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Galectins, a family of animal lectins, play central roles in immune system regulation,

shaping both innate and adaptive responses in physiological and pathological processes.

These include rheumatoid arthritis (RA), a chronic multifactorial autoimmune disease

characterized by inflammatory responses that affects both articular and extra-articular

tissues. Galectins have been reported to play central roles in RA and its experimental

animal models. In this perspective article we present new data highlighting the regulated

expression of galectin-1 (Gal-1) and galectin-3 (Gal-3) in sera from RA patients under

disease-modifying anti-rheumatic drugs (DMARDs) and/or corticoid treatment in the

context of a more comprehensive discussion that summarizes the roles of galectins

in joint inflammation. We found that Gal-1 levels markedly increase in sera from RA

patients and positively correlate with erythrocyte sedimentation rate (ERS) and disease

activity score 28 (DAS-28) parameters. On the other hand, Gal-3 is downregulated in

RA patients, but positively correlates with health assessment questionnaire parameter

(HAQ). Finally, by generating receiver-operator characteristic (ROC) curves, we found

that Gal-1 and Gal-3 serum levels constitute good parameters to discriminate patients

with RA from healthy individuals. Our findings uncover a differential regulation of Gal-1

and Gal-3 which might contribute to the anti-inflammatory effects elicited by DMARDs

and corticoid treatment in RA patients.
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INTRODUCTION

Rheumatoid arthritis (RA) is a highly prevalent chronic disease with multifactorial etiology. It
is characterized by generalized inflammation in multiple joints, leading to cartilage and bone
erosion and articular deformation. The disease comprises a complex interaction between genetic
susceptibility and environmental stimuli, including epigenetic modifications (1). Galectins have
emerged as master regulators of immune system homeostasis, playing key roles in the amplification
and/or resolution of inflammatory processes, including RA (2, 3).
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GALECTINS IN INFLAMMATION

Galectins are soluble lectins defined by their affinity toward
galactose-β1-4-N-acetylglucosamine (N-acetyl-lactosamine,
LacNAc)-enriched glycoconjugates present on the cell surface or
extracellular matrix. Until now, 15 galectins have been described
in vertebrates and classified into three groups according to
their molecular architecture: (1) “proto-type” galectins (e.g.,
Gal-1), consisting of only one carbohydrate recognition domain
(CRD) which can homodimerize; (2) “tandem-repeat” galectins
(e.g., Gal-8 and−9), which present two different CRDs in
tandem connected by a short peptide; and (3) the “chimera-
type” galectin, Gal-3, consisting of one CRD connected to a
non-lectin N-terminal region that supports oligomerization
(4, 5). The glycan-binding specificities of individual members
of the galectin family have been extensively discussed
recently (4).

Although some galectins exhibit a broad tissue localization
(e.g., Gal-1 and Gal-3), others show a selective distribution
pattern (2). Whereas some members of the galectin family
trigger anti-inflammatory responses and serve as pro-resolving
mediators, others display pro-inflammatory activity enhancing
innate and adaptive immunity (6). Thus, the functional outcome
of galectin signaling may differ greatly, depending on the
particular galectin involved, the number and branching of
specific glycans serving as potential ligands and the biochemical
nature of these multivalent interactions (4, 7). In this regard,
inflammation induces changes in the glycosylation signature
of both immune cells and inflamed tissue, leading to either
masking or unmasking of galectin-specific glycoepitopes (4,
8). Particularly, LacNAc residues recognized by Gal-1, which
are present on the branches of N- or O-linked glycans, are
created by the concerted action of specific glycosyltransferases
including the N-acetylglucosaminyl transferase 5 (MGAT5), an
enzyme that generates β1-6-N-acetylglucosamine branches in
complex N-glycans, and the core 2 β1-6-N-acetylglucosaminyl
transferase 1 (C2GNT1), which acts on asialo-galactose-β1-
3-N-acetylgalactosamine core 1 O-glycans to synthetize the
core 2 branching structure (4). Since Gal-1 and Gal-3 are
ubiquitously expressed and display context-dependent functional
roles, their immunomodulatory effects have been described in
several inflammatory microenvironments (2).

Given the prominent expression of Gal-1 in tumors and
immune privileged sites and its up-regulation during the
recovery phase of autoimmune inflammation (9–13), this lectin
has been proposed to play key roles in suppression of antitumor
responses, maintenance of immune tolerance and resolution of
chronic inflammation, acting as a novel regulatory checkpoint
that links innate and adaptive responses (14). Gal-1 shapes
immune responses by selectively deleting Th1 and Th17 effector
cells (15), promoting a tolerogenic and pro-migratory dendritic
cell (DC) phenotype (13, 16), fostering expansion of regulatory
T cells (Tregs) (10, 17–19) and fine-tuning the function
of neutrophils, monocytes and macrophages (20, 21). These
broad immunoregulatory effects have been validated in several
experimental models of autoimmunity, allergy, infection, and

cancer (2, 7, 22–24).

On the other hand, Gal-3 has controversial pro- or anti-
inflammatory activities depending on various factors including
its intracellular or extracellular localization and the target cell
implicated in these processes (25). Although it may contribute
to resolution of inflammation by clearing apoptotic neutrophils
(26), this lectin displays mostly pro-inflammatory effects by
reinforcing activation of macrophages, DCs, mast cells, and
natural killer cells, as well as T and B lymphocytes (27).

GALECTINS IN RHEUMATOID ARTHRITIS

Heritability of RA is calculated to be around 65%, with more than
100 RA-risk-associated genomic loci (28). A few polymorphisms
in individual galectins that could be associated to progression
or severity of RA have been described. LGALS3 +292C, a
polymorphism in the gene encoding Gal-3, is more common
in RA patients (29). Moreover, a polymorphism in the gene
encoding Gal-8 (rs2737713), generated by a missense mutation
that changes a phenylalanine for tyrosine (F19Y), exhibits a
strong association with RA in a Caucasian population (30).
This mutation seemed to have no major effect on carbohydrate
binding at least in solid-phase assays. Furthermore, a C3279T
polymorphism in LGALS2 gene (encoding Gal-2), has been
associated with diastolic blood pressure in RA patients at
increased risk for hypertension (31).

A common feature of RA is the altered hyper-activated state
of the stromal tissue and the immune system (1). Changes
in both innate and adaptive immune pathways are common
findings in RA patients (32). Gal-3 has been identified as a pro-
inflammatory mediator both in RA patients and animal models
of the disease. Gal-3 mRNA and protein were detected at the
synovial membrane, while Gal-3-binding protein was found to
be predominantly expressed at sites of bone destruction (33).
Interestingly, expression of Gal-1 was not found at sites of
synovial fibroblast invasion in RA (33). Synovial fibroblasts from
RA patients expressed higher levels of CD51 and CD61 integrins,
which individually, or by forming the αVβ3 complex (vitronectin
receptor), binds to cartilage oligomeric matrix protein and
induces secretion of Gal-3 (34). Externalization of this lectin
influences the shape and persistence of joint inflammation by
inducing local fibroblasts to secrete pro-inflammatory cytokines
including IL-6, GM-CSF and MMP-3 and chemokines such
as CCL2, CXCL8, CCL3, and CCL5 (35). Stimulation of IL-6
secretion by Gal-3 is mediated by Toll-like receptor-2,−3, and−4
in human synovial fibroblasts (36), contributing to amplification
of pro-inflammatory responses (Figure 1).

Before the clinical onset of the disease, a “pre-RA” condition
arises, which displays both immunologic and metabolic
alterations (37). Follow-up studies in undifferentiated arthritis
(UA) patients, naïve for both disease-modifying anti-rheumatic
drugs (DMARDs) and corticosteroids, showed that serum Gal-3
levels are high in those patients that progress to RA after 1 year.
Although serum Gal-3 was a poor prognostic marker itself, the
combination with anti-cyclic citrullinated peptide (CCP) levels
or bone marrow edema score could help categorize UA subsets at
early phases (38). Moreover, in another study, serum Gal-3 levels
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FIGURE 1 | Role of galectins in inflamed synovial tissue. Galectins are expressed by a number of inflammatory cells (both innate and adaptive immune cells),

endothelial cells, stromal cells, and synovial fibroblasts. These glycan-binding proteins influence a variety of cellular programs that control amplification and resolution

of inflammatory responses. Galectins can behave as pro- or anti-inflammatory mediators by modulating the physiology of immune cells, including monocytes,

macrophages, synovial fibroblasts, Th1, Th2, and Th17 cells, regulatory T (Treg) cells, B cells, neutrophils and mast cells. By positively or negatively regulating

inflammation, galectins may directly or indirectly influence the clinical course of RA. While Gal-1 enhances a Th2-Treg response profile, polarizes macrophages toward

an M2 phenotype and induces apoptosis of Th1 and Th17 cells, Gal-3 activates fibroblasts and induces secretion of pro-inflammatory cytokines. Circulating

autoantibodies reduce effective Gal-1 concentrations in synovial fluid of patients with RA. On the other hand, Gal-9 controls CD4+ T cell functions through binding to

TIM-3+ cells. Moreover, Gal-8 has pro-apoptotic and anti-inflammatory activity in the inflamed joint; however a soluble form of CD44 reduces availability of this

tandem-repeat galectin by forming complexes with fibrinogen. Gal, Galectin; TNF, Tumor necrosis factor; IL, Interleukin; Th, T helper cell; Treg, regulatory T cells; M1,

pro-inflammatory macrophage; M2, anti-inflammatory macrophage.

showed no differences compared to controls in DMARDs- and
corticosteroid-naïve patients with <6 months of RA diagnosis,
but were significantly elevated in anti-CCP positive vs. anti-CCP
negative patients and healthy subjects (39). Furthermore, in a
cohort of 20 RA patients serum Gal-3 levels positively correlated
with those found in synovial fluid (33), suggesting possible
association between systemic and local galectins.

Notably, autoantibodies that could reduce or block biological
activities of galectins have been found in different settings.
Xibillé-Friedmann and colleagues reported reduced Gal-1 levels
in synovial fluid of RA patients due to the presence of anti-Gal-
1 autoantibodies (40), a similar effect as that found in uveitis
patients (41) (Figure 1). Moreover, autoantibodies against Gal-8
and Gal-9 have also been detected in RA patients (42, 43).

In a model of antigen-induced arthritis, Forsman and
colleagues found that joint inflammation and bone erosion
were attenuated, antigen-specific IgG and pro-inflammatory
cytokines TNF-α and IL-6 were decreased, and the number of
Th17 cells was significantly reduced in Lgals3−/− vs. WT mice,
suggesting a pathogenic role for this lectin in the development
and progression of RA (44). In contrast, Lgals1−/− mice
developed a more severe inflammatory response in a model
of collagen-induced arthritis (CIA) with higher penetrance
and an accelerated clinical onset (45). In this regard, in
early studies, we demonstrated the therapeutic potential of
Gal-1 in the CIA model. Injection of syngeneic fibroblasts
genetically engineered to secrete Gal-1, or daily administration

of recombinant Gal-1 suppressed clinical and histopathological
manifestations of arthritis and promoted a shift toward a Th2-
mediated anti-inflammatory response (46). These findings were
integrated by Wang et al. who successfully treated rats using
lentiviral vectors aimed at overexpressing Gal-1 or silencing Gal-
3, revealing broad anti-inflammatory responses characterized by
improved radiographic and histological scores (47). Additionally,
downregulation of Gal-1 and upregulation of Gal-3 expression
were found in synovial tissue from patients with juvenile
idiopathic arthritis (48, 49).

Interestingly, Eshkar-Sebban et al. found that a CD44 variant
expressed in synovial fluid of RA patients -CD44vRA- sequesters
Gal-8 by forming a soluble complex with fibrinogen, thus
reducing the availability of this lectin in the inflamed joint
(50). Furthermore, elevated levels of Gal-9 were detected in
synovial fluid from patients, an effect that was accompanied
by a higher percentage of Gal-9-positive cells in synovial tissue
(51). By using a stable mutant protein resistant to proteolysis,
Seki et al. showed that Gal-9, but not Gal-1,−3, or−8, induced
apoptosis of fibroblast-like synoviocytes (51). Later, the authors
found that Gal-9 suppressed clinical manifestations of CIA by
reducing the synthesis of pro-inflammatory cytokines IL-17, IL-
12, and IFN-γ in the joints and lowering the number of CD4+

T cells expressing T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3) in peripheral blood (52). Nonetheless,
this effect was impaired in RA patients due to reduced TIM-
3 expression (53). Furthermore, Gal-9 also reduced the severity
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of immune complexes-induced arthritis by downregulating
FcγRIII and upregulating FcγRIIb in macrophages, an effect
that ultimately led to IL-10 secretion and inhibition of TNF-
α and IL-1β production (54). Mechanistically, Gal-9 acted by
inducing the in vitro differentiation of Tregs, while suppressed
polarization toward a Th17 phenotype (52). In contrast, a recent
study suggested a rather pro-inflammatory role of Gal-9, as
intra-articular injection of this lectin facilitated mononuclear
cell migration and favored arthritogenic responses (55). Thus,
the coordinated action and differential regulation of individual
members of the galectin family will finally dictate clinical
responses in RA patients (Figure 1).

CLINICAL RELEVANCE OF GAL-1 AND
GAL-3 IN PATIENTS WITH RHEUMATOID
ARTHRITIS

Based on its broad anti-inflammatory activity, we evaluated Gal-
1 serum levels in patients with established RA (defined by the
American College of Rheumatology 2010 classification criteria).
We recruited 32 patients and 19 sex- and age-matched healthy
volunteers from Hospital de Clínicas “José de San Martín”
(Buenos Aires, Argentina) (Table 1). Patients ranged from 1 to 28
years since RA was first diagnosed and were all under treatment
with at least one DMARD, mainly methotrexate. Determination
of Gal-1 was performed using an in-house ELISA as described
(56). Detailed description of Materials and methods is shown as
Supplementary Data.

Analysis of circulating Gal-1 showed significantly higher levels
of this lectin in serum obtained from RA patients compared
to control individuals (Figure 2A). To further validate these
findings and given the lack of differences reported in another
study (40), we recruited a second, independent and larger cohort
of patients from Hospital “José Bernardo Iturraspe” (Santa Fe,
Argentina). Twenty nine healthy volunteers and 48 RA patients
under DMARD treatment were enrolled in the study. Cohort 2
validated our previous observation, as RA patients again showed
significantly higher levels of serum Gal-1 compared to controls
(Figure 2B).

Next, we explored the potential associations of Gal-1 with
clinical parameters of disease activity. For this purpose, and to
gain statistical robustness, we pooled data from both cohorts.
Regardless of differences in the median Gal-1 serum levels
between RA patients from cohort 1 (median = 68.77 ng/ml) and
cohort 2 (median = 95.63 ng/ml), analysis of pooled data from
both cohorts revealed, as expected, elevated Gal-1 levels in sera
from RA patients compared to controls (Figure 2C). Based on
this finding, we regrouped RA patients based on their functional
status classification, and found that, compared to controls, serum
Gal-1 levels were significantly increased in all functional classes;
yet revealing no statistical differences (Figure 2D).

Next, we analyzed whether Gal-1 serum levels may correlate
with quantitative parameters of disease activity derived from
patients’ questionnaires, such as VAS (Visual Analog Scale)
and physical function such as HAQ (Health Assessment
Questionnaire). As shown in Figures 2E,F, neither VAS nor

TABLE 1 | Demographic, clinical, and laboratory characteristics of patients with

RA.

Cohort 1 (n:32) Cohort 2 (n:48)

Gender

Female 29 46

Male 3 2

Age, median years (range) 41 (24–64) 48 (30–67)

RA duration, mean years (range) 7.8 (1–28) 9.1 (1–28)

Disease activity parameters

Functional Class

Class I 4/32 (12.6%) 20/48 (41.7%)

Class II 14/32 (43.7%) 21/48 (43.7%)

Class III 11/32 (34.3%) 5/48 (10.4%)

N/A 3/32 (9.4%) 2 (4.2%)

DAS-28, mean (range) 4.4 (1.75–8) 4.4 (1.96–6.28)

HAQ-A, mean (range) 1.30 (0.25–2.25) 1.27 (0–4.12)

VAS, mean (range) 41.4mm (0–100) 37.1mm (0–100)

ESR, mean (range) 27.7mm (10–91) 32.6mm (5–68)

Serology

RF

Positive 28 38

Negative 0 7

N/A 4 3

Anti-CCP

Positive 18 14

Negative 1 0

N/A 12 34

Treatment

Methotrexate 26/32 (81.3%) 40/48 (83.3%)

Corticosteroids 19/32 (59.4%) 43/48 (89.6%)

HCQ/CQ 9/32 (28.1%) 19/48 (39.6%)

Sulfasalazine 1/32 (3.1%) 4/48 (8.3%)

Leflunomide 1/32 (3.1%) 11/48 (23%)

Anti-TNFα 6/32 (18.8%) 2/48 (4.2%)

Other biologicals (rituximab,

abatacept)

2/32 (6.3%) 0/48 (0%)

NSAIDs 9/32 (28.1%) 33/48 (68.8%)

Other 9/32 (28.1%) 4/48 (8.3%)

N/A 3/32 (9.4%) 3/48 (6.2%)

N/A, Not Available; RF, Rheumatoid Factor; anti-CCP, anti-cyclic citrullinated peptide;

NSAIDs, non-steroidal anti-inflammatory drugs. Others: folic acid, VitD3, risedronate,

calcium.

HAQparameters showed correlation with circulating Gal-1 levels
(r = 0.17, p = 0.15; r = 0.04, p = 0.72, respectively). We
then explored whether Gal-1 serum levels correlate with the
Erythrocyte Sedimentation Rate (ESR). Notably, we found a very
strong positive correlation between Gal-1 serum levels and ESR
(Figure 2G, r = 0.039, p = 0.0006), a blood parameter that
indicates the extent of systemic inflammation. Moreover, we also
found a positive correlation between Gal-1 serum levels and
DAS28 (Disease Activity Score 28) (Figure 2H, r = 0.25, p =

0.029).
Since RA is a chronic inflammatory disease that aggravates

gradually, we also explored whether Gal-1 serum levels could

Frontiers in Immunology | www.frontiersin.org 4 January 2019 | Volume 9 | Article 3057

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mendez-Huergo et al. Galectins in Rheumatoid Arthritis

FIGURE 2 | Serum Gal-1 and Gal-3 expression levels discriminate RA patients from healthy individuals. (A-C). Determination of serum Gal-1 levels (ELISA) in controls

and RA patients from cohort 1 (A), cohort 2 (B) and pooled data (C). (D). Gal-1 serum levels from all patients (C) classified by functional status. (E-I). Correlation

analysis of Gal-1 serum levels of all patients with HAQ (E), VAS (F), ESR (G), DAS-28 (H) and RA duration (I). (J). Determination of serum Gal-3 levels (ELISA) in

controls and RA patients from cohort 2. (K). Gal-3 serum levels of RA patients from cohort 2 (J) classified by functional status. (L-M). Correlation analysis of Gal-3

serum levels of RA patients from cohort 2 with HAQ (L) and age (M). (N). ROC curve analysis to assess Gal-1 (blue) and Gal-3 (red) capacity to discriminate between

RA patients and healthy individuals. *p < 0.05, **p < 0.01, ***p < 0.001. ****p < 0.0001. All variables analyzed were tested for Gaussian distribution with D’Agostino

and Pearson omnibus normality test. For comparisons between two groups, unpaired t test with Welch’s correction or Mann-Whitney tests were applied as

appropriate. For comparisons between more than two groups, Kruskal-Wallis test was applied. For correlation analysis, Pearson or Spearman correlation tests were

applied as appropriate. To determine the capability of Gal-1 and Gal-3 serum level measurements to discriminate between RA patients and controls, ROC curves were

generated.
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change over time. We found no significant correlation between
serum Gal-1 and disease duration (Figure 2I, r = 0.18, p= 0.15).
Additionally, no correlation was found between Gal-1 serum
concentrations and patients’ age (r = 0.03, p = 0.80, graph not
shown).

In order to broaden our study and given the different roles of
Gal-3 in the arthritogenic process, we then examined serum levels
of this chimera-type lectin in this patient cohort using a human
Gal-3 ELISA kit (R&D Systems; DY1154). Interestingly, RA
patients showed significantly lower levels of Gal-3 in circulation
compared to control subjects (Figure 2J). Similar to our previous
analysis, we categorized RA patients according to their functional
status classification and found that serum Gal-3 levels were
significantly diminished in functional class I and II compared
to controls, but found no statistical differences between controls
and class III RA patients (Figure 2K). Moreover, a positive
linear trend was found, showing that Gal-3 serum concentrations
tended to be higher in classes with higher disease activity (r
= 0.18, p = 0.0037) (Figure 2K). Then, the same correlation
analysis applied to Gal-1 and clinical parameters of disease
was performed for Gal-3. Although we found no correlation
between Gal-3 serum concentrations and VAS (r = −0.08, p
= 0.60), ESR (r = −0.15, p = 0.31) or DAS28 (r = −0.06, p
= 0.69), a significant positive correlation was detected between
Gal-3 levels and HAQ score (Figure 2L, r = 0.38, p = 0.0098).
Furthermore, though circulating Gal-3 levels did not correlate
with RA duration (r = 0.23, p = 0.16), we found a positive
correlation with patients’ age (Figure 2M, r = 0.40, p= 0.0062).

Finally, we generated Receiver-Operator Characteristic (ROC)
curves in order to assess the ability of Gal-1 and Gal-3 serum
levels to discriminate between RA patients and healthy controls.
Both Gal-1 and Gal-3 serum levels proved to be good parameters
to distinguish patients with established RA from controls, as
the area under the ROC curve (AUC) for both parameters
was above 0.8 (Gal-1 AUC = 0.82, Gal-3 AUC = 0.88; both
p < 0.0001) (Figure 2N). Serum Gal-1 concentrations above
60.94 ng/ml (sensitivity = 80.0% and specificity = 73.3%) and
serum Gal-3 concentrations below 16.82 ng/ml (sensitivity =

85.42% and specificity = 71.43%) successfully differentiated RA
patients from controls.

CONCLUSIONS

Galectins have emerged as amplifiers or silencers of inflammatory
responses, capable of orchestrating complex regulatory circuits
in innate and adaptive immune cells, as well as in synovial
fibroblasts. In this perspective article we summarize relevant data
pinpointing the contribution of galectins to the pathogenesis of
RA (Figure 1) and report new clinical observations, highlighting
the differential regulation of Gal-1 and Gal-3 at the systemic
level in RA patients and their association with disease activity
(Figure 2).

In two independent cohorts we found increased
concentrations of Gal-1 in sera from RA patients compared to
control individuals. Elevated levels of this lectin were found in all
functional classes of patients and were independent of age and
disease duration. To our knowledge, only one study has evaluated
circulating Gal-1 levels in RA patients. Xibillé-Friedmann et al

described in a cohort of 60 patients that plasma Gal-1 levels were
similar in patients and controls; however Gal-1 concentrations
were reduced in synovial fluid of patients and correlated with
the presence of anti-Gal-1 autoantibodies (40). Although both
studies recruited patients under DMARD treatment, differences
between them could be related to distinct DMARD used,
genetic background and/or environmental factors influencing
concentrations of this immunoregulatory lectin. Of note, control
subjects from that study exhibited considerably higher levels of
Gal-1 in serum (low µg/ml range) compared to our controls and
data published by other groups (often ranging in the low ng/ml
range) (57–62).

Interestingly, we found a strong correlation between
Gal-1 concentrations and ESR, an indicator of systemic
inflammation. Similarly, in a previous study, Gal-1 serum levels
were significantly increased in classical Hodgkin lymphoma
patients who also showed an elevated ERS (57). Accordingly,
we observed a positive correlation between serum Gal-1 and
DAS-28, a composite score of disease activity derived from
examination of 28 joints (number of swollen joints and tender
joints) combined with ESR and VAS measurements. Like PD-1,
CTLA-4 and other immune checkpoints, Gal-1 expression is
upregulated in response to severe inflammatory conditions,
acting as an homeostatic mechanism to counterbalance
exuberant inflammation (13, 63). Interestingly, nuclear factor
(NF)-κB, a transcription factor associated with induction of
pro-inflammatory genes, also controls expression of immune
inhibitory programs including those involving PD-1 and Gal-1
on T cells (64, 65). Thus, during the peak of inflammation, similar
transcriptional mechanisms may operate to activate homeostatic
programs that contribute to resolution of inflammatory
responses.

The pathogenic role of IL-6 in RA has been widely studied,
showing correlation between systemic levels of this cytokine
and disease activity (66). Recently, we found that systemic
upregulation of IL-6 mobilizes myeloid-derived suppressor cells
(MDSCs) which drive Gal-1 production by γδ-T cells (67). In
this regard, expansion of MDSCs correlated with disease severity
(DAS-28) in RA patients (68, 69). As serumGal-1 levels positively
correlate with inflammation and DAS-28, activation of an “IL-
6-MDSCs-Gal-1” axis could also take place in RA. Additional
studies should be conducted to verify this hypothesis. On the
other hand, a Gal-1-mediated pro-inflammatory signature has
been observed in chondrocytes from osteoarthritic patients,
suggesting context-dependent regulatory effects of this lectin
(70).

Remarkably, Gal-1 and Gal-3 act by cross-linking N- and
O-glycans on the surface of immune cells (15, 71). Since
glycosylation is considerably altered in rheumatologic disorders
(72), further studies are warranted to examine the relevance
of cell surface glycans on immune cells, particularly those
implicated in galectin-glycan interactions (complex N-glycans,
core-2 O-glycans and absence of α2,6-sialylated structures)
during the evolution of the arthritogenic process in RA
patients. In this regard, low levels of galactosylation and
sialylation of autoantibodies are associated with disease severity
in RA patients (73). Moreover, Pfeifle and colleagues showed
that IL-23-activated Th17 cells suppress α2,6-sialylation of
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IgG through downregulation of the α2,6-sialyltransferase-1 in
antibody-producing plasma cells, skewing the balance from anti-
inflammatory toward pro-inflammatory responses (74). Further
studies aimed at exploring glycosylation patterns of pathogenic
cells in RA will contribute to fully elucidate the role of galectins
in this pathology.

Finally, we and others observed a positive correlation between
Gal-3 levels and HAQ (39). Interestingly, we found lower
concentrations of Gal-3 in RA patients compared to controls. In
contrast, Issa and colleagues reported augmented Gal-3 serum
levels mainly in untreated patients (38, 39). Such discrepancies
could be probably due to DMARD and/or corticosteroid
treatment in our patient cohorts. Supporting this assumption,
glucocorticoid treatment inhibited lipopolysacharides-induced
upregulation of Gal-3 in monocytic THP-1 cells (75). Moreover,
a significant increase in IgG galactosylation and sialylation was
detected in RA patients after initiation of methotrexate therapy,
showing reversion to physiologic conditions (76, 77). Thus,
low serum Gal-3 levels in combination with augmented Gal-
1 expression could influence activation of tolerogenic circuits
during RA remission states. Future studies involving treated and
untreated RA patients will shed light on how different treatments
affect both the glycosylation patterns of inflammatory cells as
well as the expression pattern of pro- and anti-inflammatory
galectins, leading to activation or de-activation of immune
signaling programs.
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