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Many parasitic worms possess complex and intriguing life cycles, and schistosomes

are no exception. To exit the human body and progress to their successive snail host,

Schistosoma mansoni eggs must migrate from the mesenteric vessels, across the

intestinal wall and into the feces. This process is complex and not always successful.

A vast proportion of eggs fail to leave their definite host, instead becoming lodged

within intestinal or hepatic tissue, where they can evoke potentially life-threatening

pathology. Thus, to maximize the likelihood of successful egg passage whilst minimizing

host pathology, intriguing egg exit strategies have evolved. Notably, schistosomes

actively exert counter-inflammatory influences on the host immune system, discreetly

compromise endothelial and epithelial barriers, and modulate granuloma formation

around transiting eggs, which is instrumental to their migration. In this review, we discuss

new developments in our understanding of schistosome eggmigration, with an emphasis

on S. mansoni and the intestine, and outline the host-parasite interactions that are

thought to make this process possible. In addition, we explore the potential immune

implications of egg penetration and discuss the long-term consequences for the host of

unsuccessful egg transit, such as fibrosis, co-infection and cancer development.
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INTRODUCTION

Schistosomiasis is a chronic and potentially lethal tropical disease, mainly caused by the parasitic
blood flukes Schistosoma mansoni, S. haematobium, and S. japonicum. Schistosomes have evolved
to develop and thrive in their infected hosts, with untreated infections generally persisting for
3–10 years and a minority of infected individuals developing severe, life-threatening pathology
(1). Common among parasites, schistosomes possess rather peculiar life cycles. This includes
stages within definitive human hosts and secondary snail vectors, transformation through various
larval forms, and—importantly—a unique process of egg migration to leave their human host.
In this essential life cycle event, schistosome eggs pass from the host vasculature, across
intervening tissue and into the environment via host excretions. This enigmatic process, and its
pathological/immunological consequences, is the focus of this review, with particular emphasis
placed on the intestinal response to S. mansoni.

Adult S. mansoni worms reside deep within the mesenteric veins of the intestine, where they
feed on blood and acquire nutrients necessary for growth, development, and egg production (2).
Each worm pair produces ∼300 eggs daily, which exit the host by moving from the depths of
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the mesenteric vessels, across the intestinal wall and into the
intestine lumen (3, 4). Importantly, as schistosome eggs are not
in possession of any obvious motility mechanisms themselves,
their expulsion is likely to be heavily reliant on host-driven
processes. However, successful egg passage is not guaranteed.
Approximately half of all deposited eggs never reach the intestine,
but instead are swept to the liver, where they evoke strong
granulomatous inflammation, as characterized by the infiltration
of alternatively activated (AA) macrophages, eosinophils and
T-helper 2 (Th2) cells, with additional fibroblast proliferation
and generation of extracellular matrix (3–5). For the remainder
of intestinally-bound eggs, success is still not certain. Firstly,
eggs remain viable for a mere 2–3 weeks following oviposition,
providing them with a relatively short timeframe to make
this journey (6, 7). Secondly, due their high antigenicity and
continual release of antigens and other metabolites, transiting
eggs are easily detected by the host immune system, becoming
the focal point of inflammatory granulomatous reactions. If
these responses are too extreme, a variety of immune-pathologic
sequelae will follow (8).

As our understanding of schistosome immunobiology has
increased, it has become increasingly obvious that schistosomes
implement a variety of strategies to ensure efficient egg
transit. Within the vasculature, egg extravasation is promoted
by angiogenesis, endothelial activation, and interactions with
blood clotting components (9, 10). In the intestinal tissues,
schistosomes exert a variety of immunomodulatory influences to
support granuloma formation around transiting eggs, which is an
essential process in egg excretion (11–14). Directly related to this,
and to prevent overwhelming immunopathology, schistosomes
guide the immune response toward a more regulatory phenotype
during chronic disease. In this review we discuss the strategies
employed by schistosomes to favor egg passage, and outline the
potential immune implications and pathological consequences
that may follow (Figure 1).

ENDOTHELIAL EXTRAVASATION

Maturation and Mesenteric Migration
Before egg production can commence, schistosomes need to
mature to adulthood while navigating from the skin, via the
lungs to the mesenteric veins of the intestine (S. mansoni
and S. japonicum, causing hepatosplenic disease) or bladder
(S. haematobium, causing urinary schistosomiasis) (15–17).
Worm maturation occurs in the blood vessels and requires
the transduction of host-derived signals from male worms to
their female partner (18). Signals from the adaptive and innate
immune system are thought to be intimately linked with this
process (18). Notably, worm growth and reproductive activity
is severely stunted in the absence of CD4+ T cells, but can
be sufficiently restored through repeated stimulation of innate
immunity via toll-like receptor signaling or inflammasome
activation by endogenous danger signals (18–21). The specific
immunological factors that guide parasite development remain
poorly defined and controversial. For instance, while a functional
role for interleukin (IL)-7 in parasite development is generally
agreed upon, there is ongoing controversy surrounding the role

of TNF, with studies showing that both TNF neutralization and
administration can promote egg production (21–23).

At approximately 4–6 weeks post infection, sexually mature
worm pairs move to the mesenteric vessels, which is the site
of oviposition (17). Although eggs can be found throughout
the vasculature, certain sites may be favored (15). In mice,
oviposition appears to be concentrated in the Peyer’s patches
of the small intestine, while in primates and man, eggs are
more readily detected in the colon and rectum (15, 16, 24, 25).
Why oviposition shows such patterns is subject to speculation.
It is possible that worm migration is dictated by host-derived
signals (e.g., hormones or digestion products absorbed across
the intestine wall) or that worms preferentially exploit regions
of low sheer stress and high vascularization to avoid eggs being
swept away with the blood stream (15). Alternatively, blood
vessel diameter could be the major determinant, with adult worm
pairs being relatively large (∼0.5mm in diameter and up to
10mm long) in comparison to the mesenteric vessels that they
reside in Da’dara et al. (26). Furthermore, while S. mansoni
eggs are laid diffusely across the intestine and seldom produce
bulky, concentrated lesions, S. haematobium and S. japonicum
worms tend to deposit eggs in a few areas where a large number
of them are concentrated (15, 16). These deposition patterns
may reflect the unavoidable clumping of worms within host
vessels or, alternatively, worms may be attracted to factors at
the site of eggs-induced lesions, including substances released
from breached blood vessels (15). Finally, it is possible that egg
aggregation supports extravasation, with the build-up of egg-
derived proteases creating channels from the intravascular to
intraluminal space (27).

Even though migrating worm pairs are clear potential
obstructions to blood flow, schistosome infections are not
associated with enhanced blood clotting. In fact, individuals
with advanced hepatosplenic schistosomiasis have a reduced level
of blood coagulation factors, and blood clots are not observed
around worms in host vessels (28–31). Experimental studies have
also shown schistosome infections to impact blood-coagulation,
where blood from 7-week infected mice coagulates more rapidly
than control, with faster lysis of the clot formed (26). However, ex
vivo studies involving the exposure of adult worms to blood from
infected or non-infected mice, demonstrate an anticoagulant
effect of the adult parasite (26). Mechanistically, there is strong
evidence indicating that that schistosomes directly modulate
the host haemostatic system via a variety of bioactive secretory
products and molecules on the schistosome’s outer-surface
(tegument) (9). For instance, schistosomes inhibit blood clot
formation and/or promote blood clot lysis through the activities
of several tegumental enzymes, including enolase, SmSP2, SmAP
and SmCalp1&2, and vascular tone is modified through the
activities of SmSP2 and SmPOP (32–36). Altogether, such
processes can be viewed as a schistosome survival mechanism
in the blood stream, likely promoting residence and movement
while preventing unwanted vessel occlusion.

Endothelial Adherence
Schistosome eggs are striking structures, encased by a rigid
network of cross-linked proteins and, in the case of S. mansoni,
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FIGURE 1 | An overview of S. mansoni egg migration. Schistosome egg transit is facilitated by a series of host interactions at the intestinal and vascular interface. (A)

The development of schistosomes into sexually mature, egg-producing adults occurs within the portal vein (∼3–5 weeks post infection) and requires the transduction

of host-derived signals (including those from the innate and adaptive immune system) to the developing worm pair. Once sexual maturity is reached, worm pairs

migrate toward the mesenteric vessels, where the females lay approximately 300 eggs per day and actively modulates the intravascular environment to support their

long-term survival. The production of eggs at ∼5–6 weeks post infection is a milestone event in the schistosome life cycle, that is characterized by induction of a

marked Th2 response and angiogenesis. Notably, the generation of a Th2 response by the host is critical for egg passage, and new vessel formation may favor egg

transit, promoting the recruitment of immune cells and nutrients to developing granulomas. Freshly deposited eggs cannot move by themselves and must somehow

attach and extravasate the endothelium. Although yet to be fully defined, this process may involve E-selectin:-Lewis-x interactions, and participation from platelets,

ICAM-1 and VCAM-1. While a large proportion of eggs successfully penetrate the endothelium and reach intestinal tissue, many are swept to the liver or other distal

locations (e.g., brain or spinal cord). Since schistosome eggs are unable to transit through these organs, overwhelming tissue pathology and inflammation may ensue.

(B) Once schistosome eggs have passed across the host endothelium and out of the vasculature, they must cross the multi-layered intestinal wall. The host immune

system responds to transiting eggs via an inflammatory granuloma response, in which individual eggs are encapsulated by immune cells [including alternatively

activated (AA) macrophages, Th2 cells and eosinophils] and extracellular matrix (ECM), which protects host tissues from egg-derived toxins, but ultimately leads to

formation of fibrotic lesions. For unknown reasons, granulomatous responses need to successfully develop for effective egg excretion from the host. Accordingly,

schistosomes and their host have co-evolved a wide range of mechanisms to skew the host immune response toward granuloma-inducing Th2 profile. These include

the ability of soluble egg antigens (SEA) to promote alternative activation in macrophages and to condition dendritic cells (DCs) for Th2 polarization. However, to

prevent unwanted bystander tissue damage and potentially fatal immunopathology, schistosomes also implement various strategies to dampen host immunity and

expanded regulatory networks (Bregs and Tregs). There remain many unknowns surrounding egg migration. This includes the molecules secreted by eggs to disrupt

host barriers and modulate immune responses and, importantly, how egg penetration and intestinal ‘leakiness’ may influence local and systemic immune reactions.

characterized by a large protruding lateral spine. Due to the
high rigidity and inflexibility of their outer shell, schistosome
eggs must rely on external forces to bring them toward to
the endothelial lining (37). It has long been suggested that the
activemigration of endothelial cells over schistosome eggs, brings
the eggs into close contact with the vessel lining (38). More
recently, video imaging has suggested that female worms prompt

egg-endothelial associations via strong muscular contractions
at their genital pore (dorsiflexion) that thrusts their eggs into
the endothelium (7). Once brought into close contact with the
endothelium, eggs likely tether themselves to endothelial surface
adhesion molecules, including ICAM-1, VCAM-1 and E-selectin
(39, 40). However, while binding to E-selectin is likely mediated
by egg-shell components glycosylated with Lewis-x motifs (40),
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there are no obvious integrin-like structures within the egg-
shell identified yet that bind ICAM-1 or VCAM-1. Interestingly,
ICAM-1 shows strong upregulation in response to eggs and
SEA (39), and soluble ICAM-1 levels are constitutively higher
in schistosome-infected individuals and positively correlate with
egg excretion rates (41). Additionally, there is evidence to
show that ICAM-1 not only mediates egg binding, but also
participates in the generation of granulomatous inflammation
around parasite eggs, by regulating leukocyte trafficking, vascular
permeability and modulating T cell responsiveness to soluble egg
antigens (SEA) (39, 41, 42). As later discussed, intact granuloma
formation is essential for successful egg expulsion.

Freshly deposited eggs are immediately surrounded by cells
and proteins of the haemostatic system, including the plasma
proteins von Willebrand factor (VWF), fibrin and fibrinogen
(7, 43, 44). In addition to ICAM-1, E-selectin and VCAM-1,
schistosome eggs may bind to these haemostatic components
to promote their anchorage to the endothelium and to prevent
them from being swept away with circulation. Indeed, the
administration of platelet inactivating drugs to S.mansoni-
infected mice results in significantly diminished egg excretion
rates (45). By closely analysing the interactions between eggs and
such components, deWalick and colleagues demonstrated that
the schistosome egg-shell directly binds to VWF: an adhesive
glycoprotein that tethers clotting material (such as platelets) to
the activated endothelium (43, 46). This binding is suggested
to benefit egg extravasation in two ways. VWF could form a
direct bridge between eggs and the extracellular matrix, and/or
the binding of VWF to clotting material may induce stable clot
formation, making it easier for eggs to adhere to the endothelium.

The role of the schistosome spine in egg migration is not
known. Given that S. japiconium eggs are virtually spineless, it
is unlikely that the schistosome spine plays a major function.
In fact, a recent report comparing egg morphology between
Praziquantel resistant and susceptible S. mansoni infection
suggests that the spine actually hinders egg transit (47). More
specifically, resistant strain eggs were shown to have smaller
lateral spines than susceptible strain eggs, and were also more
frequently shed into host feces (47). Thus, from an evolutionary
standpoint, perhaps S. japiconium has taken advantage of spine
absence. However, based on the repeated observation that
S.mansoni eggs clump to one another at their spine tip, it is also
possible that spine-to-spine clumping enhances the cytotoxicity
of freshly deposited eggs, promoting channel formation through
host tissues and/or accelerating granuloma development (27, 48).

Eggs and Angiogenesis
Schistosomes not only reside and produce eggs within blood
vessels, but also appear to promote their formation (49).
Angiogenesis is a complex process in which new vessels
develop from pre-existing ones, creating an environment that
favors tissue growth and repair (50). This sequential process is
guided by pro-angiogenic factors (such as VEGF, angiopoietin
and inflammatory cell-derived chemokines) which instruct
endothelial cell activation, proliferation and reorganization (50).
Evidence for schistosome-induced angiogenesis can be found
in both human studies and experimental models. During

murine infection, vascularity is significantly enhanced in areas
of high egg concentration (including the Peyer’s patches) and,
when angiogenesis is inhibited, there is a reduction in worm
load and hepatic egg deposition (10, 24, 51). In human
studies, mucosal biopsies containing S. haematobium eggs are
more vascularized than healthy, egg-free control tissue (52).
In addition, schistosomiasis patients have significantly higher
serum VEGF levels than healthy individuals, or those with
active hookworm infections (10) Schistosomes likely promote
neovascularization to sustain their life cycle, for several reasons.
First, the remodeling of intestinal vasculature may increase
the number of worms the blood vessels can accommodate
and reduce egg “spill over” into hepatic tissue (24). Second,
angiogenic responses could enable the recruitment of leukocytes
to developing granulomas, and ensure an adequate supply of
oxygen and nutrients at these sites (53). Third, increased vessel
density may impair intestinal tissue, making it easier for eggs to
disrupt and move through (52). Finally, similar to what has been
observed in cancer, growth of new vessels would maintain blood
flow in scenarios of vessel occlusion (e.g., by worm pairs and their
eggs). Furthermore, conditions created by vessel occlusion such
as hypoxia, acidic PH and low glucose concentration, may also
contribute to the neovascularization observed (54).

While adult worms have poorly defined roles in the induction
of angiogenesis, secretory products of schistosome eggs (soluble
egg antigens, or SEA) have been shown to instruct angiogenesis
via direct and indirect mechanisms. Investigations using human
umbilical vein endothelial cells have shown that SEA can
directly encourage endothelial cell proliferation, migration,
sprouting and production of VEGF (54, 55). The extent of
angiogenic activity can be influenced by host genetics, and lies
within the glycoprotein fraction of SEA (56, 57). Indirectly,
SEA induces angiogenesis through the actions of alternatively
activated (AA) macrophages and hedgehog signaling (58). In
this case, SEA stimulates macrophage secretion of biologically
active hedgehog ligands, which subsequently activate hedgehog-
responsive endothelial cells to proliferate and secrete angiogenic
factors. The fact that sprouting blood vessels are more frequently
observed around viable ova as opposed to dead or dying calcified
ova, strongly suggests that substances actively secreted from eggs
are responsible for new blood vessel formation (52).

In addition to angiogenesis, endothelial activation by
schistosomes may also support granuloma formation.
Schistosome triggered VEGF significantly increases proliferation
of and extracellular matrix deposition by hepatic stellate cells,
which are the main source of extracellular matrix around
schistosome eggs in the liver (59). Whether similar mechanisms
are involved in intestinal granuloma formation is unknown,
though it is tempting to speculate that endothelial cells lining
mesenteric vessels could be activated upon worm encounter to
secrete pro-fibrotic factors, such as VEGF, IL-13, TGF-β, or IL-33,
to intestinal-resident cells involved in fibrosis. IL-33, for instance,
is constitutively expressed by endothelial cells, and has recently
been shown to support liver granuloma pathology through the
induction of pro-fibrotic AA macrophages (60, 61). In addition,
VEGF partially regulates Th2 inflammatory responses in the
lung and liver in response to schistosome eggs (62). Given that
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type 2 immune responses are essential for adequate granuloma
formation, it would be interesting to define a role for VEGF in
intestinal granulomatous reactions.

Overall, schistosomes employ a variety of strategies within
host blood vessels that favor their survival and life cycle
propagation. Increased understanding of these interactions could
identify new targets for the prevention of severe disease during
schistosomiasis. For instance, direct targeting of adult worms
could prevent or reduce the production of eggs and their
accumulation within host tissues, which is the primary cause of
pathogenesis during schistosome infection.

INTESTINAL PASSAGE

After successfully extravasating the mesenteric vessels
schistosome eggs are confronted with a much larger anatomical
hurdle: the intestinal wall. This extensive barricade is the
host’s largest interface with the external environment, its
luminal side in constant exposure to the contents of the
intestines, including innocuous (food) antigens, commensals
and pathogens (63). To efficiently segregate the host from this
hazardous environment, the intestinal wall incorporates a dense
network of immune cells and an innermost monolayer of tightly
aligned intestinal epithelial cells (IECs). IECs and resident
immune cells communicate with one another to reinforce barrier
integrity, maintain homeostasis and mount robust responses
against invading threats—schistosome eggs included. However,
despite the host response against them, a large proportion of
eggs successfully transit across the intestinal tissues and exit the
host body. Crucially, to enable this process while limiting enteric
inflammation, schistosomes have evolved several strategies
to modulate host immune responses and manipulate host
barriers. For example, as illustrated in Figure 2, schistosome
eggs are capable of digesting through the intestinal muscular
layer (muscularis mucosae) without triggering significant
inflammation or immune infiltration. This process likely
involves a collaboration between egg-derived proteases (yet to
be defined) and immune cells that have been recruited to the
serosal tissue and/or mesenteric vessels (24). In particular, the
strategies employed by schistosomes to favor migration of eggs
through the intestine likely heavily involve Th2 polarization and
granuloma maintenance.

Moreover, due to infection longevity and the continuous
passing of eggs, it is currently unclear, and difficult to assess,
which intestinal layer schistosome eggs are predominantly
located (i.e., serosa, submucosa, or mucosa). However, H&E
images from infected mouse intestine show that eggs tend to
penetrate through the muscularis-serosa layer en route to the
lamina propria (64).

Promoting Granuloma Formation
S. mansoni eggs are highly antigenic structures that continuously
secrete a variety of innocuous, toxic or antigenic substances
into host tissues (6). Accordingly, infiltrating eggs are focal
points for the host immune system, which mounts a distinct
attack and sequestration strategy in response: the granuloma.
Granulomas are highly organized, multi-cellular structures that

FIGURE 2 | S. mansoni egg penetrating through the intestinal wall. Light

microscope image of Masson’s Trichrome stained ileal section (5µm) from a

C57BL/6 mouse 6 weeks after percutaneous infection with approximately 40

S. mansoni cercariae.

are enriched with a range of immune cells including Th2
cells, macrophages and eosinophils, with mast cell infiltration,
accumulation of type 2 cytokines (such as IL-4, IL-13 and IL-5)
and additional involvement from stromal cells/fibroblasts. Type-
2 cytokines instruct the polarization of macrophages toward an
alternatively activated (AA) phenotype, whom are essential to the
resolution of egg-induced inflammation and tissue damage (65–
67). After reaching maximal responses, granulomatous lesions
decline in size and become fibrotic, with IL-13 being the main
cytokine responsible for fibrosis, mediating its effects throughAA
macrophages and fibroblasts (5, 68, 69).

It is important to highlight that although these egg-triggered
inflammatory reactions can also be found throughout infected
liver, there are distinct differences between intestinal and
hepatic granulomas in terms of size, cellular composition and
extracellular matrix deposition (7, 70). These finding arguably
reflect the higher proportion of dead eggs within infected liver,
and so differences in egg secretions between the two tissues.
Alternatively, they may suggest that the local tissue environment
has a large bearing on granuloma function and development. In
the case of intestinal granulomas, it would be very interesting
to disentangle intestinal bacterial involvement, as studies on
antibiotic-treated mice show only intestinal granulomas, but not
hepatic granulomas, to be influenced by antibiotic administration
(71). Moreover, it is unknown whether intestinal granulomas
are better “designed” for egg excretion than their hepatic
counterparts. Furthermore, while the immunology of hepatic
granulomas has been studied extensively over past decades,
our understanding of intestinal granulomas is considerably less.
Accordingly, most of the data discussed in the following section
has been obtained from studies on hepatic granulomas, and
we cannot rule out the possibility that intestinal granuloma
development may differ from their hepatic counterparts.

The schistosome granuloma is both beneficial and detrimental
for the host (5). On the one hand, granulomas protect host tissues
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from egg-derived toxins such as Omega-1 and IPSE/alpha-
1, which can cause severe damage (72). On the other hand,
the fibrotic sequelae that follows granuloma resolution is the
main cause of pathology and lethality in schistosomiasis (5).
At the same time, in a remarkable example of co-evolution,
granulomas are thought to be essential for schistosomes and
continuation of their life cycle. Early studies in immunodeficient
mice demonstrated the crucial role of granulomas in egg passage,
with egg excretion rates plummeting in mice failing to generate
intact granulomas, leading to lethal microvascular damage (11–
14). These data also underscored the importance of host T cells
in granuloma development, results that were later corroborated
by studies in HIV+ infected people, in whom egg excretion
rates were found to positively correlate with circulating CD4+ T
cell levels (73). Furthermore, Th2 immunity is critical for intact
granuloma development and host survival, sincemice deficient in
IL-4 and IL-13 signaling die during acute disease due to elevated
intestinal and hepatic pathology, oxidative damage, endotoxemia
and cachexia (65, 68, 74–76). Therefore, it comes as no surprise
that schistosomes actively modulate host immune responses to
ensure a Th2 bias is achieved.

Infection with S.mansoni follows a predictable immunological
pattern, with a mixed, low level Th1/Th2 profile prevailing in
the initial 4–5 weeks, then Th2 responses dominating from the
point of egg production, with parallel expansion of regulatory
cell networks that exert their influence most dramatically during
chronic infection (77). Although many innate cell types help
establish the Th2 milieu, dendritic cells (DCs) are essential (78)
(79). Using their vast array of pattern-recognition receptors
(PRRs), DCs sense, process and present schistosome egg-derived
antigens to naïve CD4+ T cells, instructing Th2 development by
yet to be fully defined mechanism (80).

SEA is a complex mixture of immune-stimulatory antigens,
that is well known for its capacity to condition DCs for
Th2 priming (81–84). Omega-1, a glycosylated T2 RNase, is a
single component of SEA and potentially, the most powerful
inducer of Th2 responses (85, 86). Omega-1 is taken up through
mannose receptors on DCs and enhances Th2 polarization by
degrading mRNA and ribosomal RNA, leading to reduced co-
stimulatory molecules expression (CD83 and CD86) and reduced
production of the Th1 promoting cytokine IL-12 (85, 86).
Somewhat unexpectedly, SEA and Omega-1 can also stimulate
DC production of Type-I IFN (normally associated with anti-
viral responses), which enables their initiation of Th2 responses
(87, 88). However, it is important to note that Omega-1 is
not the only SEA component involved in DC conditioning,
as SEA depleted of Omega-1 and S.mansoni eggs with specific
Omega-1 knock-down still retain some of their Th2 polarizing
potential (85, 89). In addition, Kaisar and colleagues very recently
identified a novel pathway in Th2 polarization that entails
Dectin1/2 signaling on DCs and works independently of the
actions of Omega-1 (90). Overall, the impact of egg antigens
on host innate immune cells is complex and multifactorial,
often flouting convention, but with the cumulative effect being
initiation of a strong Th2 response.

It is important to realize that although Th2 skewing is
primarily ascribed to eggs, adult worms are also capable of

instructing a Th2 environment before the onset of egg production
(91). In fact, by comparing granuloma formation betweenmodels
of natural infection and portal vein egg injection, Leptak and
colleagues demonstrate that granuloma development requires
both worm- and egg-derived signals (92). Notably, while the
inflammatory reaction toward portal vein injected eggs is
minimal in terms of reaction volume, cellular infiltration and
collagen deposition, these reactions can be sufficiently restored
if eggs are injected into mice previously infected with single-
sex male cercariae or exposed to adult worm homogenates (92).
Mechanistically, this ‘priming’ effect could be explained by the
sharing of antigens between adult worms and eggs (92). Further,
cytokines produced in response to adult worms may be key to
granuloma induction (23, 42, 92). In particular, the cytokine TNF
is thought to be exclusively produced in response to adult worms,
and may be able to restore granuloma formation in naïve mice
injected with eggs alone (92). Interestingly, it has been suggested
that the production of TNF may be linked to phagocytosis of
worm-regurgitation products by local macrophage populations
(92, 93).

The schistosome granuloma is hallmarked by the
accumulation of AA macrophages, which predominantly
arise from the recruitment of Ly6CHi monocytes, as opposed
to the proliferation of local macrophage populations (94, 95).
AA macrophages are activated by type-2 cytokines (IL-4/IL-
13), characterized by the expression of various signature
genes (such as arginase 1, Ym1, Relmα) and are thought
to prevent potentially lethal host pathology via a variety of
mechanisms (67, 96). This includes coordinating the recruitment
of collagen and cells to developing granulomas, regulating T-cell
proliferation, facilitating tissue repair and regeneration, and
inhibiting the differentiation of classically activated macrophages
(CAMs), which generate pro-inflammatory cytokines and
cause oxidative tissue damage (67, 97, 98). Crucially, thanks to
the wound healing capacities of AA macrophages, intestinal
barrier integrity is sufficiently maintained during egg migration
and the host is shielded from enteric bacteria (67). Indeed,
in mice deficient in IL-4/IL-13 signaling specifically on
macrophages and neutrophils [LysM(Cre)IL-4Ralpha(-/flox)
mice], AA macrophages do not develop and mice are extremely
susceptible to S. mansoni infection (100% mortality during
acute disease) (65). Importantly, acute mortality was associated
with exaggerated Th1 pathology, severe hepatic and intestinal
damage, impaired egg excretion and sepsis (65). In more recent
studies, AA macrophages have also shown to maintain tissue
integrity in models of urogenital schistosomiasis (66), and
their protective function has been partially attributed to the
enzyme arginase-1 and resistin-like molecule (RELM)-α (98–
101). Notably, arginase-1 contributes to the long-term survival
of schistosomiasis by restricting Th1 and Th17 associated
immunopathology, and RELM-α acts as a negative regulator of
Th2 responses (98–101). Moreover, while YM-1 is an additional
phenotypic marker of AA macrophages, its contribution to Th2
responses during schistosomiasis remains undefined. However,
various reports suggest a role for YM-1 in Th2 differentiation
(102, 103). Of note, our understanding of the complexity of
‘M2’ macrophages, and the range of cytokines that can promote

Frontiers in Immunology | www.frontiersin.org 6 December 2018 | Volume 9 | Article 3042

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Costain et al. Schistosome Egg Migration

aspects of M2 polarization, is continually growing, with IL-10,
TGF-β and IL-33 also shown capable of instructing alternative
activation (61, 104–106).

Schistosomes not only rely on cytokines to instruct AA
macrophages induction, but also play a direct role in
their polarization. Schistosome-derived molecules that may
contribute to alternative activation include SEA, peroxiredoxin,
lysophosphatidylcholine and hemozoin (101, 107–110). SEA,
for instance, appears able to directly interact with macrophages
to instruct an AA phenotype, or indirectly elicits an AA
profile via IL-33 and its receptor ST2 (61, 109). Interestingly,
in a model of intravenous S.mansoni egg injection, mice
deficient in ST2 demonstrated impaired production of Th2
cytokines and primary granuloma development (111). However,
this study did not assess the influence of ST2 deficiency on
macrophage function or polarization. Another molecule that
influences macrophage polarization is hemozoin. Hemozoin is a
neutralized version of heme that schistosomes regurgitate into
the bloodstream following the digestion of host erythrocytes
(110). Hemozoin crystals spontaneously aggregate in the liver,
where their consumption by patrolling macrophages promotes
an alternatively activated phenotype, including the expression
of the Th2 negative regulator RELM-α (99–101). Moreover,
the uptake of these worm-regurgitation products by antigen-
presenting cells has been suggested to induce the production
TNF, which has previously shown a key role in granuloma
formation (23, 42, 92).

In terms of other myeloid cells, eosinophils and mast cells
are cardinal features of the schistosome granuloma, but their
function there remains elusive. While older studies suggest that
eosinophils favor egg passage by digesting the epithelial basal
membrane, more recent models of eosinophil ablation found
no obvious role for them in this process or for granuloma
formation, fibrosis or worm burden (112–114). In this context,
mast cell function also remains a mystery. During Trichinella
spiralis infections, mast cells mediate parasite expulsion and
disrupt epithelial barrier function through the release of mast cell
protease 1 (mMCP-1), a serine protease that degrades TJ proteins
(115). These observations prompted investigations into the role
of mMCP-1 in barrier integrity during schistosome infections,
but no functional role was found in this setting (116). However,
mast cell secretion of pro-angiogenic factors could support egg
extravasation (117). Additionally, the strong Th2 milieu may
simply promote the recruitment of eosinophils and mast cells
to the area, where it is possible that both cells types represent
(minor) innate sources of Th2 associated cytokines, and so help
sustain granulomas.

The alarmins IL-33, IL-25 and TSLP (thymic stromal
lymphopoietin) are important initiators of type 2 immune
reactions that are released from the epithelium, endothelium
and other stromal compartments upon damage and stress (118).
Although yet to be formally demonstrated, their release could be
triggered by egg migration. While individual ablation of TSLP,
IL-25, or IL-33 has no discernible impact on hepatic granuloma
formation and fibrosis during chronic S. mansoni infection,
simultaneous blockade of all three signaling pathways results
in a modest decrease in Th2 associated pathology by 9 weeks

of infection, including a reduction in granuloma-associated
eosinophilia, hepatic fibrosis and IL-13 producing type 2 innate
lymphoid cells (ILC2s) (119, 120). However, such effects were
transient in nature and no longer significant by 12 weeks post
infection, suggesting that these alarmins are dispensable for the
development and maintenance of egg-induced pathology (120).
Similarly, the observed reduction in ILC2 activity appeared to be
compensated for by enhanced CD4+ T cell responses, indicating
that ILC2s also have no major function in the maintenance of
type 2 inflammation in this particular setting. Considering the
essential role of Th2 responses in granuloma formation and
egg expulsion, it makes sense that compensatory mechanisms
are at play, and that schistosomes are not overly reliant on the
unregulated release of stromal mediators for development or type
2 immunity. However, given that ILC2s have been shown to
be important initiators of Th2 responses during gastrointestinal
helminth infections, and to significantly contribute to wound
repair responses at mucosal surfaces, further studies are required
to reach a formal conclusion on the involvement of ILC2s
in schistosome-associated Th2 inflammation (121–123). In
addition, although the aforementioned study signposts the
redundancy of alarmins in type 2 immunity during schistosome
infection, there remains the possibility that they contribute to
regulatory cell expansion during chronic stages of disease (124).

Exiting the Epithelium
Tight junctions (TJs) are the final hurdle that schistosome eggs
must overcome to transit through the intestinal wall and exit the
host. TJs are multi-protein complexes that tightly link adjacent
IECs at their apical membranes, creating virtually impermeable
seals. In this manner, TJs regulate para-cellular permeability
(the movement of substances between adjacent cells) and are
essential for maintenance of intestinal barrier function (125). In
scenarios of TJ disruption, intestinal barrier function is impaired,
allowing for enhanced permeation of luminal substances (such as
bacteria, antigens, toxins and metabolites) into mucosal tissues
and the systemic circulation (125). Both experimental models
and human infection studies hint toward increased intestinal
permeability during schistosome infections.Mice experimentally
infected with S. mansoni demonstrate reduced ileal integrity from
8 weeks post infection, and S. mansoni infections in humans
are associated with extremely high levels of endotoxin in the
bloodstream (116, 126). In addition, the lethality of experimental
schistosomiasis in scenarios of AA macrophage impairment is
partially attributed to mass disruption of the intestinal wall and
sepsis, with a common gastrointestinal symptom of intestinal
schistosomiasis being blood in stool (65, 127).

One future goal is to better define schistosome-epithelial
interactions. Namely, is intestinal epithelial disruption solely
driven by damage caused by egg migration and/or, do
schistosomes actively modulate components of the epithelial
barrier to favor egg migration? In a unique model of urogenital
schistosomiasis, in which S. haematobium eggs are directly
introduced to the bladder wall, eggs were shown to suppress the
transcription of multiple genes implicated in urothelial barrier
maintenance, including junctional adhesion molecules claudin
and uroplakin (128). These data indicate that schistosome eggs
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not only physically disrupt TJs as they pierce through the
intestinal lining, but also suppress the transcription of various
TJ related genes, which could facilitate egg transit. However, in a
separate study, S. japonicum eggs were instead found to reinforce
intestinal epithelial barrier function and relieve inflammation
in the TNBS colitis model (129). Crucially, prevention of
experimental colitis was accompanied by reduced bacterial
translocation and enhanced levels of tight junction molecules
(Zo-1 and occludin). This study suggests that eggs can fortify
the intestinal barricade to prevent potentially lethal bacterial
translocation, and thereby enhance host survival. Perhaps the
discrepancies between these two studies reflect the manner of
egg introduction: direct egg injection into the bladder wall vs.
injection into the peritoneal cavity. More specifically, could the
introduction of eggs into the peritoneal cavity influence the
function of intestinal cell types? Direct injection of eggs into
intestinal tissue, as very recently described (130), may provide
a novel approach to study the impact of S. mansoni eggs on
intestinal barrier integrity.

In addition to direct effects of schistosome eggs, intestinal
permeability can be influenced by cytokines such as IFN-y, TNF
and IL-13, as well as epithelial cell apoptosis and exogenous
factors such as diet and non-steroidal anti-inflammatory
drugs (125, 131). With regards to cytokine-mediated barrier
dysfunction, it was recently demonstrated that schistosome eggs
are incapable of penetrating through epithelial cells themselves,
but require pro-inflammatory mediators TNF and/or IFN-γ to
disrupt tight junctions and reduce intestinal epithelial resistance
(71). Schistosome eggs appear not to stimulate production of pro-
inflammatory cytokines by DCs, which suggests that other local
mediators or cell types may be involved (71, 80). Alternatively,
the tissue damage caused by egg transit, compounded by
involvement of intestinal bacteria, could conceivably stimulate
production of such cytokines (71). Furthermore, IL-13 has shown
to induce epithelial apoptosis and increase the expression of
the pore forming TJ molecule claudin-2, indicating that Th2
responses themselves can be instrumental to decreased barrier
integrity (131).

Once eggs rupture past IECs they are met by a stratified
layer of mucus, whose nature and function in schistosomiasis
remains undefined. Mucus secretion is likely enhanced during
schistosome infections, given that the IL-4/IL-13 signaling axis is
critical to goblet-cell hyperplasia and mucus secretion (132, 133).
Whether such alterations influence egg expulsion is unclear.
In gastrointestinal nematode infections, mucus mediates the
rapid expulsion of these parasites by limiting their motility and
preventing their establishment within the gastrointestinal tract
(132). Applying these observations to schistosome infections, it
is possible that increased mucus generation leads to accelerated
expulsion of eggs into the environment. In addition, since
intestinal mucins are capable of instructing important pro-
inflammatory functions in DCs, it is tempting to suggest that
mucins may contribute to modulation of the inflammatory
environment during schistosomiasis (134). Directly related to
this, the exposure of DCs to mucins may be increased by egg-
induced disruption of the intestinal barrier.

While larval and adult gastrointestinal nematodes likely
interact with IECs for prolonged periods of time, schistosome

eggs transiently move past or through them during transit. It
is unknown whether these different exposure times influence
how IECs sense and respond to the parasite infections. Very
recently, intestinal tuft cells (a rare IEC population) were shown
to instigate type 2 immunity in response to gastrontestinal
nematodes infections (135–138). As tuft cell research is still
in its infancy, defining the interactions between tuft cells and
schistosome eggs remains an open and interesting point of
further study.

MICROBIAL MEDIATED MIGRATION

In the face of the complexity of the immunopathology they
generate, schistosome eggs ultimately transit from the mesenteric
vessels via the serosa, the muscularis, the epithelium and the
mucosa into the intestinal lumen, where a dense and vibrant
microbiota surrounds them. As discussed above, successful egg
penetration requires carefully coordinated interactions between
host and parasite. These interactions can be extended to a third
partner: the intestinal microbiome (herein, defined as commensal
bacteria, viruses and fungi).

Helminths and the microbiome have co-evolved with their
mammalian hosts over millennia, so extensive interactions exist
between the three parties (139). Many helminths favor the
establishment of defined microbial communities to support their
own infectious life cycle and improve the overall wellbeing of
the host. For instance, Trichuris muris uses intestinal bacteria
as environmental hatching cues and Heligmosomoides polygyrus
infections alter cecal microbiome composition, leading to a
greater availability of short chain fatty acids (SCFAs) that dampen
allergic responses (140, 141). While the interface between host,
microbiota and intestinal-dwelling nematodes is beginning to
be understood, there is currently a paucity of information on
this topic about schistosomes, and whether they also remodel
gut microbiome composition to support their own life cycle and
lessen host pathology.

In mice, experimental S. mansoni infections are accompanied
by profound changes in microbiota composition from at
the point of egg production, including the expansion of
Akkermansia muciniphila and bacterial populations from the
Family Lactobacillaceae (142). The expansion of these bacterial
communities may favor chronic schistosome infection by
elevating the frequency of regulatory cell populations, or
repairing egg-induced damage to the intestinal wall (143, 144).
Further, a recent study using a broad spectrum of antibiotics
showed that bacterial depletion reduces fecal egg excretion
and intestinal granuloma development during murine infection
with S. mansoni (71). In contrast, worm fecundity and liver
pathology was not influenced by antibiotic administration,
indicating that intestinal granuloma development and egg transit
is particularly dependent on local, bacterially-derived factors.
These factors could include bacterially-induced cytokines, such
as IFN-y and TNF, that are needed for tight junction severance
(71, 125). Complementing these studies, metabolic analysis
of feces from mice experimentally infected with S. mansoni
reveals several alterations in gut-bacteria related metabolites
from day 41 of infection, including a greater availability
of the SCFA, propionate (145). Additionally, differences in
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intestinal microbiome structure have been reported between
children with or without S. haematobium infection (146).
As S. haematobium is a urogenital parasite, this observation
indicates that the schistosomes have a systemic influence on
microbiome composition. Similar to that observed in Trichuris
infection, it is possible that the schistosome-induced Th2
responses promote the establishment of a particular microbiome
(147). Moreover, as signals from the gut microbiome are
known to influence immune responses at both local and
distal locations (e.g., the lung), it is possible that schistosome-
induced alterations to the intestinal microbiome influence the
development and/or protection against a range of diseases (148,
149).

THE IMMUNE IMPLICATIONS OF EGG
PENETRATION

In mice, granulomatous responses are maximal by approximately
8–10 weeks post infection, before gradually declining in
magnitude (150, 151). This decline corresponds with a reduction
in lymphocyte proliferation and responsiveness, and represents
the transition from acute to chronic disease (77, 152, 153).
Chronic schistosomiasis is characterized by high circulating
levels of anti-inflammatory IL-10 and/or TGF-β and the
profound expansion of regulatory T cells (Tregs) and B
cells (Bregs), which function to supress potentially deleterious
activities of T-helper cells and limit granulomatous pathology
(77). Schistosome eggs are continually produced during this
chronic period, but thanks to the immune-modulatory capacities
of these regulatory cell networks, the majority of chronically
infected individuals do not develop lethal pathology.

Schistosomes drive regulatory cell induction via a variety
of immunomodulatory influences (154). The egg-derived
glycoprotein IPSE-1/ alpha-1,was recently shown to promote B
cell IL-10 and equip B cells with Treg inducing capacities (155).
In the case of worm-derived products, both Cyclophilin A and
schistosomal lysophosphatidylserine (lyso-PS) can modulate DC
function, leading to preferential expansion of IL-10 producing
Tregs (156, 157). Small exosome-like extracellular vehicles (EVs)
from schistosomes could also represent untapped and important
sources of immunomodulation (158, 159). In addition to such
direct effects of worm and egg-derived products on inflammation
and the immunological environment, it is tempting to speculate
that egg penetration itself will shape the immunoregulatory
landscape, perhaps in part via facilitating the systemic spread of
immune-modulating luminal molecules.

Such molecules could include LPS and bacterially-derived
metabolites. SCFAs, for instance, are known to increase
Treg responses, mediate the dampening of allergic airway
inflammation in the context of H. polygyrus bakeri infection,
and down-regulate the pro-inflammatory effector functions of
intestinal macrophages (140, 149, 160, 161). A role for SCFAs
in schistosome-driven immune regulation has not yet been
demonstrated, but this would make for an interesting point
of further study. Intriguingly, although reported endotoxemia
levels are 10 times higher in sera from individuals with human

schistosomiasis than that observed in lethal toxic shock, study
participants have neither poor health nor systemic inflammation
(126). This observation has been suggested to reflect the type of
LPS in the blood stream, where the structure of LPS (specifically
Lipid A acylation) dictates whether it has an antagonistic or
agonistic effect (126, 162). As the structure of LPS varies between
different bacterial communities, potential differences in LPS
immunogenicity could reflect schistosome-induced alterations
to the gut microbiome (142, 162). Alternatively, it is possible
that schistosomes modulate innate cell responsiveness to TLR
ligands and/or reprogram innate cell function to acquire a
more regulatory phenotype (71, 156, 163, 164). In support
of these hypotheses, schistosome-derived lysophosphatidylserine
has been shown to be capable of modifying TLR2 signaling
pathways in DCs, leading to altered maturation and enhanced
induction of Tregs (156). In addition, S. japonicum infections can
increase the survival rate of mice with LPS-induced sepsis, in a
mechanism that likely entails the polarization of macrophages
to an M2 phenotype (165, 166). Molecules that may mediate
this effect include schistosome-derived cysteine proteases, which
were recently shown to protect against sepsis challenge and
lower the production of pro-inflammatory cytokines and
NO from LPS-stimulated macrophages (167). Interestingly,
similar protective mechanisms appear to be induced during
infections with the filarial worm Litomosoides sigmodontis
(163) and the trematode Fasciola hepatica (168). Notably, F.
hepatica reduces the release of inflammatory mediators from
macrophages via mechanisms of molecular mimicry, and L.
sigmodontis protects from bacterial sepsis by down-regulating
the expression of macrophages genes involved in TLR signaling
(163, 168).

The translocation of bacterial ligands into host tissues
likely has immunomodulatory consequences. In the absence
of Myd88 signaling, which is central to bacterial-innate cell
interactions, schistosome infected mice demonstrate impaired
Th1 responses and reduced granulomatous responses (169). The
regulatory environment may also be influenced by microbial
translocation, where translocated LPS could combine with
SEA to trigger the release of inflammasome-derived IL-1β,
which partakes in Breg induction (170, 171). Finally, there
remains the possibility that bacterial leakage influences the
dynamics of macrophage proliferation and alternative activation
at the site of inflammation. For example, during experimental
schistosomiasis, it is possible that intestinal bacteria act as a
trigger for monocyte recruitment from the bone marrow and
resultant macrophage accumulation, as opposed to the in situ
proliferation of resident macrophage populations (95, 172).

By strategically expanding regulatory cell populations,
schistosomes not only limit egg-induced pathology, but can
also suppress the development of various inflammatory diseases
including allergy (173). Indeed, many epidemiological studies
have found inverse correlations between schistosomiasis and
allergies, and in experimental models schistosome infection
provides relief against allergic airway inflammation and OVA-
induced airway hyper-responsiveness, with optimal protection
achieved during chronic but not acute disease stages (174–178).
There is also evidence to show that schistosome eggs can protect
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from allergic asthma in the absence of adult worms, despite the
strong Th2 responses they evoke (179, 180). A current research
goal is to better define the immunomodulatory mechanisms
employed by schistosomes, where this new-found knowledge
could potentially be used to reengineer and recover regulatory
cell function in allergic individuals.

EGGS THAT FAIL

Despite the multiple strategies employed, many eggs fail to
exit their mammalian host. Experimental infections indicate
that only 20–55% of eggs are successful excreted, while the
remainder inevitably become trapped within host tissues (3, 4).
Although egg deposition is targeted for the urinary bladder (S.
haematobium) and the intestine (S. mansoni and S. japonicum),
eggs swept systemically through the blood stream can readily
be detected at various other locations including the eyes,
skin, kidney, spleen and central nervous system (CNS) (4,
16). Egg deposition at intended and unintended sites can
have serious pathological consequences for the host. The
more severe disease complications generally manifest many
years after infection, reflecting gradual egg accumulation in
host tissues and the resolution of granulomas by fibrosis and
calcification (127).

This aspect of schistosome infection is perhaps most evident
in liver pathology during S. mansoni and S. japonicum infection.
Granuloma formation around hepatic egg deposits leads to severe
fibrosis, blood flow obstruction and, subsequently, the formation
of ascites and blood vessels that bypass the liver (portosystemic
shunting) (127). If these vessels rupture, life-threatening bleeding
may follow. Pathology in the intestine is generally less severe
than in the liver, and can be characterized by pseudopolyposis,
ulceration and stricture formation. In S. haematobium infections,
egg entrapment within pelvic organs (urinary bladder, ureters,
cervix, vagina, prostate gland and seminal vesicles) can also result
in severe pathology, including obstructive bladder and ureteral
fibrosis, bladder cancer, kidney failure and the formation of gross
genital sores (127, 181). In females, these lesions may give rise
to infertility, ectopic pregnancies and menstrual irregularities,
while in men, higher rates of sperm apoptosis have been reported
(181, 182).

Importantly, reduced integrity of the genital epithelium
constitutes a significant risk factor for the acquisition of HIV
and other pathogens, including oncogenic viruses and bacteria
(183, 184). Indeed, a recent longitudinal study in Tanzania
demonstrated a clear gender bias in schistosomiasis and HIV
acquisition, with schistosome-infected women demonstrating
a 3 fold higher chance of acquiring HIV than uninfected
women, whereas odds remained the same for men with or
without infection (185). The increased risk of HIV acquisition in
females very likely reflects the local physical changes caused by
schistosome eggs at the female genitalia (183). The sequestration
of eggs within the mucosal tissue of the vagina and cervix
leads to ulceration, erosion and the formation of tiny cervical
abnormalities (yellow and/or grainy sandy patches) that are

surrounded by an irregular network of blood vessels. These blood
vessels are believed to represent egg-induced angiogenesis and
could accelerate the transmission of HIV during intercourse
(52, 183). In contrast, S. haematobium infected men are at
lesser risk of acquiring HIV because eggs do not infiltrate male
genital organs that are exposed to the virus. However, other
studies have shown mild associations between male urogenital
schistosomiasis and HIV-1 acquisition, and even though S.
mansoni eggs do not localize to the genitalia, S. mansoni-
infected individuals also appear more susceptible to HIV (183,
186, 187). These associations are believed to be a consequence
of schistosome-associated immunomodulation, as opposed to
local tissue damage caused by eggs (183). In particular, the co-
receptors for HIV are more highly expressed on the surface of
CD4+ T cells from schistosome-infected individuals, allowing
for greater viral uptake (186).

Similar to HIV, there is a clear link between urogenital
schistosomiasis and bladder cancer, with promotion of
carcinogenesis likely due to S. haematobium enhancing entry
sites for oncolytic viruses and bacteria (184, 188). Alternatively,
egg-driven inflammation may have a bystander effect on host
cells, or immunosuppressive cytokines (produced during chronic
stages) may reduce host ability to clear oncolytic viral and
bacterial infections. In addition, S. haematobium eggs have
shown to directly influence the transcription of carcinogenesis-
associated genes within the bladder wall (128). This effect could
potentially be mediated by schistosome-derived estrogenic
molecules, albeit their carcinogenic activity has yet to be defined
(189).

Curiously, while a clear association between S. haematobium
and bladder cancer has been established, there is limited and
controversial evidence to implicate S. japonicum and S. mansoni
in intestinal and liver cancer (184, 188, 190). The reason for these
strain-specific differences is unclear, but it has been suggested
this reflects the site of egg deposition and/or the contribution
of environmental carcinogens, including tobacco smoke or
industrial and agricultural dyes (184, 188).

The spreading of eggs to the CNS (neuroschistosomaisis)
is one of the more devastating outcomes of schistosome
infection that can result in seizure or paralysis, depending
on brain or spinal cord involvement. While S. japonicum
eggs are more frequently found in the brain, eggs from S.
mansoni and S. haematobium appear to have a predilection
toward the spinal cord (127). These differences could reflect
the smaller size of S. japonicum eggs and/or their absence of
a protruding spine (127). Moreover, given that schistosome
eggs disperse to many ectopic locations, it is possible that
they affect co-infections encountered at these sites too. At a
local and mechanistic level, the inflammatory environment
established by eggs may exacerbate already established pathology
or create an environment that favors other pathogen survival.
At an immunological level, schistosome co-infections may
suppress immune responses toward viral and bacterial antigens,
leading to ineffective pathogen clearance and chronicity
(191, 192).
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Box 1 | Outstanding questions

• Recent studies show schistosome infections to influence the composition of the gut microbiota. Do these changes reflect bacterial adaptations to the inflammatory

environment established by schistosomes infections, or do schistosomes actively promote the colonization of select bacterial communities? Furthermore, do these

microbiome fluctuations influence (i) egg excretion, (ii) pathogenesis, (iii) the immune landscape, and/or (iv) schistosome long-term survival?

• Which exact molecules mediate egg binding to the vascular endothelium, and which process(s) ultimately allow for egg extravasation?

• The effects of schistosome infections on cancer require further attention. Notably, why is the association between carcinogenesis and schistosome infection

stronger for S. haematobium than for S. mansoni and S. japonicum?

• Many cells of the intestinal immune system have undefined roles in the instigation and maintenance of type 2 immunity during schistosome infection. Notably, what

is the actual function of eosinophils and mast cells in the granuloma? Are chemosensory tuft cells involved in egg detection and the initiation of type 2 responses?

Which intestinal macrophage subsets are involved? Do ILC2s participate in these immune reactions?

• Do worms and/or eggs secrete molecules that influence host intestinal barrier integrity? Does the secretion of such molecules promote egg penetration through

host tissues?

• Which co-infections/pathologies in the gut are worsened by the inflammatory environment established by eggs?

• Does egg migration trigger the release of alarmins (e.g., IL-25, IL-33, and TSLP) in the intestine, and do these molecules influence the development of Th2 or

regulatory responses in the gut?

• Serosal immune responses are poorly characterized. Do serosa-resident immune populations play a role in egg migration and how do eggs transit through these

tissues?

• Mucins - Do they play a functional role in intestinal egg-migration or local immune modulation

CONCLUSION AND OUTLOOK

How schistosome eggs successfully exit the host body has
long been a focus of many researchers. Very early studies
revealed the severity of egg-driven pathogenesis and the curious
migration patterns taken by adult worms to reach favored sites
of oviposition (3, 16, 17, 51, 181). In more recent years, research
has shed light on the molecular and immunological mechanisms
that govern this process. Within host blood vessels, schistosomes
establish a suitable environment for maturation, movement
and egg extravasation by interfering with host haemostasis and
angiogenesis (9, 10). For intestinal egg passage and granuloma
formation, schistosomes actively tamper with host immune
responses, to achieve a delicate balance between immune effector
and immune regulatory activity, and to limit bystander tissue
damage. However, despite the exit strategies employed, egg
transit is not a certainty and lethal pathology may follow egg
entrapment.

Our understanding of the interactions between schistosomes
and the mammalian host is continually growing, with many
interesting avenues still open for exploration (see Box 1). For
example, while schistosome infection influences gut microbiome
composition, we are yet to define how these fluctuations
impact egg migration, disease pathogenesis, immunomodulation
and long-term host/parasite survival (142). With powerful
sequencing techniques emerging and our knowledge of the
intestinal microbiome constantly expanding, we anticipate that

the relationship between the mammalian host, schistosomes and
the microbiome will soon be much better understood. Moreover,
we are optimistic that the study of schistosomes will continue
to increase fundamental understanding of the mechanisms
governing immune-regulation and type 2 immunity. In turn,
this could lead to the identification and generation of new
vaccine candidates and targets for the treatment of egg-
induced pathogenesis in schistosomiasis, as well as other type 2
inflammatory diseases.

AUTHOR CONTRIBUTIONS

AC wrote the manuscript, AM and HS critically reviewed and
modified the manuscript.

FUNDING

HS was supported by a ZonMW-VIDI grant (91714352) from
the Netherlands Organisation for Scientific Research. AM
was supported by MRC (MR/N013751/1) and the BBSRC
(BB/P504543/1).

ACKNOWLEDGMENTS

The image in Figure 2was captured by Angela Marley during her
PhD studies in the MacDonald laboratory.

REFERENCES

1. Warren KS, Mahmoud AA, Cummings P, Murphy DJ, Houser HB.

Schistosomiasis mansoni in Yemeni in California: duration of infection,

presence of disease, therapeutic management. Am J Trop Med Hyg. (1974)

23:902–9. doi: 10.4269/ajtmh.1974.23.902

2. Skelly PJ, Da’dara AA, Li XH, Castro-Borges W, Wilson RA.

Schistosome feeding and regurgitation. PLoS Pathog. (2014) 10:e1004246.

doi: 10.1371/journal.ppat.1004246

3. Moore DV, Sandground JH. The relative egg producing capacity

of Schistosoma mansoni and Schistosoma japonicum. Am J

Trop Med Hyg. (1956) 5:831–40. doi: 10.4269/ajtmh.1956.

5.831

4. Fan PC, Kang YC. Egg production capacity of one-pair worms of Schistosoma

japonicum in albino mice. Southeast Asian J Trop Med Public Health (2003)

34:708–12.

5. Hams E, Aviello G, Fallon PG. The Schistosoma granuloma: friend or foe?

Front Immunol. (2013) 4:89. doi: 10.3389/fimmu.2013.00089

Frontiers in Immunology | www.frontiersin.org 11 December 2018 | Volume 9 | Article 3042

https://doi.org/10.4269/ajtmh.1974.23.902
https://doi.org/10.1371/journal.ppat.1004246
https://doi.org/10.4269/ajtmh.1956.5.831
https://doi.org/10.3389/fimmu.2013.00089
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Costain et al. Schistosome Egg Migration

6. Ashton PD, Harrop R, Shah B, Wilson RA. The schistosome

egg: development and secretions. Parasitology (2001) 122:329–38.

doi: 10.1017/S0031182001007351

7. Linder E. The schistosome egg in transit. Ann Clin Pathol. (2017) 5:1110.

8. Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R,

Wynn TA. Immunopathology of schistosomiasis. Immunol Cell Biol. (2007)

85:148–54. doi: 10.1038/sj.icb.7100014

9. Mebius MM, Van Genderen PJJ, Urbanus RT, Tielens AGM,

De Groot PG, Van Hellemond JJ. Interference with the host

haemostatic system by schistosomes. PLoS Pathog. (2013) 9:e1003781.

doi: 10.1371/journal.ppat.1003781

10. Shariati F, Perez-Arellano JL, Carranza C, Lopez-Aban J, Vicente

B, Arefi M, et al. Evaluation of the role of angiogenic factors in

the pathogenesis of schistosomiasis. Exp Parasitol. (2011) 128:44–9.

doi: 10.1016/j.exppara.2011.01.016

11. Doenhoff MJ, Pearson S, Dunne DW, Bickle Q, Lucas S, Bain J, et al.

Immunological control of hepatotoxicity and parasite egg excretion in

Schistosoma mansoni infections: stage specificity of the reactivity of immune

serum in T-cell deprived mice. Trans R Soc Trop Med Hyg. (1981) 75:41–53.

doi: 10.1016/0035-9203(81)90012-2

12. Phillips SM, Diconza JJ, Gold JA, Reid WA. Schistosomiasis in the

congenitally athymic (nude) mouse. I Thymic dependency of eosinophilia,

granuloma formation, and host morbidity. J Immunol. (1977) 118:594–9.

13. Mathew RC, Boros DL. Anti-L3T4 antibody treatment suppresses hepatic

granuloma formation and abrogates antigen-induced interleukin-2

production in Schistosoma mansoni infection. Infect Immun. (1986)

54:820–6.

14. Byram JE, Von Lichtenberg F. Altered schistosome granuloma

formation in nude mice. Am J Trop Med Hyg. (1977) 26:944–56.

doi: 10.4269/ajtmh.1977.26.944

15. Cheever AW, Duvall RH. Schistosoma japonicum: migration of adult worm

pairs within the mesenteric veins of mice. Trans R Soc Trop Med Hyg. (1982)

76:641–5. doi: 10.1016/0035-9203(82)90231-0

16. Cheever AW, Kamel IA, Elwi AM, Mosimann JE, Danner R. Schistosoma

mansoni and S. haematobium infections in Egypt II Quantitative

parasitological findings at necropsy. Am J Trop Med Hyg. (1977) 26:702–16.

doi: 10.4269/ajtmh.1977.26.702

17. Kamel IA, Cheever AW, Elwi MA,Mosimann J, Ray D. SchistosomaMansoni

and S. Haematobium infections in Egypt: I. Evaluation of techniques for

recovery of worms and eggs at necropsy∗. Am J Trop Med Hyg. (1977)

26:696–701. doi: 10.4269/ajtmh.1977.26.696

18. Hernandez DC, Lim KC, Mckerrow JH, Davies SJ. Schistosoma mansoni:

sex-specific modulation of parasite growth by host immune signals. Exp

Parasitol. (2004) 106:59–61. doi: 10.1016/j.exppara.2004.01.003

19. Davies SJ, Grogan JL, Blank RB, Lim KC, Locksley RM, Mckerrow JH.

Modulation of blood fluke development in the liver by hepatic CD4+

lymphocytes. Science (2001) 294:1358–61. doi: 10.1126/science.1064462

20. Harrison RA, Doenhoff MJ. Retarded development of Schistosoma

mansoni in immunosuppressed mice. Parasitology (2009) 86:429–38.

doi: 10.1017/S0031182000050629

21. Riner DK, Ferragine CE, Maynard SK, Davies SJ. Regulation of innate

responses during pre-patent schistosome infection provides an immune

environment permissive for parasite development. PLOS Pathog. (2013)

9:e1003708. doi: 10.1371/journal.ppat.1003708

22. Wolowczuk I, Nutten S, Roye O, Delacre M, Capron M, Murray RM, et al.

Infection of mice lacking interleukin-7 (IL-7) reveals an unexpected role for

IL-7 in the development of the parasite Schistosoma mansoni. Infect Immun.

(1999) 67:4183–90.

23. Amiri P, Locksley RM, Parslow TG, Sadick M, Rector E, Ritter D, et al.

Tumour necrosis factor alpha restores granulomas and induces parasite

egg-laying in schistosome-infected SCID mice. Nature (1992) 356:604–7.

doi: 10.1038/356604a0

24. Turner JD, Narang P, Coles MC, Mountford AP. Blood flukes exploit peyer’s

patch lymphoid tissue to facilitate transmission from the mammalian host.

PLoS Pathog. (2012) 8:e1003063. doi: 10.1371/journal.ppat.1003063

25. Cao J, Liu WJ, Xu XY, Zou XP. Endoscopic findings and clinicopathologic

characteristics of colonic schistosomiasis: a report of 46 cases. World J

Gastroenterol. (2010) 16:723–7. doi: 10.3748/wjg.v16.i6.723

26. Da’dara AA, De Laforcade AM, Skelly PJ. The impact of schistosomes and

schistosomiasis on murine blood coagulation and fibrinolysis as determined

by thromboelastography (TEG). J Thromb Thrombol. (2016) 41:671–7.

doi: 10.1007/s11239-015-1298-z

27. Thors CLE. Clustering of Schistosoma mansoni eggs produced in in vitro

culture. Ann Clin Pathol. (2016) 4:1099.

28. Omran SA, Amer AM, El-Kaliouby AH, Eldin AA. Study of contact

activation in endemic hepatosplenomegaly. Blood Coagul Fibrinolysis (1991)

2:659–62. doi: 10.1097/00001721-199110000-00012

29. Souza MR, Toledo CF, Borges DR. Thrombocytemia as a predictor of

portal hypertension in schistosomiasis. Dig Dis Sci. (2000) 45:1964–70.

doi: 10.1023/A:1005535808464

30. El-Bassiouni NE, El Bassiouny AE, Hussein NA, El-Sayed HH,

Ibrahim IM, Lotfy MG, et al. The coagulation profile in hepatosplenic

schistosomiasis. Blood Coagul Fibrinolysis (1998) 9:189–94.

doi: 10.1097/00001721-199803000-00011

31. Keating JH, Wilson RA, Skelly PJ. No overt cellular inflammation

around intravascular schistosomes in vivo. J Parasitol. (2006) 92:1365–9.

doi: 10.1645/GE-864R.1

32. Fajtova P, Stefanic S, Hradilek M, Dvorak J, Vondrasek J, Jilkova A, et al.

Prolyl oligopeptidase from the blood fluke schistosoma mansoni: from

functional analysis to anti-schistosomal inhibitors. PLoS Negl Trop Dis.

(2015) 9:e0003827. doi: 10.1371/journal.pntd.0003827

33. Figueiredo BC, Da’dara AA, Oliveira SC, Skelly PJ. Schistosomes enhance

plasminogen activation: the role of tegumental enolase. PLoS Pathog. (2015)

11:e1005335. doi: 10.1371/journal.ppat.1005335

34. Wang Q, Da’dara AA, Skelly PJ. The human blood parasite Schistosoma

mansoni expresses extracellular tegumental calpains that cleave

the blood clotting protein fibronectin. Sci Rep. (2017) 7:12912.

doi: 10.1038/s41598-017-13141-5
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