
PERSPECTIVE
published: 20 December 2018

doi: 10.3389/fimmu.2018.03027

Frontiers in Immunology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 3027

Edited by:

Craig Michael Schramm,

University of Connecticut,

United States

Reviewed by:

Margarita Martin,

University of Barcelona, Spain

Werner Pichler,

Universität Bern, Switzerland

*Correspondence:

Mateusz Kwitniewski

mateusz.kwitniewski@uj.edu.pl

†Grzegorz Porebski

orcid.org/0000-0002-6146-0188

Specialty section:

This article was submitted to

Immunological Tolerance and

Regulation,

a section of the journal

Frontiers in Immunology

Received: 04 July 2018

Accepted: 06 December 2018

Published: 20 December 2018

Citation:

Porebski G, Kwiecien K, Pawica M

and Kwitniewski M (2018)

Mas-Related G Protein-Coupled

Receptor-X2 (MRGPRX2) in Drug

Hypersensitivity Reactions.

Front. Immunol. 9:3027.

doi: 10.3389/fimmu.2018.03027

Mas-Related G Protein-Coupled
Receptor-X2 (MRGPRX2) in Drug
Hypersensitivity Reactions
Grzegorz Porebski 1†, Kamila Kwiecien 2, Magdalena Pawica 1 and Mateusz Kwitniewski 2*

1Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland,
2Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland

The human ortholog MRGPRX2 and the mice ortholog, Mrgprb2 are activated by basic

secretagogues and neurokinins. A number of commonly used small-molecule drugs

(e.g., neuromuscular blocking agents, fluoroquinolones, vancomycin) have been recently

shown to activate these receptors under in vitro experimental conditions, what results

in mast cell degranulation. The above drugs are also known to cause IgE-mediated

anaphylactic reactions in allergic patients. The new findings on mechanisms of

drug-induced mast cell degranulation may modify the current management of drug

hypersensitivity reactions. Clinical interpretation of mild drug-provoked hypersensitivity

reactions, interpretation of skin test with a drug of interest or further recommendations

for patients suspected of drug allergy are likely to be reconsidered. In the paper

we discussed future directions in research on identification and differentiation of

MRGPRX2-mediated and IgE-dependent mast cell degranulation in patients presenting

clinical features of drug-induced hypersensitivity reactions.
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ANAPHYLAXIS

Anaphylaxis is a well-recognized, life-threatening medical condition. The clinical definition of
anaphylaxis involves the observation of acute symptoms in two or more body systems or is
associated with upper respiratory complications leading to asphyxiation and/or hypotension,
which may result in cardiovascular collapse. Pruritus, urticaria, angioedema, bronchospasm and
wheezing, hypotension, nausea, vomiting, and diarrhea are the usual clinical manifestations (1, 2).
Because of this plethora of symptoms, anaphylaxis continues to be under recognized in 80% of the
patients, who are admitted to the emergency departments of hospitals after medical procedures
associated with exposure to drugs (3).

An anaphylactic reaction may occur via an IgE-mediated (allergic) or a non-IgE-dependent
mechanism (previously called a pseudo-allergic or anaphylactoidmechanism) (4, 5). From a clinical
point of view they are impossible to distinguish by standard investigation. The effector phase of
reaction responsible for the above clinical picture is caused by the release of mediators from mast
cells and basophils. Mediators comprise histamine, which is well-known and has been extensively
studied for years; platelet-activating factor (PAF), which is relevant as a decrease in its degradation
predisposes to severe anaphylaxis (6) andmany others, such as neutral proteases (tryptase, chymase,
carboxypeptidase), proteoglycans (heparin, chondroitin sulfate), chemoattractans, and products of
arachidonic acid metabolism. Possible triggers for anaphylaxis include food and environmental
allergens such as nuts, egg, seafood, latex, Hymenoptera venoms (e.g., bee, wasp), as well as drugs,
which are described in more detail below (3).
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DRUGS AS TRIGGERS FOR
ANAPHYLACTIC REACTIONS

In parallel to the increase in the use of pharmacotherapy,
drug hypersensitivity reactions (DHR), including anaphylaxis
have increased significantly worldwide in the last 20 years
(3). Some groups of drugs have been well-known as being
triggers of anaphylactic reactions for years, for example beta-
lactam antibiotics or classical chemotherapy agents (carboplatin,
cisplatin, taxanes) (7). Other drugs, such as monoclonal
antibodies (mAbs), have entered into clinical practice more
recently, but they may also provoke immediate hypersensitivity
reactions. Chimeric mAbs (rituximab, infliximab) are reported
to induce these reactions more often than humanized mAbs,
however even fully human mAbs differ in glycosylation patterns,
which may result in the formation of allergenic determinants and
subsequent anaphylactic reactions (8).

Some drugs may elicit both IgE-mediated and non-IgE-
mediated hypersensitivity reactions. Neuromuscular blocking
agents (NMBAs) are considered to induce a majority of
the anaphylactic reactions which may occur during general
anesthesia (9, 10). Interestingly, up to 85% of these reactions
occur in patients without previous exposure to NMBAs (11).
Drug-induced anaphylactic reaction in drug-naïve patients can
be explained by IgE cross-sensitization or the presence of a non-
IgE-dependent mechanism. Fluoroquinolones represent another
group of drugs which may cause anaphylactic reactions in
drug-naïve patients (12, 13). Therefore, it is unlikely that these
reactions are the result of drug-specific IgE linking to FcεRI.
An alternative mechanism, based on mast cells activation by
means of the G-protein-coupled receptor X2 (MRGPRX2) (14),
will be discussed later. Patients with immediate reaction to
fluoroquinolones frequently do not demonstrate IgE reactivity
(15, 16) and again positive skin tests may be the result of
non-specific histamine release, especially when observed in
individuals tolerant to fluoroquinolones (17, 18). Similarly,
vancomycin, a glycopeptide antibiotic, is known to trigger not
only typical IgE-mediated immediate reactions, but also the so
called “red man syndrome.” This clinical entity is associated
with erythema and itchy rashes involving the face, neck, and
upper torso (19). How vancomycin provokes the mast cell
degranulation responsible for symptoms of “red man syndrome”
has not been sufficiently understood so far.

Having the above in mind, one should also take into account
that many drugs may cause IgE-mediated anaphylaxis without
previous exposure, because of cross-reactivity between specific
structures that are found in different molecules (e.g., substituted
ammonium groups on quinolones and NMBAs). Moreover, IgE
response may occur to simple chemicals after coupling them
to carrier proteins, to polyamines by recognition of primary
amine groups, as well as to a number of unreactive drugs
having neither suitable functional groups nor properties to form
drug-carries antigens (20). However, a huge number of drugs
have been shown to induce IgE-mediated reactions, laboratory
investigations aimed at identification of responsible factor are
relatively poorly available and/or existing routine diagnostic

methods have low sensitivity. Therefore, the fact that IgE to drugs
is not found does not rule out its presence.

MAST CELLS

Mast cells (MC) have largely been considered to possess a
key role in the production of immediate allergic reactions,
as upon activation they release a variety of mediators from
stored granules. But mast cells also participate in homeostasis
and inflammation, innate and adaptive immunity, as well
as angiogenesis in a variety of tissues (21). Thus, they are
mostly found in the host-environment interface, such as the
skin, lung, or gastrointestinal tract, which are challenged by
a variety of extrinsic agents—allergens and pathogens. During
the maturation process MC develop differences in granule
composition and tissue-specific receptor patterns (22, 23).
Mucosal (MCT) and connective tissue (MCTC) mast cells
represent two classical subtypes of these cells.

Allergens, (glyco) proteins, or auto-antibodies directed
against the FcεRI receptor (FcεRI) or receptor-bound IgE
antibodies cause MC degranulation after cross-linking and
aggregation of the surface-bound FcεRI (24, 25). However,
mast cell degranulation can be also achieved by non-IgE-
dependent pathways thanks to a wide range of surface receptors,
including toll-like receptors (TLR), protease-activated receptors
(PARs), or Mas-related G-protein coupled receptor member
X2 (MRGPRX2) (14, 26–29). Therefore, MCs are able to
identify and respond to a number of various exogenous (e.g.,
pathogen-associated molecular patterns, some contents of insect
venom, many drugs, polycationic molecules such as compound
48/80) and endogenous stimuli provoking degranulation (e.g.,
cytokines, anaphylatoxins, chemokines, IgG, neuropeptides such
as substance P) (25, 26, 30–32). Various stimuli are processed in
different ways and may result in distinct degranulation programs
as demonstrated by Gaudenzio et al. (33) (Figure 1). Therefore,
MC activation is not a uniform event. Some clinical entities
such as systemic mastocytosis and chronic urticaria show that
a number of co-factors can exacerbate symptoms by triggering
mast cells (e.g., physical factors such as heat and cold, pressure,
non-steroidal anti-inflammatory drugs, or iodinated contrast
media) (4, 5, 34–36).

Upon activation, MCs release a myriad of mediators
responsible for creating a clinical picture of immediate reaction.
Some of these mediators are preformed (histamine, proteases,
heparin), whereas others are newly formed (e.g., thromboxane,
prostaglandin D2, leukotriene C4, tumor necrosis factor alpha)
(37).

MAS-RELATED G-PROTEIN COUPLED
RECEPTOR X2 (MRGPRX2)

Systemic mast cell degranulation responsible for anaphylaxis is
in many instances IgE-mediated, but in a substantial number
of MC degranulation occurs without IgE involvement (26).
Of great interest in this regard is a landmark study by
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FIGURE 1 | Main receptor systems and examples of ligands involved in mast cell activation. Drugs can activate mast cells through both sIgE-dependent mechanism

and the MRGPRX2 receptor (14, 26, 38). These activation routes are independent and inversely regulated by SCF (51). QWF inhibits activation of human MRGPRX2

by a number of basic secretagogues and medications (47, 50, 52), but not by LL-37 (53). Granule processing and response program after the MRGPRX2

engagement differ from FcεRI-mediated response (32, 33). Several other representative MC receptor systems and ligands are shown (28, 29).CR, complement

receptor for corresponding complement components; CysLT1R/2R receptors, cysteinyl leukotrienes; FcγRII, a low-affinity receptor for IgG; FcεRI, the high affinity IgE

receptor; GM-CSF, granulocyte/macrophage colony-stimulating factor; IL, interleukin; KIT, mast/stem cell growth factor receptor (CD117); LPS, lipopolysaccharide;

LTC4, leukotriene C4; Abs, antibodies; MRGPRX2, Mas-Related G Protein-Coupled Receptor-X2; NMBA, neuromuscular blocking agents; PAR2, protease-activated

receptor 2; PGN, peptidoglycan; SCF, stem cell factor; sIgE, specific IgE; TLR, Toll-like receptor; TNF, tumor-necrosis factor; QWF–tripeptide (the

glutaminyl-D-tryptophylphenylalanine); VIP, vasoactive intestinal peptide. The schematic drawings were generated by modifying images obtained from Motifolio

(Motifolio Inc., Elliocott City, MD, USA).

McNeil et al. (14), who investigated the Mastocyte-related G-
protein coupled receptor X2 (MRGPRX2), and its ortholog,
the mouse protein-coupled receptor, Mas-related gene (Mrg)
receptor Mrgprb2. They were able to demonstrate that this
receptor upon activation with some drugs is capable of producing
direct MC degranulation and anaphylactic reactions. MRGPRX2,
a member of the Mas-related gene family, was found to be
expressed in sensory neurons, mast cells and, most recently,
in keratinocytes (38–41). MRGPRX2 mRNA is present in
adipose tissue, esophagus, urinary bladder, lungs with the highest
levels found in skin (Supplementary Figure S1A). Transcripts
were not detected in kidney, liver, ovary, or pancreas (42–
44). MRGPRX2 and Mrgprb2 mRNA was detected in adipose
tissue (43, 45). Our results show that Mrgprb2 is present in
visceral and subcutaneous mouse fat pads but not in sorted,
mature adipocytes (Supplementary Figure S1B). Thus, adipose

tissue resident cells seem to be a source of Mrgprb2 mRNA
but not adipocytes. We have also confirmed that Mrgprb2
transcripts are present in the skin. Surprisingly, we were unable
to detect Mrgprb2 mRNA in the urinary bladder, a result that
is inconsistent with available data (45). These discrepancies
can be attributed to differences in the immune state of
the animals, divergences in RNA-seq databases, differences in
primers specificity and the like.

Skin seems to be an important organ associated with
MRGPRX2-dependent reactions. Beside keratinocytes, the
MRGPRX2 is expressed at high levels in MCTC in the skin. The
increase in the absolute number and in percentage of MrgX2+
MC in all MC was observed in the skin of patients with chronic
urticaria (46). Human beta-defensins secreted by keratinocytes
were shown to induce degranulation in human mast cells
via MRGPRX2 (47). Taking the above into consideration
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interactions between keratinocytes and mast cells may therefore
be of potential interest.

Downstream signaling from MRGPRX2 involves activation
of the phospholipase C-beta pathway, which ends in the
release of the preformed and the de novo synthesized
mediators (26, 48). MRGPRX2-mediated responses seem
to be more rapid, but transient in comparison to IgE-
triggered events (33, 48). The canonical secretagogues
activating MRGPRX2 include basic peptides (substance P,
VIP, cortistatin, somatostatin), proadrenomedullin amino-
terminal 20 peptide, fragment 9–20 [PAMP(9–20)], some
drugs (e.g., morphine, hydrocodone) and cationic proteins
capable of producing direct MC degranulation (46, 49–51).
McNeil et al. (14) explored also the cationic peptidergic
drugs, which are given subcutaneously or intramuscularly
and frequently induce injection-site reaction: a local edema
accompanied by itch and erythema (Supplementary Figure S2).
They showed that representatives of common commercially
available drugs (e.g., icatibant, cetrorelix, leuprolide, sermorelin)
activate mast cells in an MRGPRX2-dependent manner.
Next, they focused on intravenous drugs representing small
molecules containing a tetrahydroisoquinoline (THIQ) motif
or similar structure, namely neuromuscular blocking agents
(NMBAs) and fluoroquinolones. They found that NMBAs
except succinylcholine and the four fluoroquinolones approved
for intravenous use (ciprofloxacin, moxifloxacin, levofloxacin,
ofloxacin) activate MCs through MRGPRX2 and Mrgprb2 (14).

Of note is that the loss of the receptor in Mrgprb2-null
mutant mice did not alter the IgE-mediated reaction, but abolish
secretagogue-induced histamine release (14). In another set of
experiments, the tripeptide abbreviated as QWF (glutaminyl-
D-tryptophylphenylalanine) was shown to inhibit activation of
human MRGPRX2 by basic secretagogues, such as compound
48/80, and also by atracurium (NMBA) and ciprofloxacin (52).
The same research group demonstrated that the aforementioned
vancomycin activates humanMRGPRX2 and that such activation
is prevented by QWF (Figure 1). Moreover, predictive molecular
modeling experiments have confirmed that a single amino
acid residue mutation in MRGPRX2 (Glu164Arg) prevents the
interaction between the receptor and common secretagogues
(substance P and compound 48/80). On the other hand, another
receptor agonist—LL-37, an antimicrobial peptide, activates
both native receptors and mutant receptors, which indicates
the presence of distinct activation sites for some receptor
agonists (53). In a very recent study, Navines-Ferrer et al.
(54) tested several drugs used in perioperative procedures
and anesthesia including opiates (morphine, remifentanil),
NMBAs (cisatracurium, rocuronium), iodinated contrast agents
(meglumine amidotrizoate, iohexol, iomeprol), antibiotics
(vancomycin, teicoplanin, amoxicillin-clavulanic acid),
nonsteroidal anti-inflammatory drugs (NSAIDs; diclofenac), and
anesthetics (propofol). Among those listed cisatracurium,
morphine, vancomycin, meglumine amidotrizoate, and
iomeprol induced LAD2 mast cells degranulation mediated
by MRGPRX2. However, the doses of meglumine amidotrizoate
and iomeprol exceeded the concentration usually administrated
to patients. Moreover, it was demonstrated that sera collected

from patients who had experienced anaphylactoid reaction
during anesthesia induced MC degranulation via MRGPRX2
dependent manner.

Single nucleotide polymorphisms (SNPs) are among the most
common types of genetic variations. Missense SNPs are thought
to affect the structure, interactions and properties of proteins
(55, 56). SNPs may be linked with MRGPRX2 variants that
might predispose individuals to hyperactivation by changing
the structure of MRGPRX2. Yang and colleagues (57) found
three specific amino acid substitutions in MRGPRX2 protein:
Asn16His, Asn62Ser, and Phe78Leu. Our analyses of SNP NCBI
databases and literature review (58) revealed 30 SNPs within
coding regions of the human MRGPRX2 locus (Table 1). Two
of the most common SNPs with a minor allele frequency
(MAF) of 0.3185 and 0.1130 result in amino acid substitution
from asparagine to tryptophan at 62 position (Asn62Thr) and
asparagine to histidine at 16 position (Asn16His), respectively.
It is consistent with the results published by Yang et al. (57).
The Asn62Thr affects the cytoplasmic domain 1 (CPD1) of
MRGPRX2 and Asn16His extracellular domain 1 (ECD1) as
predicted by Phobius (53). Other SNPs are rare or very rare
(MAF< 0.01). We have not found any SNP substituting amino
acid at 164 position that was shown to change MRGPRX2
binding of substance P and compound 48/80 in vitro (53). Very
rare SNP with MAF of 0.0014 affects the predicted by Reddy
et al. (53)MRGPRX2 binding pocket at 243 position (Trp243Arg)
located within transmembrane domain 6 (TMD6). However,
the extracellular domains of GPCRs are usually involved in
ligand/receptor recognition (57). Among all detected missense
SNPs only five may affect extracellular domains: Pro6Thr,
Asn16His, Gly165Glu, Asp252Tyr, His259Tyr. However, the
most recent study by Alkanfari et al. (58) showed that RBL-
2H3 cells expressing one of four missense SNPs (Gly165Glu,
Asp184His, Trp243Arg, His259Tyr; Table 1) failed to respond to
MRGPRX2 ligands including substance P, hemokinin-1, human
β-defensin-3, and icatibant. This may have important clinical
implications. Patients harboring listed SNPs may be protected
from drug-induced mast cell degranulation and hypersensitivity
reactions. Further studies are needed to determine how SNPsmay
change the ligand binding properties of MRGPRX2.

Basophiles are the blood cells corresponding to mucosal and
tissue mast cells in respect of functional and structural features.
Evidence on MRGPRX2 involvement in basophile activation is
limited. Some recent pilot data showed that surface expression of
MRGPRX2 on basophiles significantly increased upon unspecific
stimulation, but data come from a single conference report (59)
and should be treated as preliminary information.

In summary, the mice Mrgprb2 and the human ortholog
MRGPRX2 are activated by basic secretagogues and
neurokinins, but also a number of peptidergic drugs (i.g.
icatibant) that frequently induce the injection-site reactions
(Supplementary Figure S2) as well as small-molecule drugs
(NMBA, fluoroquinolones, vancomycin) that may produce
anaphylactic events. In addition, a drug-induced response is
reduced in Mrgprb2 knockout mice. Main physiological actions
and pathological relevance of the MRGPRX2 are summarized in
Supplementary Table 1.
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TABLE 1 | The list of SNPs within coding regions of the human MRGPRX2 locus.

SNP ID Mutation Nucleotide

variation

MAF Amino acid

change

MRGPRX2

domain

Response to ligands

gained/lost/not changed

1. rs10833049 Missense T > G C = 0.3185 Asn62Thr CPD1 n.d.

T > C Asn62Ser

2. rs11024970 Missense T > G G = 0.1130 Asn16His ECD1 Not changed

(HK1, SP, IC, hBD3) (58)

3. rs11823569 Missense C > T T = 0.0066 Val43lle TMD1 Not changed

(HK1, SP, IC, hBD3) (58)

4. rs564668393 Missense A > G G = 0.0066 Ser284Pro CPD4 n.d.

5. rs79763999 Missense A > G G = 0.0032 Phe78Leu TMD2 Not changed

(HK1, SP, IC, hBD3) (58)

6. rs60756581 Missense G > A A = 0.0022 Arg140Cys CPD2 n.d.

G > C Arg140Gly

7. rs114017828 Missense T > A C = 0.0022 Met324Leu CPD4 n.d.

T > C Met324Va

8. rs145992601 Missense G > C C = 0.0020 Leu31Val TMD1 Not changed

(HK1, SP, IC, hBD3) (58)

9. rs117328742 Missense A > C C = 0.0016 Ser313Arg CPD4 n.d.

10. rs150365137 Missense A > G G = 0.0014 Trp243Arg TMD6 lost (HK1, SP, IC, hBD3) (58)

11. rs75443524 Missense T > A C = 0.0010 Arg61Trp CPD1 n.d.

T > C Arg61Gly

12. rs572320540 Missense C > A A = 0.0010 Ala74Ser TMD2 n.d.

C > T Ala74Thr

13. rs118176470 Missense A > G G = 0.0006 Val108Ala TMD3 n.d.

14. rs140862085 Missense G > A A = 0.0004 His259Tyr ECD4 Lost (HK1, SP, IC, hBD3) (58)

15. rs542994968 Nonsense C > T T = 0.0004 Trp190Ter TMD5 n.d.

16. rs572101439 Missense T > C C = 0.0002 Thr224Ala TMD6 n.d.

17. rs564709381 Missense G > T T = 0.0002 Pro6Thr ECD1 n.d.

18. rs550191582 Missense T > C C = 0.0002 Ser103Gly TMD3 n.d.

19. rs543158275 Missense C > G G = 0.0002 Val51Leu TMD1 n.d.

20. rs531328060 Missense C > T T = 0.0002 Met196lle TMD5 n.d.

21. rs530355228 Missense G > C C = 0.0002 Pro322Ala CPD4 n.d.

22. rs372986472 Missense C > A A = 0.0002 Asp252Tyr ECD4 n.d.

23. rs201846837 Missense C > G G = 0.0002 Met119lle TMD3 n.d.

24. rs201177657 Missense G > A A = 0.0002 Pro142Leu CPD2 n.d.

25. rs181882698 Missense C > T T = 0.0002 Asp75Asn TMD2 n.d.

26. rs141141857 Missense G > A C = 0.0002 Pro238Ser TMD6 n.d.

G > C Pro238Ala

27. rs111606529 Missense G > A A = 0.0002 Arg290Trp CPD4 n.d.

28. rs528014472 Nonsense C > A A = 0.0002 Gly9Ter ECD1 n.d.

29. rs141744602* Missense C > T T = 0.000008 Gly165Glu ECD3 Lost (HK1, SP, IC, hBD3) (58)

30. rs372988289* Missense C > G G = 0.000008 Asp184His TMD5 Lost (HK1, SP, IC, hBD3) (58)

SNPs were extracted from NCBI dbSNP database (http://ncbi.nlm.nih.gov/SNP/) or Exome Aggregation Consortium (http://exac.broadinstitute.org/). SNPs validated by at least 1,000

Genomes Project are shown except SNPs marked with*. The localization of MRGPRX2 domains is based on work published by Reddy et al. (53). ECD, extracellular domain; CPD,

cytoplasmic domain; TMD, transmembrane domain; n.d., not determined; SP, substance P; hBD3, human β-defensin-3; HK1, hemokinin-1; IC, icatibant.

IMPLICATIONS AND HYPOTHESIS

McNeil et al. demonstrated that distinct drugs elicit the

MRGPRX2-related MC degranulation. The same drugs are

also known to cause IgE-dependent MC degranulation, which

results in producing local or systemic anaphylaxis (14).
It has been shown with human and mice MCs cultures
under laboratory conditions, but to what extent results can

be translated into drug-hypersensitive patients remains the
question.

Reactions are often observed upon first exposure in drug-
naïve patients, almost always after injection with icatibant, but
rarely during treatment with NMBA or fluoroquinolones. If the
reactions share the MRGPRX2-dependent mechanism, why do
they differ so much in respect of frequency and why do only a
small minority of individuals in the general population develops
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NMBA-induced reactions? There are theoretical possibilities (i),
that, even in the same subjects, some reactions are mediated
by drug-specific IgE, the others by MRGPRX2; (ii) that positive
skin tests reflect IgE-dependent sensitization and/or alternative
degranulation pathway and bothmechanismsmay be responsible
for cross-reactivity between drugs of interest.

One could also hypothesize that:

1. Mutation in the MRGPRX2 gene affects the risk of
anaphylactic events being mediated by the MRGPRX2
receptor. Mutation in a single amino acid residue was shown
to fail the activation of the receptor by the substance P and
the compound 48/80 (53). In the same paper, the authors
demonstrated that another receptor agonist, LL-37 activates
both mutant and native receptor. The receptor antagonist
QWF inhibits MCs activation with the substance P and
the compound 48/80, but not with LL-37, as described
above. Naturally occurring SNPs may abrogate MC-mediated
degranulation in response to MRGPRX2 ligands including
substance P, hemokinin-1, human β-defensin-3 and icatibant
(58). Our analyses revealed several other SNPs that could
potentially affect the ligand binding properties of MRGPRX2
(Table 1).

Therefore:

2. Icatibant and NMBA may interact with the MRGPRX2
through different active-sites of the same receptor, which
implies differences in frequency of induced reactions.

3. Also differences in intracellular molecular mechanisms
underlying the signalosome of MRGPRX2 may implicate
differences in response to stimulation.

4. Epigenetic modifications of MRGPRX2 due to environmental
influences represent another possible source of differences in
response to the drugs of interest. Although our own studies
have not revealed the CpG islands within the promoter region
of MGPRX2 gene (Supplementary Figure S3), methylation
status even of a single CpG locus can modulate protein
expression (60).

5. Post-transcriptionalmodification of RNAs, including capping,
splicing, and polyadenylation, could potentially result in
production of MRGPRX2 variants of different properties.
However, until now only two transcript variants ofMRGPRX2
have been described (43). Both encode the same protein.
Novel RNA transcripts within different cells and tissues can
be identified by RACE (rapid amplification of cDNA ends).

6. Alternatively, the expression of MRGPRX2 may vary
between individuals or in a single individual, temporarily or
constitutively, as it was shown in patients with chronic
urticaria, who had a significantly higher number of
MRGPRX2+ skin MCs and percentage of MRGPRX2+
MC among all MC in comparison to control subjects (46).
One may speculate that some diseases such as cutaneous
or/and systemic mastocytosis alter the physiological levels
and response mediated by MRGPRX2 (34). Also, different
MC phenotypes, as already aforementioned, differ in their
shape, released mediators as well as their response to stimuli
provoking degranulation (26). FcεRI-mediated mast cell

activation involves an inflammatory response mediated
by transcription factors (TFs) like AP-1, NF-kB, or NFAT
(61). Currently, it is not known which TFs can regulate
MRGPRX2 expression in response to different stimuli
(Supplementary Figure S3).

7. A number of MC triggering agents have been described, e.g.,
drugs, food, temperature (37). It is likely that in some cases,
merely the combination of co-factors has a cumulative effect
strong enough to achieve a sufficient level of MC activation
and to elicit degranulation. During anesthesia several co-
factors may be present simultaneously (i.e., opioides, NMBA,
temperature), which could explain why only certain patients
react to NMBA. The incidence of NMBA-induced anaphylaxis
was shown to be higher in the population exposed to
pholcodine (a common over-the-counter antitussive). One
explanation, widely discussed in published research on the
subject, is the presence of IgE-dependent cross-reactivity
between NMBA and pholcodine, as both possess similar
ammonium structures (37, 62). On the other hand tertiary and
quaternary ammonium (QA) structures are shared by many
compounds, so possibly there is something more specific
behind the relation between NMBA and pholcodine. Another
explanation suggests that QA ions bind directly to immune
receptors, including IgE on MC and cause their activation
(62). The exact mechanism of this phenomenon remains
unclear.

8. Further studies may uncover more MRGPRX2 ligands
inasmuch as some other drugs, apart from those
aforementioned, are known to induce non-IgE-dependent
immediate reactions (e.g., iodinated contrast media). The
MC degranulation in response to different triggering
agents can exhibit distinct features and dynamics (33). One
may hypothesize that rapid and transient change in drug
concentration in local MCs milieu produces a stronger
reaction than slower change. The simultaneous engagement
of a larger number of MRGPRX2 on MC may be necessary
to trigger degranulation. Such phenomenon would imply
differences in hypersensitivity reactions between drugs given
orally and parenterally, or provide additional insight into
mechanisms of desensitization, an insight which is based on a
re-administration of the drug with reduced speed.

9. Basophil activation tests are positive only in some of patients
with immediate drug-induced reactions, for example with
reactions due to exposure to moxifloxacin, belonging to
fluoroquinolones (63). It is not known if a negative BAT
reflects insufficient sensitivity of the method, or if a reaction
is mediated by MRGPRX2 and is undetectable by means of
measurement of CD63/CD203c expression in some cases. One
may put forward the hypothesis that patients with the same
phenotype share different or mixed endotypes of immediate
reaction. Additional studies closing this gap in our knowledge
would be of great value.

10. Taking into consideration the possible role of MRGPRX2
in drug-induced anaphylactic events, one of the burning
questions is the following one: if there was a blockade of
this receptor would we be able to prevent such episodes
happening? Under laboratory conditions the tripeptide
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QWF was shown to inhibit MC degranulation induced,
among others, by substance P, atracurium, and ciprofloxacin
(52). Whether tyrosine-kinase inhibitors (masitinib) or MC
stabilizers, such as sodium cromoglycate and ketotifen could
block MRGPRX2-mediated reactions needs to be investigated
(26, 64).

Addressing these issues would enable researchers to better
understand mechanisms of immediate drug-induced reactions
and may improve patient safety in the long term. Assuming
that certain polymorphisms of the MRGPRX2 gene and
expression levels of MRGPRX2 in the skin can pose a
phenotype predisposing some individuals to immediate drug-
induced reactions, a first possible approach of further studies
could be as follows: prick and intradermal skin tests with
drugs of interest (e.g., ciprofloxacin) performed with a very
broad range of drug concentrations in a group of a sufficient
number of healthy volunteers, who were exposed formerly to
tested drugs and tolerated them. In this way, the individual
threshold of response to a particular concentration of drug
could be identified. In the literature the reported thresholds
of non-irritant test concentrations of ciprofloxacin range from
0.000001 to 0.02 mg/mL (65). Then the correlation between the
drug concentrations eliciting skin response and the expression
of MRGPRX2 in the skin can be assessed, together with
investigation of polymorphisms in the MRGPRX2 gene, which
may affect receptor function. The latter one would be of interest,
especially in the individuals presenting extreme responses in
skin tests (responding to the highest and the lowest drug
concentrations). In the next step the similar approach could
be pursued to compare healthy controls and real patients with
drug-induced reactions, who are obviously less available. The
coexisting common IgE-depended drug allergy has always to be
taken into account.
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