that CD8+ T cells expressing higher levels of anergic and
exhaustion markers, which are hallmarks of dysfunctional T-
cells were enriched in the deceased group compared to the alive
group (57). Further support to our hypothesis that CD8+ T
cell phenotype contributed significantly to survival was shown
by multivariate Cox regression analysis, where high T cell
activation score correlated with long term survival. Significantly,
this correlation was further substantiated by the finding that early
stage tumors in the deceased group was enriched in dysfunctional
CD8+ T cells, whereas tumors in the alive group showed the
functional CD8+ T cell signature. The late stage tumors in
both groups showed signature of dysfunctional CD8+ T cells,
although the magnitude of dysfunctionality could not be assessed
by our approach. However, given that IFN-γ transcript level
correlated strongly with the dysfunctional phenotype of CD8+

T cells and was present only in the deceased group argues for
further heterogeneity in the dysfunctional phenotype. The active
repression of TCR signaling in the dysfunctional CD8+ T cells
was further supported by the pathway analysis in which the
expression of key components of the TCR signaling complex was
coordinately downregulated in these tumors (58). The striking
similarity between features that promote long-term survival (the
present study), and those that predict response to checkpoint
inhibitors (45) narrows the scope of definition of inflamed
tumors to those that harbor functionally active, non-anergic and
non-exhausted T cells. Further support to this hypothesis came
from the fact that signature for functionally active CD8+ T cells

were higher in melanoma patients who responded to Ipilimumab
or Nivolumab monotherapies [Figure 5D, data from CA209-038
study (59)].

Taken together, the pan-cancer immune landscape analysis
reveals critical determinants of long-term survival pointing to an
integrated approach that can be designed for selecting patients
who will benefit from cancer immunotherapy treatment as
schematically represented in Figure 6. Our analysis uncovers key
features of inflamed tumors that shift the balance from immunity
to tolerance.

MATERIALS AND METHODS

Creating Cell Type-Specific Gene
Signatures
Unique gene expression signatures defining a specific immune
cell type were identified by analyzing large microarray datasets
(restricted to Affymetrix human genome U133 plus 2.0 platform)
of pure immune cell types with the workflow described in
Figure 1A. Genes with very high specificity for a given cell
type were identified by calculating the average rank score of
a given gene in each cell-type. The plasticity of the genes was
assessed using the Marker Evaluation Score (MES) as described
in Wang et al. (13). Genes were further refined by analyzing
the median expression of the genes in pure RNA-Seq data
(Supplementary Table 1) and further validated using multiple
datasets described below.

Determination of Cell-Type Specific
Immune Scores
Immune scores were derived for each cell type in our analysis
using the ssGSEA using the gene signatures discovered for each
cell type (14). For a given sample, gene expression values were
rank-normalized and rank-ordered. The goal of ssGSEA is to
determine whether the members of gene signatures (S) are
randomly distributed throughout all the protein-coding genes
(L) or primarily found at the top or bottom. We calculate an
enrichment score (ES) that reflects the degree to which a set
S is over-represented at the extremes (top or bottom) of the
entire ranked list of all the protein-coding genes (L). The score is
calculated by walking down the list L, increasing a running-sum
statistic when we encounter a gene in S and decreasing it when
we encounter genes not in S. The scores are further normalized
by dividing the score using the total number of protein-coding
genes. For a randomly distributed S, ES(S) will be relatively small,
but if it is enriched at the top or bottom of the list, or otherwise
non-randomly distributed, then ES(S) will be correspondingly
high.

Validation of the MGESPs
RNA-Seq expression data was downloaded from the GEO
database (60) for the studies GSE60424 (15), ERR431583
(61), and GSE100382 (16) (details of the data can be found
in Supplementary Table 1). The FPKM values were used to
generate the immune scores using ssGSEA based approach for
each cell type in our analysis as well as signatures from other
groups. The t-sne plot (18) and hierarchical clustering plot were
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FIGURE 6 | Schematic showing the immune microenvironment of tumors that experience long-term survival benefit (alive) over tumors that fail to show benefit (dead).

The analysis is restricted to tumors that have high infiltration of CD8+ T-cells. Cartoon representation of tumors that experience long-term survival benefit are infiltrated

by functional CD8+ T-cells characterized by higher expression of CTL markers, and higher expression of TCR signaling genes.

generated using the immune scores for the same data-set using
“Rtsne package.” The microarray expression raw data for the
studies were downloaded from GEO and RMA normalized using
“Affy package.” Batch effects were removed using “COMBAT
package” and immune scores were calculated as described earlier.
Microarray-based gene expression data and Flow cytometry
data from the study SDY305 were downloaded from Immport
database. RMA normalization was performed on the microarray
data using “Affy package,” and median expression was used for
multiple probes. Microarray and FACS paired data were pulled
out using Subject Accession Ids. The samples lacking paired data
were removed from the analysis. Pearson correlation analysis
of the cell fractions with the immune scores was done using
“corrplot package.” Single cell expression data (2,764 single cells)
covering B cells, CD8, Macrophages, and NK cells (10) was
downloaded from the GEO database (GSE72056) and immune
scores were computed using ssGSEA based approach. The
method can be accessed at https://oncopepttume.medgenome.
com/.

Pan-Cancer Analysis of TCGA Data
The pan-cancer level 3 RSEM normalized gene-level expression
data for the TCGA samples and their annotations were
downloaded from TCGA data portal (62) to calculate the scores
for each immune cell type. The ssGSEA provided by R package
ESTIMATE and protein-coding gene-level expression data was
used to calculate the rank normalized scores for the assessment
of infiltration levels of 8 different immune cell types including
B-cell, CD4, CD8+, and T-regulatory as adaptive and monocyte,

macrophage, NK, and neutrophil as innate immune cells in
9,640 tumor samples from 33 different tumor types defined by
TCGA. Plots were generated using the ggplot package in R. To
understand a more focused view of the immune infiltration we
divided all the samples for each tumor type to four quartiles (Q1–
Q4) based on each immune cell type score where Q1 represents
high score samples for the given cell type. Next, we analyzed
the fraction of tumor samples across the different cancer types
present in each quartile described in Figure 2A, right panel.
We further estimated the fraction of samples in each cancer
across the different samples and represented it as a heatmap.
Pearson correlation analysis for each cancer using the immune
cell type-specific scores was done using “corrplot R package.”

The tumor stage data for 25 cancers were downloaded from

TCGA. The pathological stage of the tumor was used to segregate

the samples into the stages 1, 2, 3, and 4. For each cell type, the
median immune score of the samples in each stage was used to
generate the pie charts for all the 25 cancers. One-way ANOVA
test was used to determine significant variations in immune
scores across stages for each cell-type.

We further clustered all the 9,640 TCGA tumor samples using
all the eight immune cell type-specific scores and we divided
the samples into 4 major clusters. We looked for tumor content
Epithelial, Immune and stromal using signatures described in
Yoshihara et al. (43) and different immune cell infiltration for
these 4 groups using our MGESPs. Hierarchical clustering was
performed for normalized gene expression values of all the
protein-coding genes (63). Euclidean distance and the complete
linkage clustering method is used for hierarchical clustering.
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The analysis is performed using the R language and additional
packages: ggplot2, reshape2, and ggrepel.

The REACTOME database (44) was used to analyze the
pathways enriched using genes upregulated and downregulated
with fold change values >2 or fold change values <2 in
each of these clusters. The significantly enriched pathways and
genes from cluster 4 were further analyzed. Correlation of
CD8+ expression with the expression of cell surface markers
was calculated using Pearson correlation coefficient. P-values
and confidence intervals for each pair of input features were
calculated using the cor.mtest function in R. A significance cutoff
of 0.95 confidence interval was used.

Survival Analysis
Out of 9,640 tumor samples downloaded for 33 different tumor
types, 9,548 samples had survival information and these samples
were used for downstream analysis. For each immune cell type,
top and bottom 20 percent samples were selected as high and
low cell type-infiltrated groups for each tumor type separately.
Further 23 tumors were selected based on minimum 30 samples
in each high and low infiltration group. For these selected
samples survival time in days and vital status was used for
survival analysis between two groups. The two patient cohorts
are compared by a Kaplan-Meier survival plot, and the hazard
ratio with 95% confidence intervals and log-rank P-values are
calculated. Survival analysis was performed and represented
using R and additional package survival, ggplot2, reshape2,
ggrepel, and ggfortify. Additionally, in order to understand the
effect of two cell types on survival samples with high and low
scores for both the cell types were used and survival analysis was
performed for seven different cancers for which sufficient data
were available (30 samples in each group).

Cox Regression Analysis
T cell activation score was calculated as a weighted average of
gene expression of the genes GRAP2, CD247, CD3E, CD3D,
ZAP70, CD8B, CD1C, TDGF1, TCF7, SH2D1A, LCK, CTSL2
using the formula given below:

∑
(wi∗X)
∑

wi
(1)

where the weight (wi) is the reciprocal of variance of the
expression level of a gene, and X is the value of gene expression
(64). Multivariate Cox proportional hazards regression models
were used to assess the associations of CD8 T-cell functionality
in the high CD8T cell clusters. T cell activation scores were
treated as categorical variables in the models. Binary T cell
activation scores, high or low, was defined based on the cutoff
value of T cell activation scores determined by an algorithm of
the maximization of hazard ratio adopted in several papers (65).
Association analyses were adjusted for patient’s age at diagnosis
and disease stage and. Univariate and multivariate analysis was
used to compute the Cox proportional hazard regression models.
In all statistical analyses, a p-value < 0.05 was considered
significant surminer, survival, and survMisc packages was used
in R for the analysis.
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